Penalty-Based Solution for the Interval Finite Element Methods

Rafi L. Muhanna
Georgia Institute of Technology

Robert L. Mullen
Case Western Reserve University

Hao Zhang
Georgia Institute of Technology

First Scandinavian Workshop on INTERVAL METHODS AND THEIR APPLICATIONS
August 14-16, 2003, Technical University of Denmark, Copenhagen, Denmark
Outline

- Interval Finite Elements
- Element-By-Element
- Penalty Approach
- Examples
- Conclusions
Center for Reliable Engineering Computing (REC)
Outline

- Interval Finite Elements
- Element-by-Element
- Penalty Approach
- Examples
- Conclusions
Interval Finite Elements

- Follows conventional FEM
- Loads, nodal geometry and element materials are expressed as interval quantities
- Element-by-element method to avoid element stiffness coupling
- Lagrange Multiplier and Penalty function to impose compatibility
- Iterative approach to get enclosure
- Non-iterative approach to get exact hull for statically determinate structure
Interval Finite Elements

Uncertain Data

Geometry

Materials

Interval Stiffness Matrix

\[K = \int B^T CB \, dV \]

Interval Load Vector

\[F_i = \int N_i \, t \, dA \]

Element Level

\[KU = F \]
Interval Finite Elements

\[K \mathbf{u} = \mathbf{f} \]

- \(K = \int B^T C B \, dV \) = Interval element stiffness matrix
- \(B \) = Interval strain-displacement matrix
- \(C \) = Interval elasticity matrix
- \(\mathbf{f} = [F_1, \ldots, F_i, \ldots, F_n] \) = Interval element load vector (traction)
- \(F_i = \int N_i \, t \, dA \)
- \(N_i \) = Shape function corresponding to the \(i \)-th DOF
- \(t \) = Surface traction
Finite Element

1. Load Dependency
2. Stiffness Dependency
1. Load Dependency

\[P_b = \sum L^T \int \! N^T b(x) \, dx \]

The global load vector \(P_b \) can be written as

\[P_b = M \, q \]

where \(q \) is the vector of interval coefficients of the load approximating polynomial.
Finite Element – Load Dependency

Sharp solution for the interval displacement can be written as:

$$U = (K^{-1} \; M) \; q$$

Thus all non-interval values are multiplied first, the last multiplication involves the interval quantities

➢ If this order is not maintained, the resulting interval solution will not be sharp
Outline

- Interval Finite Elements
- Element-by-Element
- Penalty Approach
- Examples
- Conclusions
Finite Element – Element-by-Element Approach

- Stiffness Dependency

Coupling (assemblage process)
Finite Element – Element-by-Element Approach

Coupling

\[k = \begin{pmatrix}
 k_1 + k_2 & -k_2 \\
 -k_2 & k_2
\end{pmatrix}, \quad k^{-1} = \begin{pmatrix}
 \frac{1}{k_1} & \frac{1}{k_1 + k_2} \\
 \frac{1}{k_1} & \frac{k_1}{k_1 k_2}
\end{pmatrix}, \quad p = \begin{pmatrix}
 0 \\
 1
\end{pmatrix} \]

\[u_2 = \frac{1}{k_1}, \quad u_3 = \frac{k_1 + k_2}{k_1 k_2} \quad \text{(over estimation in } u_3, r_3 = 3r_{3\text{-exact}} \text{)} \]

\[u_2 = \frac{1}{k_1}, \quad u_3 = \frac{1}{k_1} + \frac{1}{k_2} \quad \text{(exact solution)} \]
Finite Element – Element-by-Element Approach

Element by Element to construct global stiffness

Element level

\[K_1 = \begin{pmatrix}
\frac{E_1 A_1}{L_1} & -\frac{E_1 A_1}{L_1} \\
-\frac{E_1 A_1}{L_1} & \frac{E_1 A_1}{L_1}
\end{pmatrix} = \begin{pmatrix}
E_1 & 0 \\
0 & E_1
\end{pmatrix} \begin{pmatrix}
\frac{A_1}{L_1} & -\frac{A_1}{L_1} \\
-\frac{A_1}{L_1} & \frac{A_1}{L_1}
\end{pmatrix} = D_1 S_1 = S_1 D_1 \]
Finite Element – Element-by-Element Approach

