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• We first describe the technique, previously
used successfully in non-validated contexts.

• We point out references for the technique
and successful engineering applications.

• We explain how to validate the methods.

• We report some experimental results.

• We speculate on the type of problems for
which it can be best applied.
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General Problem

minimize ϕ(x)
subject to:

ci(x) = 0, i = 1, . . . ,m1,
gi(x) ≤ 0, i = 1, . . . ,m2,

where ϕ : x → R and ci, gi : x → R,
and where x ⊂ R

n is the
hyperrectangle (box) defined by

xij ≤ xij ≤ xij , 1 ≤ j ≤ m3,

ij between 1 and n, where the xij and

xij are constant bounds.

If ϕ is constant or absent, this problem
becomes a general constraint problem;
if, in addition m2 = m3 = 0, this
problem becomes a nonlinear system of
equations.
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Linear Relaxations
The basic idea

• If the objective ϕ is replaced by linear
function ϕ(`) such that ϕ(`)(x) ≤ ϕ(x) for
x ∈ x, then the resulting problem has
global optimum less than or equal to the
global optimum of the original problem.

• If each inequality constraint gi is replaced

by a linear function g
(`)
i such that

g
(`)
i (x) ≤ gi(x) for x ∈ x, then the

resulting problem has optimum that is less
than or equal to the optimum of the
original problem.

• If there are equality constraints, then each
equality constraint can be replaced by two
linear inequality constraints, and these
inequality constraints can be replaced as
above by linear inequality constraints.

• The resulting linear program is termed a
linear relaxation.
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An Example

Take the constraint system

c1(x) = x2
1 − 2x2, c2(x) = x2

2 − 2x1,
x1 ∈ [−1, 1], x2 ∈ [−1, 1].

1. Solve for x2 in c1, to obtain x2 = x2
1/2,

then plug x1 = [−1, 1] into x2
1/2, to obtain

x2 ∈ [0, 0.5].

2. Solve c2 for x1 to obtain x1 = x2
2/2, then

plug the narrower value of x2 into x2
2/2, to

obtain x1 ∈ [0, 0.125].

3. Use c1 again to obtain an even narrower
value for x2.

4. This process can be continued to
convergence to x1 = 0, x2 = 0.
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Linear Relaxations

(applied to the example)

• Lower bounds of a convex function are
tangent lines and upper bounds are secant
lines.

• A corresponding linear program for
computing an upper bound on x2, using
two underestimators for the convex
function x2 = x2

1, is:

minimize −x2

subject to
x2 ≤ x1 (the overestimator),
x2 ≥ .125 + .5(x1 − .25),
x2 ≤ x1 (the original constraint),
x1 ∈ [0, 1], x2 ∈ [0, 1].
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Linear Relaxation Example

(continued)

• The exact minimum to this linear
program is ϕ = −.5, corresponding
to x2 ≤ 0.5.

• Thus, we have narrowed x2 to
x2 ∈ [0, 0.5] ⊂ [0, 1].

• Basic constraint propagation now
converges.

• Basic constraint propagation and
interval Newton narrowing (applied
to the Kuhn-Tucker system) alone
are not successful on this example
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Convex and Linear Relaxations

History and References

• Convex relaxations have been in use since the

1970’s, starting perhaps with McCormick (G. P.

McCormick, “Computability of global solutions to

factorable nonconvex programs,” Math. Prog. 10

(2), 1976.)

• Floudas et al have successfully used nonlinear but

convex relaxations to solve chemical engineering

and other problems. (C. A. Floudas, Deterministic

Global Optimization: Theory, Algorithms, and

Applications, Kluwer, 2000.

• Sahinidis and Tawarmalani have used linear

relaxations successfully in similar applications (M.

Tawarmalani and N. V. Sahinidis, Convexification

and Global Optimization in Continuous and

Mixed-Integer Nonlinear Programming, and have

incorporated it into the BARON commercial

software (available through GAMS).
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Our Focus on Linear

Relaxations

We focus on linear relaxations because:

• We can use linear programming technology,
rather than convex programming
technology.

