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Uncertainty is Important

• In engineering, decisions are made under uncertainty.

• Main source of uncertainty: measurement errors.

• Additional source of uncertainty: we do not know

how exactly the devices will be used.

• Example:

– we have limits Li on the loads li in different rooms i;

– we do not know how exactly these loads will be

distributed; and

– we want to make sure that our design is safe for all

possible li ≤ Li.
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Traditional Statistical Approach

• Traditionally, statistical methods are used.

• Usually, we can safely linearize the dependence of the

desired quantities y (e.g., stress at different structural

points) on the uncertain parameters xi.

• Thus, we enable sensitivity analysis.

• Problem: for n parameters, we need n calls to the

model.

• Often, the number n of uncertain parameters is huge.

• Example: in ultrasonic testing, we record (= mea-

sure) signal values at thousands moments of time.

• Solution: Monte-Carlo simulations.

• Advantage: the number of calls to a model depends

only on the desired accuracy ε and not on n.

• So, for large n, these methods are much faster.
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Formulation of the Problem

• Problem: in real life, we often do not know the exact

probability distribution of measurement errors and/or

of user loads.

• Interval uncertainty: often, all we know is the inter-

vals of possible values of the corresponding parame-

ters.

• Example: we know that the load li is in [0, Li].

• Sensitivity analysis: we can use sensitivity analysis,

we can use interval techniques.

• Problem: for large n, this takes too long.

• What we are planning to do: describe Monte-Carlo

type techniques for interval uncertainty.

• Advantage: these techniques lead to faster computa-

tions.
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Formulation of the Problem

(cont-d)

• We know:

– the algorithm f (x1, . . . , xn);

– the measured values x̃1, . . . , x̃n; and

– the information about the uncertainty

∆xi
def= x̃i − xi

of each direct measurement.

• We must estimate: the uncertainty ∆y = ỹ − y of

the algorithm’s output.
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Types of Uncertainty

• Idea. We must know:

– what are the possible values of ∆x, and

– how often can different possible values occur.

• Ideal case – full info: we know the cdf Fi(t) for each

variable xi (and we know that xi are independent).

• Interval case – no info about probabilities: we know

the interval [xi, xi] of possible values of each xi.

• General case: partial into: we know the intervals

[F i(t), F i(t)] that contain Fi(t) (p-boxes).

• Important case – DS: we know that xi ∈ [x
(k)
i (t), x

(k)
i (t)]

with probability p
(k)
i .

• Comment: we may have different info for different xi.

• Comment: we may have dependent xi.
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Black Box

• Traditional approach: apply f step-by-step to the

corresponding “uncertain numbers”.

• E.g.: probability distributions, intervals, p-boxes.

• Problem: in several practical situations, f is given as

a black box:

– we do not know the sequence of steps forming f ;

– we can only plug in different values into f and see

the results.

• Examples:

– commercial software: safeguard vs. competitors;

– classified security-related software: safeguard vs.

adversary.

• Additional problem: sometimes, f takes so much

time that it is only possible to run it a few times.
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Sensitivity Analysis: Reminder

• When applicable: f (x1, . . . , xn) is monotonic (in-

creasing or decreasing) with respect of each of its vari-

ables.

• Example: linearizable f .

• Algorithm:

– Compute ỹ = f (x̃1, . . . , x̃n).

– For each i, compute

y′i = f (x̃1, . . . , x̃i, x̃i + h, x̃i+1, . . . , x̃n) (h > 0).

– Compute y = f (x−1 , . . . , x−n ) and y = f (x+
1 , . . . , x+

n ),

where:

∗ if y′i ≥ ỹ, then x−i = xi and x+
i = xi;

∗ if y′i < ỹ, then x−i = xi and x+
i = xi.

• Problem: we need n + 3 calls to f .

• For large n and for complex f , this is too slow.
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Cauchy Deviates Method

• When applicable: linearizable f .

• In this case: [y, y] = [ỹ −∆, ỹ + ∆], where

∆ =
n∑

i=1
|ci| ·∆i, and ci =

∂f

∂xi
.

• What is Cauchy: ρ(x) =
∆

π · (x2 + ∆2)
.

• Why Cauchy: if ξ1, . . . , ξn are independent Cauchy

w/∆i, then
n∑

i=1
ci · ξi is Cauchy with desired ∆.

• Algorithm:

– compute δx
(k)
i = ∆i·tan(π·(ri−0.5)), ri = U [0, 1].

– compute δy(k) def= f (x̃1+δx
(k)
1 , . . . , x̃n+δx(k)

n )− ỹ;

– find ∆ from the MLM:

1

1 +



δy(1)

∆




2 + . . . +
1

1 +



δy(N)

∆




2 =
N

2
.

• Advantage: after N = 200 runs, we get 20% accuracy

0.2 ·∆ with 95% certainty (corr. to 2σe).
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Applications: Brief Overview

• Environmental and power engineering:

safety analysis of complex systems.

• Civil engineering: building safety (f is FEM).

• Petroleum and geotechnical engineering: f solves

inverse problem (xi – traveltimes).

• Results:

– In the environmental and civil engineering, same

results as sensitivity analysis, but faster.