- K: block-diagonal matrix

\[
K = \begin{pmatrix}
 K_1 & & \\
 & K_2 & \\
 & & \ddots \\
 & & & K_n
\end{pmatrix} = \begin{pmatrix}
 D_1S_1 & & \\
 & D_2S_2 & \\
 & & \ddots \\
 & & & D_nS_n
\end{pmatrix}
\]

\[
K = \begin{pmatrix}
 D_1 & & \\
 & D_2 & \\
 & & \ddots \\
 & & & D_n
\end{pmatrix} \begin{pmatrix}
 S_1 & & \\
 & S_2 & \\
 & & \ddots \\
 & & & S_n
\end{pmatrix} = \begin{pmatrix}
 S_1 & & \\
 & S_2 & \\
 & & \ddots \\
 & & & S_n
\end{pmatrix} \begin{pmatrix}
 D_1 & & \\
 & D_2 & \\
 & & \ddots \\
 & & & D_n
\end{pmatrix}
\]
Finite Element – Element-by-Element Approach

Element-by-Element

\[D = \begin{pmatrix} E_1 & 0 & 0 & 0 \\ 0 & E_1 & 0 & 0 \\ 0 & 0 & E_2 & 0 \\ 0 & 0 & 0 & E_2 \end{pmatrix} \]

\[S = \begin{pmatrix} \frac{A_1}{L_1} & -\frac{A_1}{L_1} & 0 & 0 \\ -\frac{A_1}{L_1} & \frac{A_1}{L_1} & 0 & 0 \\ 0 & 0 & \frac{A_2}{L_2} & -\frac{A_2}{L_2} \\ 0 & 0 & -\frac{A_2}{L_2} & \frac{A_2}{L_2} \end{pmatrix} \]

\[K = DS = SD \]
Outline

- Interval Finite Elements
- Element-by-Element
- Penalty Approach
- Examples
- Conclusions
Finite Element – Present Formulation

- In steady-state analysis-variational formulation

\[\Pi = \frac{1}{2} U^T KU - U^T P \]

- With the constraints \(t = C U = 0 \)

\[C = \begin{pmatrix} 0 & 1 & -1 & 0 \end{pmatrix} \text{ and } U^T = \begin{pmatrix} U_1 & U_2 & U_3 & U_4 \end{pmatrix} \]

- Adding the penalty function \(\frac{1}{2} t^T \alpha t \)

\(\alpha \) : a diagonal matrix of penalty numbers

\[\Pi^* = \frac{1}{2} U^T KU - U^T P + \frac{1}{2} t^T \alpha t \]
Invoking the stationarity of Π^*, that is $\delta \Pi^* = 0$,

$$(K + C^T \alpha C)U = P$$

$$(K + Q)U = P$$

$$C^T = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} \quad Q = C^T \alpha C = \alpha \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
The physical meaning of \(Q \) is an addition of a large spring stiffness

\[
Q = \alpha \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
K + Q = \begin{pmatrix}
\frac{E_1 A_1}{L_1} & -\frac{E_1 A_1}{L_1} & 0 & 0 \\
-\frac{E_1 A_1}{L_1} & \frac{E_1 A_1}{L_1} + \alpha & -\alpha & 0 \\
0 & -\alpha & \frac{E_2 A_2}{L_2} + \alpha & -\frac{E_2 A_2}{L_2} \\
0 & 0 & -\frac{E_2 A_2}{L_2} & \frac{E_2 A_2}{L_2}
\end{pmatrix}
\]
Finite Element – Penalty Approach

- Interval system of equations
 \[(K + Q)U = P\] or \[AU = P\]

- where
 \[A = \{\widetilde{A} \in R^{n \times n} \mid \widetilde{A}_{ik} \in A_{ik} \text{ for } i, k = 1, \ldots, n\}\]
 \[P = \{\widetilde{P} \in R^{n \times 1} \mid \widetilde{P}_i \in P_i \text{ for } i = 1, \ldots, n\}\]

- and
 \[D = \{\widetilde{D} \in R^{n \times n} \mid \widetilde{D}_{ii} \in D_{ii} \text{ for } i = 1, \ldots, n\}\]
 \[K = DS = SD\]
Finite Element – Penalty Approach

