
Uncertainty modeling for

robust verifiable design

Arnold Neumaier

University of Vienna

Vienna, Austria



Safety

Safety studies in structural engineering are

supposed to guard against failure in all reasonable

situations encountered during the lifetime of a

structure.

What is ’reasonable’ is inferred on the basis of

knowledge about the past performance of

structures and their building blocks.



The hope is that the future will be

sufficiently like the past, so that the

unknown future of a (planned or

existing) structure can be assessed based

on this past information.

Traditionally, the past information is

summarized in form of either probability

distributions (stochastic model), worst

case bounds (interval model), or

parameterized families of bounds (fuzzy

set model).



Design
A general design problem involves the following

variables:

• θ (wanted, controllable, low-D) design vector

• x (uncontrollable, high-D) state vector

• y response vector (determined by θ and x)

• c cost vector

• ε failure probability

x contains variables for uncertain material

parameters (length, cross section, elasticity

module, etc.), uncertain model parameters, etc.



Model of the design context

• Fd(c, θ) ∈ Fd design restrictions

• x ∈ X uncertain state information

• E(θ, x, y) = 0 model equations (dimE = dim y)

• Fs(c, y) ∈ Fs response requirements

• q(c, ε) ≥ qtarget quality constraint

Notation: F ∈ F = [F , F ] ⇔ F i ≤ Fi ≤ F i for all i

(includes equality constraints and one-sided inequalities)

Most real life design problems fall into this

general framework. Cost-dependent constraints

allow soft formulations!



Failure probability

The failure probability

ε := 1− Pr(Fs(c, y) ∈ Fs | E(θ, x, y) = 0)

is determined by the model only if the complete

joint distribution of all state vector variables xi is

available.

This is never the case in real situations once x

contains more than a few variables only.



People often substitute default independence or

normality assumptions where in fact information

is completely missing.

In particular, tails of the joint distribution cannot

be estimated reliably without an excessive

amount of data.

This may lead to drastically wrong assessments,

since probabilistic design problems usually

depend sensitively on these tails.



Theorem. The best possible bound for the probability

that an n-dimensional random vector x with uncorrelated

coefficients of mean zero and variance 1 has length at

least r is given by the generalized Chebyshev inequality

Pr(‖x‖2 ≥ r) ≤ min(1, n/r2).

Although common practice, representing such a

vector by a Gaussian distribution, while in fact

the distribution is unknown, gives far too

optimistic results.
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Even if the complete distribution of x

were known (or simply assumed),

computing the failure probability ε

accurately is very difficult, and nearly

impossible in high dimensions.

Traditional approximations such as

FORM and SORM often work well, but

may fail without warning.



Quotes from the Bible
(Contemporary English Version)

We make our own plans, but the LORD decides

where we will go. (Proverbs 16:9)

We make our own decisions, but the LORD alone

determines what happens. (Proverbs 16:33)

We may throw the dice, but the LORD

determines how they fall.

(Proverbs 16:33, New Living Translation)

We may make a lot of plans, but the LORD will

do what he has decided. (Proverbs 19:21)

How can we know what will happen to us when

the LORD alone decides? (Proverbs 20:24)



Probabilistic design goal
Maximize the design quality

max q(c, ε)

s.t. Fd(c, θ) ∈ Fd

Pr(Fs(c, y) ∈ Fs | E(θ, x, y) = 0) = 1− ε
... and check whether the requested quality q ≥ q0

was obtained.

This is a stochastic program with an expensive,

low accuracy (hence noisy) objective function,

often multimodal!

⇒ SNOBFIT

www.mat.univie.ac.at/∼neum/software/snobfit/



Robust, verifiable design
replaces the inaccessible probabilistic model input

by deterministic assumptions that can be justified

reasonably well by a limited amount of data.

In particular, it avoids using information which in

fact is not reliably available.

Within such a deterministic framework, a

rigorous worst case analysis becomes possible.

The results are (in principle) verifiable.



In the verifiable design methodology, probabilistic

methods are replaced by techniques of

global optimization.

This provides guarantees for the model behavior

that are as reliable as the information in the

model and the description of the uncertain state.

Currently the best global solvers are

BARON and OQNLP:

http://archimedes.scs.uiuc.edu/baron/baron.html

http://www.opttek.com/products/gams.html



Clouds
allow the representation of incomplete stochastic

information in a clearly understandable and

computationally attractive way.

They describe the rough shapes of typical samples

of various size, without fixing the details of the

distribution.

The use of clouds permits a worst case analysis

without losing track of important probabilistic

information.

All computed probabilities – and hence the

resulting designs – are safeguarded against

perturbations due to unmodelled (and

unavailable) information.
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The special case of interest for large-scale models

is a confocal cloud defined by

• a continuous potential V which assigns to each

scenario x a potential function V (x) defining

the shape of the cloud,

• a lower probability α(U) and an upper

probability α(U) defining the fuzzy boundary

of the cloud, such that, for all U ,

α(U) ≤ Pr(V (x) < U) ≤ Pr(V (x) ≤ U) ≤ α(U).

α and α must be strictly increasing continuous

functions of U mapping the range of V to [0, 1].

This corresponds to the level function x(ξ) defined by

x(ξ) = α(V (ξ)), x(ξ) = α(V (ξ)).



