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Uncertainty is ubiquitous in the natural, engineered, and social environ-
ments. Devising rationales for explaining it, strategies for its integration into
scientific determinism and mitigating its consequences has been an active arena
of rational endeavor where many scientific concepts have taken turn at fame
and infamy. Far from being a static concept, uncertainty is the complement of
knowledge, and as thus, continually adapts itself to knowledge, feeding on its
evolution to redefine its claim over science.

Mechanics is a framework for applying deductive and mathematical reason-
ing to enhance our understanding of the physical world. Thus, far from being
accidental, the interaction of mechanics and uncertainty is rather by design, as
they both mold the physical world in a complementary fashion. The substance
of this interaction is attested to by the simultaneous evolution of mechanics and
rational models of uncertainty as embodied, for example, in the contributions
of Gauss, Euler, Legendre, Laplace, Einstein, Feynman, and vonMises.

Two driving forces behind a significant portion of current scientific research
can be associated with technological developments in the areas of computing
and sensing. Indeed, it has only recently become possible to resolve, numer-
ically, very complex models of physical phenomena, as well as to probe these
phenomena over length-scales that span orders of magnitude. This facility for
doing science significantly changes the realm over which uncertainty can claim
a hold, and merits a reconsideration of the scientific questions enabled through
uncertainty modeling.

The paper focuses on a particular class of recent developments related to the
quantification, propagation, and management of uncertainty, using a probabilis-
tic framework. An attempt is made at presenting a formalism that facilitates
the adaptive quantification of uncertainty and of its effect on mechanics-based
predictions. In addition to the more traditional quest for estimating the prob-
ability of extreme events such as failure, attention is given to estimating the
confidence in model predictions and to adaptive schemes for improving this
confidence through model refinement (mechanistic and numerical) as well as
data refinement. The possibility of performing such an adaptation can play a
significant role in shaping performance-based design practice in science and en-
gineering by quantifying the information, and its associated worth, required to
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achieve a target confidence in the predicted behavior of some contemplated de-
sign. The concept of combined stochastic-deterministic error and its estimation
is introduced that permits the development of optimal numerical optimization
strategies such as adaptive mesh refinement that are consistent with the level
of accuracy justified by available data. Concepts are presented that can guide
the simultaneous refinement of mesh and data. The uncertainty quantification,
propagation and management framework to be presented is based on Hilbert
space representations and projections of random functions. This permits the
framework to be integrated with other Hilbert space representations used in
computational mechanics and signal analysis.

Figure (1) shows a diagram of the various entities relevant to defining the
problem. A mapping, M, can be conceptually defined between events corre-
sponding to random parameters and events corresponding to measurable out-
puts. Referring to Figure (1), this mapping takes subsets T into subsets Q =
M(T ). A measure can be associated to each subset T reflecting a subjective
assessment of the likelihood of that event occurring. The corresponding mea-
sure on Q is uniquely computable by the mapping M(.). In order to facilitate
the analysis, and given that most measurable events of interest refer to numer-
ical measurements, it is usually convenient to work on measures defined on the
real line. Random variables provide a mechanism for effecting that, as they are
defined as mappings from the set of basic events onto the real line. Loosely
speaking, each of the events T and Q are mapped, through appropriate ran-
dom variables, into subsets of the real line, the measure of which are identified
with the measure of the corresponding event. The mapping M(.) can now be
replaced by a new mapping N (.) between the random variables. It is usually
this mapping that is dealt with in the context of mechanistic modeling. It can
be shown that, as mappings go, second order random variables have a number
of very interesting properties, so much so that they collectively form a Hilbert
space when endowed with the inner product defined through the operation of
statistical correlation. This Hilbert space structure is very convenient as it forms
much of the foundation of deterministic numerical analysis: projections on sub-
spaces as well as convergent approximations can now be meaningfully defined
and implemented. It is clear, from Figure (1) that the space of random variables
η contains that of the variables γ as a proper subset.