➤ The solution will have the following form

\[RP - (I - RA)U \subseteq \text{int}(U) \]

➤ where \(R = \) inverse mid \((A)\) and \(U = U^* + U_0 \)

➤ or

\[RP - RAU_0 + (I - RA)U^* \subseteq \text{int}(U^*) \]

\[z + CU^* \subseteq \text{int}(U^*) \]
Finite Element – Penalty Approach

\[z = RP - RAU_0 = RP - R(K + Q)U_0 \]
\[z = RP - RQU_0 - RSDU_0 = RP - RQU_0 - RSM\delta \]

- \[R = (S + Q)^{-1} \] and \[U_0 = RP \]

\[C = I - RA = I - RK - RQ = I - RQ - RSD \]

- Algorithm converges if and only if \[\rho (|C|) < 1 \]
Finite Element – Penalty Approach

Rewrite \(DU_0 = M \delta \)

\[
\begin{pmatrix}
E_1 & 0 & 0 & 0 \\
0 & E_1 & 0 & 0 \\
0 & 0 & E_2 & 0 \\
0 & 0 & 0 & E_2
\end{pmatrix}
\begin{pmatrix}
U_{01} \\
U_{02} \\
U_{03} \\
U_{04}
\end{pmatrix}
=
\begin{pmatrix}
U_{01} & 0 \\
U_{02} & 0 \\
0 & U_{03} \\
0 & U_{04}
\end{pmatrix}
\begin{pmatrix}
E_1 \\
E_2
\end{pmatrix}
=
\begin{pmatrix}
E_1 U_{01} \\
E_1 U_{02} \\
E_2 U_{03} \\
E_2 U_{04}
\end{pmatrix}
\]
Outline

- Interval Finite Elements
- Element-by-Element
- Penalty Approach
- Examples
- Conclusions
Examples

- Statically indeterminate (general case)
 - Two-bay truss
 - Three-bay truss
 - Four-bay truss
 - Statically indeterminate beam

- Statically determinate
 - Three-step bar
Examples – Stiffness Uncertainty

- Two-bay truss
 - $A = 0.01 \, m^2$
 - E (nominal) = 200 GPa

- Three-bay truss

![Two-bay truss diagram]

![Three-bay truss diagram]
Examples – **Stiffness Uncertainty**

- **Four-bay truss**
Examples – Stiffness Uncertainty 1%

- **Two-bay truss**

 Two bay truss (11 elements) with 1% uncertainty in Modulus of Elasticity, $E = [199, 201]$ GPa

<table>
<thead>
<tr>
<th></th>
<th>V2(LB)(m)</th>
<th>V2(UB)(m)</th>
<th>U4(LB)(m)</th>
<th>U4(UB)(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb $\times 10^{-4}$</td>
<td>-2.00326</td>
<td>-1.98333</td>
<td>0.38978</td>
<td>0.40041</td>
</tr>
<tr>
<td>Present $\times 10^{-4}$</td>
<td>-2.00338</td>
<td>-1.98302</td>
<td>0.38965</td>
<td>0.40050</td>
</tr>
<tr>
<td>error</td>
<td>$-0.006%$</td>
<td>$0.015%$</td>
<td>$0.033%$</td>
<td>$-0.023%$</td>
</tr>
</tbody>
</table>
Examples – Stiffness Uncertainty 1%

Three-bay truss

Three bay truss (16 elements) with 1% uncertainty in Modulus of Elasticity, \(E = [199, 201] \) GPa

<table>
<thead>
<tr>
<th></th>
<th>V2(LB)(m)</th>
<th>V2(UB)(m)</th>
<th>U5(LB)(m)</th>
<th>U5(UB)(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb (\times 10^{-4})</td>
<td>− 5.84628</td>
<td>− 5.78663</td>
<td>1.54129</td>
<td>1.56726</td>
</tr>
<tr>
<td>Present (\times 10^{-4})</td>
<td>− 5.84694</td>
<td>− 5.78542</td>
<td>1.5409</td>
<td>1.5675</td>
</tr>
<tr>
<td>error</td>
<td>− 0.011%</td>
<td>0.021%</td>
<td>0.025%</td>
<td>− 0.015%</td>
</tr>
</tbody>
</table>
Examples – Stiffness Uncertainty 1%

