
Worst case bounds in

finite element computations

Arnold Neumaier

University of Vienna

Vienna, Austria

Safety
Safety studies in structural engineering are

supposed to guard against failure in all reasonable

situations encountered during the lifetime of a

structure.

How can we know what will happen to us

when the LORD alone decides? (Proverbs 20:24)

One way of knowing is to compute worst case

bounds on critical response variables, given worst

case bounds on the uncertainties of the input

variables.

This leads to finite element calculations involving

interval parameters.

Worst case FEM structural analysis

• Linear FEM equations become nonconvex when data

are uncertain

• 10% errors in elasticiy modules and area cross sections

not uncommon

• Current safety regulation laws require worst case

analysis

• Monte Carlo techniques underestimate worst case

• Monotonicity-based methods underestimate worst case

• Local optimization methods underestimate worst case

−2 −1 0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
quartic image of nested circles

−2 −1 0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
quartic image of nested squares

The graphs depict the image of a family of

concentric circles and squares (indicating

increasing amounts of uncertainty) under the

harmless looking function y = F (x) defined by

only two nonlinear operations (squaring),

u = x2 − x2
1, z1 = cx1 − su, z2 = sx1 + cu,

v = z2 − z2
1 , y1 = cz1 − sv, y2 = sz1 + cv,

for c = 0.4, s =
√

1− c2.

Typical finite element computations are far more

complex.

Large uncertainties imply large nonlinearities and

require new methods.

Example: A rectangular wall
Truss structure with topology of a m× n grid with

double diagonals (illustrated for the 4× 6 grid)

Test case: 20× 20 grid

• 840 equations

(FEM equations for displacements)

• 1620 two-sided bound constraints

(stiffness uncertainties)

• 840 + 1620 = 2460 variables

• stiffness uncertainty α = 16.4%

α defines search region

The goal verification problem

A goal verification problem is the quest for

verifying that for all parameter combinations in

some feasible region, a family of constraints are

satisfied, or exhibiting a feasible parameter

combination for which some constraint is violated.

In many applications involving the design of a

structure, a factory, or a machine, it is important

that certain goals are met under a variety of

conditions that cannot be known in advance.

Generally, these conditions determining

the goal can be specified in terms of a

vector x of parameters whose components

are unknown.

If x is known to lie in a box x = [x, x], and

all choices of x ∈ C are meaningful

scenarios, a deterministic worst case

analysis is appropriate.

Given the conditions x, the goals are assumed to

be expressible in the form of vector constraints

F (x) ∈ int F for all x ∈ x, (1)

where F is a vector-valued function, int F is an

open box of acceptable values of F , and int

denotes the interior.

We call (1) the safety constraint(s) since, in the

majority of applications, their satisfaction implies

that it is safe (for both the designing and the

using party) to build and use the structure,

factory, or machine, while violation of (1) implies

potential danger (financial or real).

The goal verification problem can be written as

(SV) Show that

F (x) ∈ int F for all x ∈ x, (2)

or find a counterexample.

The fact that there are infinitely many constraints

in (2) makes the problem hard and nonstandard.

Past practice is to check (2) only for a number of

randomly or systematically generated sample

cases. This makes it quite possible that the worst

case is overlooked. For safety critical applications,

a complete search seems imperative, though it is

usually regarded as impossible to do.

Condition (2) is equivalent to checking that the

range of F over the box x is contained in the

interior of F.

In principle, this can be checked by a computation

of the range. Using interval analysis, one can

often get fairly cheaply enclosures for the range.

However, the wrapping effect produces often

overly pessimistic enclosures.

Moreover, if the computation of F (x) involves the

solution of linear systems (as in finite element

applications), the enclosure algorithms may even

fail due to overestimation in intermediate results.

There is an equivalent reformulation of (SV)

which has no ’for all’ quantor, and hence is

formally simpler:

(SV2) Find x ∈ x such that F (x) 6∈ int F, or prove

that no such x exists.

If dimF = n, this can be solved by solving up to

2n constraint satisfaction problems (CSPs):

(SV3l) Find x ∈ x such that Fk(x) ≤ F k, or prove

that no such x exists.

(SV3u) Find x ∈ x such that Fk(x) ≥ F k, or prove

that no such x exists.

CSPs can be solved by complete global

optimization algorithms. The global optimization

formulation avoids the wrapping effect.

Currently the best global solvers are

BARON and OQNLP:

http://archimedes.scs.uiuc.edu/baron/baron.html

http://www.opttek.com/products/gams.html

OQNLP gives no guarantees.

BARON (which combines interval methods with

branch-and-bound techniques and relaxation

procedures) guarantees reliability if reasonable

bounds for the search region are available.

FEM structural analysis

The finite element analysis of mechanical

structures amounts in many cases to the solution

of a large and sparse linear system with a

symmetric, positive definite coefficient matrix.

Uncertainties in the material parameters or the

execution of a given design result in linear

systems with uncertain coefficients.

We consider the uncertain linear system

B(x)u(x) = b(x), (3)

where the coefficient matrix B(x) and/or the right

hand side b(x) depend on a parameter vector

x ∈ x.