Contributions to formulating and solving the problem can be made at a
number of key steps. Firstly, events Q of interest to a given problem must be
identified. These consist, for example, of failure events, of levels of exceedance,
or of some death/birth events. A mathematical description of the set to which
these events belong must be adopted that is rich enough to distinguish between
the various events of interest. Moreover, a corresponding, consistent, topology
over the set to which events T belong must be identified that is commensurate
with available instrumentation technology. Secondly, the measure on the vari-
ous events T in the data space must be estimated. In a probabilistic framework
such as the present one, this amounts to estimating the probability measure
of the various events. The outcome of this task, and hence the confidence in
the overall uncertainty quantification and propagation process, depends in no
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small measure on the choice of model and data used to calibrate the associated
parameters. The ability to adaptively update the probabilistic characterization
of the associated random variables is shown to be a significant feature of the
framework to be presented in the paper. Thirdly, an algorithm for propagating
the uncertainty in the parameters into uncertainty in the predictions must be de-
veloped. This algorithm should clearly take into consideration the mechanistic
model adopted for the problem, the accuracy with which numerical predictions
of this model can be resolved, as well as the practical questions that the un-
certainty analysis is trying to address. Obviously, this uncertainty propagation
task can be performed, at least conceptually, by relying on the Monte Carlo
simulation (MCS) paradigm. It is shown that methods can be developed that
generalize MCS, increasing its efficiency while providing it with improved error
estimation capabilities, that are as much based on the mechanics of the problem
as on statistics of the data. Based on the above, a solution of the following form
is sought,

u = û+ εh + εp + εd

where û is some computed prediction of the solution, εh, εp, and εd are error
estimators that can be controlled by refining the numerical approximations,
refining the probabilistic approach, and refining the data, respectively. Adaptive
techniques for controlling εh are well established in deterministic computational
mechanics. The formalism presented in the paper demonstrate the development
of similar adaptation schemes for εp and εd. It is clear that the certification of
the predicted solution û to be within a specified tolerance requires the rational
control of all three error terms. Selection between competing models can then
be made by identifying that model which achieves its target error reduction
within specified limits on computational and data collection resources.

The problem can then be described as follows: The model parameters, as
estimated from data and modeled as random variables or processes, live in the
Hilbert space HG. Assuming the data to be well defined in a probabilistic sense
provides a full characterization of this space, in which a set of basis functions,
ξ, will have to be identified. This is accomplished using the Karhunen-Loeve
expansion. The state of the system, again modeled as a random variable or
process, resides in the Hilbert space HL. A set of basis functions, ψ, are also
identified in this space, which in general are different from the basis ξ since this
latter one spans only a subset of the space of second order random variables,
namely those that characterize the data. Identifying a basis for the space HL

is accomplished using the Chaos theory of Wiener. The solution of the problem
can then be characterized by its projection on this basis. A Galerkin scheme is
used to formulate this projection on a finite dimensional subspace, and equations
governing the evolution of the associated coefficients are obtained. This form of
characterizing the solution of a probabilistic problem, permits the propagation
of the uncertainty with minimal loss of information. Indeed, the solution is
being represented as a stochastic process, and not as an integrated norm of
that process. Moreover, the representation used for that process, namely the
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Figure 1: Functional Dependencies in a Probabilistic Characterization of the
Problem.

basis set {ψ} is appropriate for representing both the input and output of a
mechanistic model, thus eliminating the need for significant post-processing and
the associated loss of information.

Examples are shown from across a wide spectrum of applications that are
relevant to engineering science. In particular, application to the problem of
mechanical joints, shock-loaded structures, flows in random porous media, and
bifurcation problems will be discussed in detail, highlighting the generality of
the proposed methodology.

References

[1] Ghanem, R., and Spanos, P., Stochastic Finite Elements: A Spec-

tral Approach, Springer-Verlag, New York, 1991.

[2] Ghanem, R., “Ingredients for a general purpose stochastic finite
elements formulation,” Computer Methods in Applied Mechanics

and Engineering, Vol. 168 Nos. 1-4, pp. 19-34, 1999.

4