Four-bay truss

Four-bay truss (21 elements) with 1% uncertainty in Modulus of Elasticity, $E = [199, 201]$ GPa

<table>
<thead>
<tr>
<th>Comb $\times 10^{-4}$</th>
<th>Present $\times 10^{-4}$</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2(LB)(m)</td>
<td>V2(UB)(m)</td>
<td>U6(LB)(m)</td>
</tr>
<tr>
<td>− 17.7729</td>
<td>− 17.5942</td>
<td>3.83417</td>
</tr>
<tr>
<td>− 17.7752</td>
<td>− 17.5902</td>
<td>3.83268</td>
</tr>
<tr>
<td>− 0.013%</td>
<td>0.023%</td>
<td>0.039%</td>
</tr>
</tbody>
</table>
Examples – **Stiffness Uncertainty 5%**

➢ **Two-bay truss**

Two bay truss (11 elements) with 5% uncertainty in Modulus of Elasticity, \(E = [195, 205] \) GPa

<table>
<thead>
<tr>
<th></th>
<th>V2(LB)(m)</th>
<th>V2(UB)(m)</th>
<th>U4(LB)(m)</th>
<th>U4(UB)(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb × 10^{-4}</td>
<td>– 2.04435</td>
<td>– 1.94463</td>
<td>0.36866</td>
<td>0.42188</td>
</tr>
<tr>
<td>Present × 10^{-4}</td>
<td>– 2.04761</td>
<td>– 1.93640</td>
<td>0.36520</td>
<td>0.42448</td>
</tr>
<tr>
<td>error</td>
<td>– 0.159%</td>
<td>0.423%</td>
<td>0.939%</td>
<td>– 0.616%</td>
</tr>
</tbody>
</table>
Examples – Stiffness Uncertainty 5%

Three-bay truss

Three bay truss (16 elements) with 5% uncertainty in Modulus of Elasticity, $E = [195, 205]$ GPa

<table>
<thead>
<tr>
<th></th>
<th>V2(LB)(m)</th>
<th>V2(UB)(m)</th>
<th>U5(LB)(m)</th>
<th>U5(UB)(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb $\times 10^{-4}$</td>
<td>-5.9692233</td>
<td>-5.6708065</td>
<td>1.4906613</td>
<td>1.6195115</td>
</tr>
<tr>
<td>Present $\times 10^{-4}$</td>
<td>-5.98838</td>
<td>-5.63699</td>
<td>1.47675</td>
<td>1.62978</td>
</tr>
<tr>
<td>error</td>
<td>$-0.321%$</td>
<td>$0.596%$</td>
<td>$0.933%$</td>
<td>$-0.634%$</td>
</tr>
</tbody>
</table>
Examples – Stiffness Uncertainty 10%

➢ Two-bay truss

Two bay truss (11 elements) with 10% uncertainty in Modulus of Elasticity, \(E = [190, 210] \) GPa

<table>
<thead>
<tr>
<th></th>
<th>V2(LB)(m)</th>
<th>V2(UB)(m)</th>
<th>U4(LB)(m)</th>
<th>U4(UB)(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb (\times 10^{-4})</td>
<td>– 2.09815</td>
<td>– 1.89833</td>
<td>0.34248</td>
<td>0.44917</td>
</tr>
<tr>
<td>Present (\times 10^{-4})</td>
<td>– 2.11418</td>
<td>– 1.86233</td>
<td>0.32704</td>
<td>0.46116</td>
</tr>
<tr>
<td>error</td>
<td>– 0.764%</td>
<td>1.896%</td>
<td>4.508%</td>
<td>– 2.669%</td>
</tr>
</tbody>
</table>
Examples – **Stiffness Uncertainty 10%**

➢ **Three-bay truss**

Three bay truss (16 elements) with 10% uncertainty in Modulus of Elasticity, $E = [190, 210]$ GPa