α-Cuts

For a given failure probability ε and α = 1− ε, the

so-called α-cut describes an inner region Cα of

α-relevant scenarios with V (x) < U ε and a

(generally larger) region Cα of α-reasonable

scenarios with V (x) < U ε, where

α(U ε) = 1− ε, α(U ε) = 1− ε.

The conditions defining the cloud guarantee that

U ε ≤ U ε, and that there is a region C with

Cα ⊆ C ⊆ Cα containing a fraction of α of all

scenarios considered possible.



The potential determines the shape of the cloud.

In particular,

• V (x) = maxk |xk − µk|/rk defines

rectangular clouds (a sort of fuzzy boxes),

• V (x) = ‖Ax− b‖2
2 defines

elliptical clouds (a sort of fuzzy ellipsoids).

The construction of appropriate clouds from

qualitative or quantitative evidence is a current

research topic.

Elliptical clouds are probably appropriate in

many applications. However, current numerical

experience is restricted to rectangular clouds.



In robust verifiable design, one considers a design

safe (at the given admissible failure probability

ε = 1− α) if all α-reasonable scenarios satisfy the

response requirements.

One considers a design unsafe if some α-relevent

scenario violates the response requirements.

In between there is a grey zone of borderline

cases, where more detailed statistical information

would be required to fully analyze the safety.



In the simplest case, the safety requirement is

given by a single constraint

Pr(s(x) ≥ 0) ≤ ε.

In this case, the design analysis in terms of a

given cloud can be based on the solution of two

constraint satisfaction problems involving the

safety margin s(x) and the potential V (x).



(CSP1) V (x) ≤ U ε, s(x) ≥ 0

(CSP2) V (x) ≤ U ε, s(x) ≥ 0

(CSP2) solvable (CSP2) inconsistent

(CSP1) solvable unsafe borderline

(CSP1) inconsistent × safe

Note that even in the borderline case, useful

information for the designer is available:

The solution of (CSP1) may in this case be

considered as a weakly unsafe scenario.



A positive decision about safety

guarantees that the failure probability is

below ε for all possible distributions

compatible with the cloud.

Moreover, for any unsafe or borderline

case, there is at least one distribution

compatible with the cloud for which the

failure probability is not below ε.



Note that a single unsafe scenario is considered

sufficient ground for rejecting the design.

Has no analogue in probabilistic safety design,

but is important in a number of applications:

• The curiosity of children often makes the most

dangerous scenarios most attractive for them.

• If the workspace of a robot contains

hypersurfaces of singularities, crossing them is

dangerous even if they occupy only a negligible

part of the volume.

The crossing probability may be very large

even if the probability of being there is tiny.



As in any worst case analysis, the design resulting

from modeling with clouds will be marginally safe

for some probability distribution compatible with

the information in the cloud.

The design will be oversafe given many other

probability distribution compatible with the

cloud.

This appears to be the appropriate design goal in

all situations where safety is critical.



Monte Carlo simulation

In many cases, simulation models for

generating reasonable scenarios are

available.

These can be used in Monte Carlo

studies to estimate failure probabilities.

The resulting failure probabilities are

usually not very robust under variations

of the simulation model.



Moreover, Monte Carlo simulations

typically require a large number of

scenarios, especially when tiny falure

probabilities are required.

The evaluation of a design on a single

scenario is typically already expensive

(solution of a finite element problem),

which makes such Monte Carlo studies

very expensive.



Simulation in deterministic design
In robust verifiable design, a detailed simulation

model can be used to create a large set of

representative samples, from which a robust cloud

is estimated.

This is the only (and relatively cheap) part

involving Monte Carlo techniques, and can be

done independent of the evaluation of the design

quality or later design optimization.

(Alternatively, a suitable cloud could be

determined based on other information, including

expert opinion, aggregated information on subsets

of variables, etc...)



For design optimization, only the information

contained in the cloud is used.

This gives robustness to the design, since it takes

account of alternative distributions deviating

from the simulation model while being consistent

with the derived cloud.

There are also computational advantages since

the deterministic evaluation of the quality of a

design often needs many fewer scenarios than the

determination of the failure probability by Monte

Carlo simulation.



Deterministic design optimization
Maximize the design quality

max q(c, ε)

s.t. Fd(c, θ) ∈ Fd

E(θ, x, y) = 0, V (x) ≤ U ε ⇒ Fs(c, y) ∈ Fs

The implication constraint can be written as
”E(θ, x, y) = 0, V (x) ≤ U ε, Fs(c, y) 6∈ Fs impossible”

Thus we have a bilevel optimization problem in

which the inner problem involves the negative

solution of a CSP. Solution techniques for such

problems are a topic of current research.



Conclusions

• clouds provide a new class of imprecise

probability models for robust design

• precise and intuitive semantics

• based on accessible information only

• a poor fit of clouds makes the estimates more

conservative but not wrong

• large scale problems are tractable via global

optimization

• optimal design with clouds leads to bilevel

optimization problems



BARON (complete global optimization):

http://archimedes.scs.uiuc.edu/baron/baron.html

SNOBFIT (optimizes noisy, expensive functions):

www.mat.univie.ac.at/∼neum/software/snobfit/

Clouds (code limited probabilistic information):

www.mat.univie.ac.at/∼neum/papers.html#cloud

Surprise (codes qualitative information):

www.mat.univie.ac.at/∼neum/papers.html#fuzzy

The present slides (robust, verifiable design):

www.mat.univie.ac.at/∼neum/ms/uncslides.pdf