For simplicity, we assume a single safety

constraint, expressed in terms of the displacement

vector u(x),

F (x, u(x)) < 0. (4)

Centered form approach

To solve (3), we choose a center x0 and write

x = x0 + s, s ∈ s = x− x0. For an arbitrary

preconditioning matrix J, we compute enclosures

JB(x0 +Ds) ∈ B0 + D
∑

Blsl for all s ∈ s, (5)

Jb(x0 +Ds) ∈ b0 + D
∑

blsl for all s ∈ s, (6)

{u0 | B0u0 ∈ b0 for some B0 ∈ B0} ⊆ u0. (7)

If an interval enclosure
(
B0 + D

∑
Blsl

)−1

⊆ S (8)

exists and

X := S[b1 −B1u0, . . . ,bn −Bnu0], (9)

then

u(x) ∈ u0 + X(x− x0) for all x ∈ x. (10)

This can be used to check the safety constraint

F (x, u(x)) < 0 by another centered form.

This works well if uncertainties are only in the

right hand side (Muhanna & McMullen), but not

for uncertainties in the coefficient matrix.

A counterexample

B(x) =
1

2

 x1 + x2 x1 − x2

x1 − x2 x1 + x2

, x ∈ x =

 [0.5, 1.5]

[0.5, 1.5]

 (11)

With x0 = mid x =
(

1
1

)
, we have

s =

 [−0.5, 0.5]

[−0.5, 0.5]

, J = B(x0)−1 = I,

B0 =

 1 0

0 1

, B1 =

 0.5 0.5

0.5 0.5

, B2 =

 0.5 −0.5

−0.5 0.5

,

B0 + B1s1 + B2s2 =

 [0.5, 1.5] [−0.5, 0.5]

[−0.5, 0.5] [0.5, 1.5]

contains the singular matrix

 0.5 0.5

0.5 0.5

 although

detB(x) = x1x2 > 0 for all x ∈ x.

In higher dimensions, the same problem

tends to appear already for much smaller

uncertainties.

Finite element applications therefore call

for a modified approach, which exploits

the special form of the finite element

equations.

Representing FEM matrices
(joint work with Andrzej Pownuk)

In many finite element problems, the only

uncertainty in the coefficient matrix is in the

element stiffness coefficients xl.

(Additional uncertainty in the forces = right

hand sides is allowed, too.)

For example, in a truss structure,

xl = Elal/Ll > 0 (12)

where l is the element index, El the Young

modulus describing material properties of the lth

bar, al its cross section area and Ll its length.

In general, the coefficient matrix depends both on

the element stiffness coefficients and on lengths

and angles, but if the geometry is assumed fixed

then the dependence takes a simple form:

B(x) =
m∑

l=1

xlA
T
l Al (13)

with extremely sparse matrices Al with few rows.

An important special case is where each Al has a

single row only. This is the case for truss

structures, but not for beams and more complex

elements.

In the case of truss structures, we may rewrite

(13) as

B(x) = ATD(x)A, (14)

where

A =

A1

...

Am

 , D(x) = Diag(x1, . . . , xm). (15)

A is a sparse rectangular matrix, and D(x)

diagonal with positive diagonal entries.

This form of B(x) allows one to use special

estimates based on ellipsoidal norms.

Theorem. Let A ∈ Rm×n, D,E,L ∈ Rm×m, Suppose that L is

nonsingular, B = LTA has rank n,

D + E − LLT is positive semidefinite, (16)

‖L−1EsymL
−T ‖ ≤ β < 1 (17)

for some β ∈ R. Then D and ATDA are positive definite, and the

unique solution x of

ATDAx = b (b ∈ Rn) (18)

satisfies

‖Bx‖ ≤ ‖b‖B
1− β , (19)

|aTx| ≤ ‖a‖B‖b‖B
1− β for all a ∈ Rn. (20)

Here ‖b‖B =
√
bT (BTB)−1b.

A residual version of this result allows

one to compute a centered form for u(x)

for the solution of B(x)u(x) = b(x) for

arbitrary matrices of the form

B(x) = ATD(x)A.

The only condition is that the diagonal

matrix D(x) is uniformly bounded by a

diagonal matrix with positive diagonal

entries.

Example: A rectangular wall
Truss structure with topology of a m× n grid with

double diagonals (illustrated for the 4× 6 grid)

Test case: 20× 20 grid

• 840 equations

(FEM equations for displacements)

• 1620 two-sided bound constraints

(stiffness uncertainties)

• 840 + 1620 = 2460 variables

• stiffness uncertainty α = 16.4%

α defines search region

Methods based on monotonicity, although faster

and sharper than Monte Carlo methods, still

underestimate worst case, since the monotonicity

assumption is no longer valid at the specified

range of uncertainty (already for the 5× 5 grid).

BARON gets stuck in an explosion of boxes

already for the 2x2 grid (> 25000 boxes after 10

minutes).

OQNLP solves the 5x5 grid in under 1 minute

but fails within 15 minutes on the 20x20 grid.

Traditional interval methods already fails for tiny

search regions of size α = 0.25% (5× 5 grid) and

α = 0.01% (20× 20 grid)

Enclosure by new centered form

20× 20 grid

uncertainty .01% .05% .5% 1% 2.5% 5% 10% 16.4%

overestimation 1.03 1.15 2.55 4.12 8.92 17.26 35.33 61.59

• runtime per α: 30 sec (1673 MHz)

• overestimation factors are rigorous upper

bounds (probably somewhat pessimistic)

• Deterioration due to increasing nonlinearities

(and nonmonotonicity) over wide search region

We are currently exploring ways to incorporate

the new enclosures into a branch and bound

framework, hoping that the improved bounds

eliminate the combinatorial explosion.

Needs detailed interaction with the solution

strategy.

COCONUT open source platform for global
optimization
http://www.mat.univie.ac.at/coconut-environment/