<table>
<thead>
<tr>
<th></th>
<th>V2(LB)(m)</th>
<th>V2(UB)(m)</th>
<th>U5(LB)(m)</th>
<th>U5(UB)(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb $\times 10^{-4}$</td>
<td>– 6.13014</td>
<td>– 5.53218</td>
<td>1.42856</td>
<td>1.68687</td>
</tr>
<tr>
<td>Present $\times 10^{-4}$</td>
<td>– 6.22965</td>
<td>– 5.37385</td>
<td>1.36236</td>
<td>1.7383</td>
</tr>
<tr>
<td>error</td>
<td>– 1.623%</td>
<td>2.862%</td>
<td>4.634%</td>
<td>– 3.049%</td>
</tr>
</tbody>
</table>
Examples – Stiffness and Load Uncertainty

- Statically indeterminate beam

\[A = 0.086 \, m^2 \quad I = 10^{-4} \, m^4 \quad E \text{ (nominal)} = 200 \, GPa \]

\[P \]

10 m
Examples – **Stiffness and Load Uncertainty**

➤ **Statically indeterminate beam**

Statically indeterminate beam (2 elements) with 1% uncertainty in Modulus of Elasticity, $E = [199, 201]$ GPa, 10% uncertainty in Load, $P = [9.5, 10.5]$ kN

<table>
<thead>
<tr>
<th></th>
<th>V2(LB)(m)</th>
<th>V2(UB)(m)</th>
<th>θ 2(LB)(rad)</th>
<th>θ 2(UB)(rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb $\times 10^{-3}$</td>
<td>– 4.80902</td>
<td>– 4.307888</td>
<td>1.47699</td>
<td>1.648869</td>
</tr>
<tr>
<td>Present $\times 10^{-3}$</td>
<td>– 4.80949</td>
<td>– 4.30487</td>
<td>1.47565</td>
<td>1.64928</td>
</tr>
<tr>
<td>error</td>
<td>– 0.00977%</td>
<td>0.07006%</td>
<td>0.09073%</td>
<td>– 0.02493%</td>
</tr>
</tbody>
</table>
Examples – Stiffness and Load Uncertainty

Statically indeterminate beam

Statically indeterminate beam (2 elements) with 1% uncertainty in Modulus of Elasticity, \(E = [199, 201] \) GPa, 20% uncertainty in Load, \(P=[9, 11] \) kN

<table>
<thead>
<tr>
<th></th>
<th>(V_2(LB)(m))</th>
<th>(V_2(UB)(m))</th>
<th>(\theta_2(LB)(\text{rad}))</th>
<th>(\theta_2(UB)(\text{rad}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb (\times 10^{-3})</td>
<td>− 5.03821</td>
<td>− 4.081157</td>
<td>1.399254</td>
<td>1.727387</td>
</tr>
<tr>
<td>Present (\times 10^{-3})</td>
<td>− 5.03884</td>
<td>− 4.07552</td>
<td>1.39672</td>
<td>1.7282</td>
</tr>
<tr>
<td>error</td>
<td>− 0.01250%</td>
<td>0.13812%</td>
<td>0.18110%</td>
<td>− 0.04707%</td>
</tr>
</tbody>
</table>
Examples – Stiffness and Load Uncertainty

Statically indeterminate beam

Statically indeterminate beam (2 elements) with 1% uncertainty in Modulus of Elasticity, \(E = [199, 201] \) GPa, 40% uncertainty in Load, \(P = [8, 12] \) kN

<table>
<thead>
<tr>
<th></th>
<th>(V_2(\text{LB})(m))</th>
<th>(V_2(\text{UB})(m))</th>
<th>(\theta_2(\text{LB})(\text{rad}))</th>
<th>(\theta_2(\text{UB})(\text{rad}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb (\times 10^{-3})</td>
<td>– 5.49623</td>
<td>– 3.62769</td>
<td>1.234378</td>
<td>1.8844221</td>
</tr>
<tr>
<td>Present (\times 10^{-3})</td>
<td>– 5.49751</td>
<td>– 3.61684</td>
<td>1.23888</td>
<td>1.88604</td>
</tr>
<tr>
<td>error</td>
<td>– 0.02329%</td>
<td>0.29909%</td>
<td>– 0.36472%</td>
<td>– 0.08586%</td>
</tr>
</tbody>
</table>
Examples – **Stiffness and Load Uncertainty**