– In geotechnical engineering, the dependence of the

accuracy on the location and depth fits much bet-

ter with the geophysicists’ understanding than sta-

tistical estimates.
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Limitations of

Cauchy Deviate Techniques

• Cauchy deviate technique is based on the following

assumptions:

– that the measurement errors are small, so we can

safely linearize the problem;

– that we only have interval information about the

uncertainty, and

– that we can actually call the program f 200 times.

• Problem: in real-life engineering problems, these as-

sumptions are often not satisfied.

• What we plan to do: we describe how we can modify

the Cauchy techniques to overcome these limitations.
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What If We Cannot

Perform Many Iterations

• Problem: in many real-life engineering problems, we

cannot run f 200 times.

• Idea: use Cauchy estimates with the available amount

of N ¿ 200 iterations, but use new formulas for ∆.

• Fact: for reasonable large N , ˜∆−∆ is ≈ Gaussian.

• Solution: ∆ ≤ ˜∆ ·

1 + k0 ·

√√√√√√
2

N


 (where k0 = 2)

w/certainty 95%.

• Comment: to get 99.9% certainty, take k0 = 3.

• Example: for N = 50, ∆ ≤ 1.4 · ˜∆ – not bad.

• Problem: for smaller N , ˜∆−∆ is not Gaussian.

• Solution: we empirically find the factor.
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Dempster-Shafer Knowledge Bases:

An Idea

• Problem: for each i, instead of a single interval xi,

we have several intervals x
(k)
i with probabilities p

(k)
i .

• Difficulty: even if we have 2 intervals for n = 50

inputs, we have an astronomical number of 250 ≈ 1015

output intervals.

• Fact: when xi = [xmid
i −∆i, x

mid
i + ∆xi], then

y = [ymid −∆, ymid + ∆], where:

ymid = ỹ +
n∑

i=1
ci · (ymid

i − ỹi); ∆ =
n∑

i=1
|ci| ·∆i.

• DS case: we have different pairs (ymid
i , ∆i) with dif-

ferent probabilities.

• Idea: due to Central Limit Theorem, (ymid, ∆) is ap-

proximately normally distributed.

• Comment: not exactly normal since ∆ ≥ 0.
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Analysis of the Problem

• Previously: Cauchy distribution with given ∆.

• Characteristic function:

E[exp(i · ω · ξ)] = exp(−|ω| ·∆).

• Now: Gaussian mixture of several Cauchy distribu-

tions, with given ∆.

• Characteristic function:

E[exp(i · ω · ξ)] =

∫ 1√
2 · π · σ · exp


−∆− µ

2σ2


 · exp(−|ω| ·∆) d∆.

• Simplified expression:

E[exp(i · ω · ξ)] = exp


1

2
· σ2 · ω2 − µ · |ω|


 .
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Algorithm

• For different real values ω1, . . . , ωk > 0, compute

l(ωk)
def= − ln(c(ωk)), where

c(ωk)
def=

1

N
· N∑

k=1
cos(ω · y(k)).

• Use the Least Squares Method to find the values µ

and σ for which

µ · ωk − 1

2
σ2 · ω2

k ≈ l(ωk).

• The resulting value µ is the average ∆.

• We repeat the above algorithm twice:

– for samples for which ymid ≤ E[ymid], and

– for samples for which ymid > E[ymid].

• Based on two µ’s, we compute E[∆] and σ[∆].
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What About p-Boxes?

• Known fact: a p-box can be described as a DS knowl-

edge base.

• Specifics: a p-box [F (t), F (t)] can be described by

listing, for each p, the interval [f (p), f (p)] of the pos-

sible quantile values:

– the function f (p) is an inverse function to F (t),

and

– the function f (p) is an inverse function to F (t).

• Conclusion: whatever method we have for DS knowl-

edge bases, we can apply it to p-boxes as well.

• Handling different types of uncertainty for differ-

ent xi: just translate them into p-boxes.
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Cauchy Method for Quadratic f

• Linear case: quadratic and higher order terms can

be ignored.

• Next case: linear terms are still prevailing, but quadratic

terms can no longer be ignored:

δy def=
n∑

ı=1
ci · δxi +

n∑

i=1

n∑

j=1
cij · δxi · δxj.

• Analysis: since linear terms are prevailing, max and

min are attained when δxi = ±∆i (depending on

εi
def= sign(xi)):

∆+ =
n∑

i=1
|ci| ·∆i +

n∑

i=1

n∑

j=1
cij · εi · εj ·∆i ·∆j;

∆− =
n∑

i=1
|ci| ·∆i −

n∑

i=1

n∑

j=1
cij · εi · εj ·∆i ·∆j.

• Problem: for large n, literal computation takes too

long.

• Objective: design a Cauchy-type method for this case.
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Algorithm

• Auxiliary algorithm: z = (z1, . . . , xn) → g(z): ap-

ply the linear Cauchy deviate method to the auxiliary

function t → 1

2
· (f (xmid + z + t)− f (xmid + z − t))

and the values ti ∈ [−∆i, ∆i].

• Main algorithm:

– We apply the algorithm g(z) to the vector 0 =

(0, . . . , 0), thus computing the value g(0).

– We apply the linear Cauchy deviate method to the

auxiliary function

h(z) =
1

2
·(g(z)−g(0)+f (xmid+z)−f (xmid−z));

the result is the desired value ∆+.

– Finally, we compute ∆− as 2g(0)−∆+.

• Computational complexity: 2N 2 calls to f .

• Conclusion: this method is better if n À 8 · 104.
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