• It is clearer how to compute
machine-representable coefficients in linear
relaxations in such a way that the resulting
machine-representable linear program is a
true relaxation.

• Convex terms can be approximated
arbitrarily closely with multiple linear
underestimators.
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Rigor in Linear Relaxations

1. Typical procedures have been to compute
the coefficients of the linear relaxation with
floating point arithmetic, then to solve the
relaxation with a state-of-the-art LP solver.

2. With carefully considered directed
rounding and interval arithmetic, we can
form a machine-representable LP that is an
actual relaxation of the original problem.

3. Neumaier and Shcherbina, as well as
Jansson, have presented a simple technique
to utilize the duality gap to obtain a
rigorous lower bound on the solution to an
LP, given approximate values of the dual
variables.

4. Combining (2) and (3) gives a procedure
for rigorous computations of lower bounds
on the solution to the original problem.
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Linear Relaxations

A Computational Example

Nonlinear minimax problems have previously
challenged our GlobSol software system. A
particular such example, formulated as a
continuous constrained problem with
Lemaréchal’s conditions, is:

minx∈Rn x5

such that:
x4 −

(

x1t
2
i + x2ti + x3

)2 −√
ti − x5 ≤ 0,

−{x4 −
(

x1t
2
i + x2ti + x3

)2 −√
ti} − x5 ≤ 0,

ti = 0.25 + 0.75(i − 1)/(m − 1), 1 ≤ i ≤ m,
m = 21.

• GlobSol without linear relaxations has
been unable to obtain bounds on the
solution sets, using starting intervals
xi ∈ [−5, 5], i = 1, 2, 3, 4, and
x5 ∈ [−100, 100], for m = 21.
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Computational Example

Results with Linear Relaxations

We tried this problem with linear relaxations
within GlobSol.

• There are various parameters affecting the
linear relaxations, dealing with the
accuracy with which convex functions are
underestimated with linear functions, etc.
Depending on how we set these parameters,
GlobSol completed the problem with
roughly 12,000 boxes searched.

• We also tried GlobSol with linear
relaxations on a “Standard” test set (the
“tiny” Library 1 problems from the AMPL
test set, as recommended by Neumaier et
al).
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Linear Relaxations in GlobSol

The Test Set Results

• For most problems in that test set, there
was a reduction in the total number of
boxes searched, but an increase in
processor time, due to time spent solving
the LP problems.

• For several problems, there was a large
improvement in both number of boxes
searched and total processor time.
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On the Implementation in

GlobSol

Summary

• We have implemented linear relaxations in
GlobSol.

• Initial experiments indicate the technique
makes possible solution of problems that
were previously intractable within GlobSol.

• A preprint of experimental results is
available.

• GlobSol still is not fully competitive with
other packages using relaxations in a
non-validated way (e.g. BARON).

• One possibility for improvement: Use a
better LP solver. (GlobSol presently is
using a free one from the SLATEC library.)
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Possible Appropriate

Applications

Structural Analysis

• Uncertain finite element computations in
structural analysis are reduced to the form
Ax = b, where A is a square matrix and A
and b are uncertain. (That is, in general,
ai,j ≤ ai,j ≤ ai,j and bi ≤ bi ≤ bi.)

• One possibility is to formulate the problem
as:

min xi ( or max − xi)
subject to Ax = b,

ai,j ≤ ai,j ≤ ai,j, bi ≤ bi ≤ bi,
(1)

with aij and bi,j unknowns.

• Linear relaxations should work for this
system, since the system itself is
approximately linear.

• A problem with formulation (1) is that
there are large sets of minimizers.
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Structural Analysis

A Plausible Formulation

• In our structural analysis models, the
elements of A and b are actually nonlinear
functions of uncertain parameters.

• Instead of making the elements of A and b
variables in the optimization problem, we
can make the original parameters (heights,
elasticities, etc.) into variables.

• This may reduce some of the
superabundance of global optimizers.

• This is preliminary; we will overcome some
small coding hurdles and try this.
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