➢ Three-bay truss

Three bay truss (16 elements) with 1% uncertainty in Modulus of Elasticity, $E = [199, 201]$ GPa, 5% uncertainty in Load, $P = [19.5, 20.5]$ kN

<table>
<thead>
<tr>
<th></th>
<th>$V2(LB)(m)$</th>
<th>$V2(UB)(m)$</th>
<th>$U4(LB)(m)$</th>
<th>$U4(UB)(m)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb $\times 10^{-4}$</td>
<td>–2.05334</td>
<td>–1.93374</td>
<td>0.38003</td>
<td>0.41042</td>
</tr>
<tr>
<td>Present $\times 10^{-4}$</td>
<td>–2.05381</td>
<td>–1.93259</td>
<td>0.37953</td>
<td>0.41062</td>
</tr>
<tr>
<td>error</td>
<td>–0.023%</td>
<td>0.060%</td>
<td>0.132%</td>
<td>–0.050%</td>
</tr>
</tbody>
</table>
Three-bay truss

Three bay truss (16 elements) with 1% uncertainty in Modulus of Elasticity, \(E = [199, 201] \) GPa, 10% uncertainty in Load, \(P = [19, 21] \) kN

<table>
<thead>
<tr>
<th></th>
<th>(V_2(\text{LB})(m))</th>
<th>(V_2(\text{UB})(m))</th>
<th>(U_4(\text{LB})(m))</th>
<th>(U_4(\text{UB})(m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb (\times 10^{-4})</td>
<td>-2.10342</td>
<td>-1.88416</td>
<td>0.37029</td>
<td>0.42043</td>
</tr>
<tr>
<td>Present (\times 10^{-4})</td>
<td>-2.10425</td>
<td>-1.88215</td>
<td>0.36941</td>
<td>0.42074</td>
</tr>
<tr>
<td>error</td>
<td>-0.039%</td>
<td>0.107%</td>
<td>0.237%</td>
<td>-0.075%</td>
</tr>
</tbody>
</table>
Examples – Stiffness and Load Uncertainty

➢ Three-bay truss

Three bay truss (16 elements) with 1% uncertainty in Modulus of Elasticity, $E = [199, 201]$ GPa, 20% uncertainty in Load, $P = [18, 22]$ kN

<table>
<thead>
<tr>
<th>Comb $\times 10^{-4}$</th>
<th>V2(LB)(m)</th>
<th>V2(UB)(m)</th>
<th>U4(LB)(m)</th>
<th>U4(UB)(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>− 2.20359</td>
<td>− 1.78499</td>
<td>0.35080</td>
<td>0.44045</td>
</tr>
<tr>
<td>Present $\times 10^{-4}$</td>
<td>− 2.20511</td>
<td>− 1.78129</td>
<td>0.34917</td>
<td>0.44098</td>
</tr>
<tr>
<td>error</td>
<td>− 0.069%</td>
<td>0.207%</td>
<td>0.465%</td>
<td>− 0.121%</td>
</tr>
</tbody>
</table>
Examples – Statically determinate

Three-step bar

E1 = [18.5, 21.5]MPa (15% uncertainty)
E2 = [21.875, 28.125]MPa (25% uncertainty)
E3 = [24, 36]MPa (40% uncertainty)
P1 = [-9, 9]kN P2 = [-15, 15]kN P3 = [2, 18]kN
Examples – Statically determinate

Statically determinate 3-step bar

<table>
<thead>
<tr>
<th></th>
<th>U1(LB)(m)</th>
<th>U1(UB)(m)</th>
<th>U2(LB)(m)</th>
<th>U2(UB)(m)</th>
<th>U3(LB)(m)</th>
<th>U3(UB)(m)</th>
</tr>
</thead>
</table>
Conclusions

- Formulation of interval finite element methods (IFEM) is introduced
- EBE approach was used to avoid overestimation
- Penalty approach for IFEM
- Enclosure was obtained with few iterations
- Problem size does not affect results accuracy
- For small stiffness uncertainty, the accuracy does not deteriorate with the increase of load uncertainty
- In statically determinate case, exact hull was obtained by non-iterative approach