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Abstract. Activity networks model the time to project completion based on the times to complete 
various subtasks, some of which can proceed concurrently and others of which are prerequisite to 
others. Uncertainty in the times to complete subtasks implies uncertainty in the overall time to 
complete the project. When the information about the times to complete subtasks is insufficient to 
fully specify a probability distribution but sufficient to bound the distribution, the problem of 
making conclusions about time to complete the entire project requires use of second-order 
probabilistic techniques. An interval-based technique for this is described, and applied to the 
problem of evaluating activity networks. 
 

1. Introduction 
 
The Problem. Determining the completion time of activity networks is of importance to 
engineering project management, and is the subject of an extensive and expanding body of works. 
Forecasts for activity durations must often be estimates, since the execution of an activity 
typically depends on various factors whose details are not knowable in advance. This leads 
naturally to modeling durations of activities with, for example, probability distributions. However, 
determining the distribution of the completion time of the entire network can then be non-trivial. 
Addition and maximization are typical algebraic operations on random variables occurring during 
evaluation of activity networks (Agrawal and Elmaghraby 2001). Distributions must be found for 
the sums of random variables whose distributions describe the durations of activities on a given 
path. Also, various paths may each have some chance of being the critical one, depending on the 
summed times of the activities comprising each path. This requires calculating distributions of the 
maximums of random variables, because when computing the time to complete concurrent tasks, 
the joint completion time is the maximum of the completion times of the concurrent tasks. 

A further challenge is posed by the need to model the dependency relationships among the 
duration distributions of the various activities. A complete solution to the distribution of the 
network completion time would, in general, require specification of a multivariate joint 
distribution with one marginal for each activity duration distribution.  
 
Modeling activity networks. In order to solve networks a variety of simplifying assumptions 
have been proposed. The most drastic of these is to model activity duration as numbers. The 
network completion time is then the completion time of the critical (longest duration) path 
through the network. However, this removes uncertainties that are essential to account for in 
understanding important properties of the network, such as risk of project delay and the 
consequent financial and other consequences. Hence it is better to retain distributions as 
representations of individual task durations. This suggests a less drastic simplification, namely 
statistical independence. 

One type of independence assumption applies to understanding the completion time of a 
single task. A factor is something that contributes to the uncertainty in an activity duration such 
as weather conditions (for construction projects), labor variabilities, etc. It is typically considered 
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reasonable to assume that the factors contributing to completion time of a particular task act 
independently. Summing them thus involves determining the sum of independent random 
variables. Agrawal and Elmaghraby (2001) propose an algorithm and review another early 
algorithm proposed by Martin (1965).  

The assumption that completion time distributions of different activities are independent has 
been the basis of considerable work. Robillard and Trahan (1977) show how activity network 
completion time distributions can be approximated efficiently under this assumption. They derive 
lower and upper bounds for the mean and variance of the completion time distributions. 
Kleindorfer (1971) bounds the time to complete the activity network with lower and upper 
bounding distributions under the same independence assumption. Kamburowski (1985) provides 
an upper bound on the expected project completion time for independent activity duration 
distributions, each a member of a large class of distributions. A more recent algorithm was 
proposed by Schmidt and Grossmann (2000) to obtain the distribution of the project duration 
under the independence assumption. A general-purpose algorithm for arithmetic operations on 
independent random variables is described and some previous algorithms are noted in Berleant 
(1993). The maximization operation is a particularly simple case since the cumulative probability 
that two tasks will be completed by any given time is the product of the probabilities of 
completion by that time for each task.  

The problem with independence assumptions is that the completion times for different tasks 
are often not independent. For example, frequently tasks share factors that tend to affect the tasks’ 
completion times similarly. Shipbuilding is an example of a domain where correlations are 
important (van Dorp and Duffey 1999). Thus it is important to consider how activity networks 
can be analyzed when the individual task completion time distributions are not independent. 

Ahuja and Nadakumar (1985) and Padilla and Carr (1991) capture information about 
correlations among different activity completion times by identifying individual factors that  
affect the rate of progress across multiple activities. Examples of factors include weather, legal 
issues, environmental issues in construction projects, variability due to labor, etc. Each sample 
drawn from the distribution of such a factor affects the simulated duration of a number of 
activities. Woolery and Crandall (1983) allow effects of factors to vary over time. For example, 
weather may impose more uncertainty during some times of the year than others. Levitt and Kunz 
(1985) examine whether the actual completion times of tasks were lower or higher than expected, 
and adjust the projected completion times of future tasks that share factors with completed tasks 
whose completion times deviated from expectations. Wang and Demsetz (2000) propose an 
elicitation method for using expert judgements to estimate distribution functions for factors 
affecting task completion time. Tasks that share factors therefore have correlated durations. In the 
solution offered in this paper, each individual task completion time may be described with a 
number, an interval, or a distribution function.  

In the case of distribution functions, two task completion times might be independent random 
variables, as when the tasks are performed in different environments and proceed independently. 
Alternatively, completion times might be positively correlated, as when both depend on the 
quality of management and proceed within the same managerial environment. Or, they could be 
negatively correlated, as when resource sharing means that faster completion of one implies 
slower completion of the other. Finally, various factors might interact to make completion times 
dependent in ways the details of which are lost by merely stating the amount of correlation. The 
solution offered in this paper avoids requiring the assumption that individual task completion 
times are independent or have any other dependency relationship. Project management is just one 
application of activity networks and, hence, of the technique described. 
 
Solving activity networks. Diaz and Hadipriono (1993) compare five methods of activity 
network evaluation, finding significant differences among the results. For example, PERT tended 
to give more optimistic estimates of project time overrun than the other four methods, and 
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differences between Monte Carlo simulation methods and the other methods tended to be 
exacerbated by use of asymmetric distributions for activity durations because the details of the 
asymmetries were not captured by the other methods. The Narrow Reliability Bounds (NRB) 
method (Ditlevsen 1979) frequently does not contain the results of the other methods between its 
bounds.  

The time to complete the job (TCJ) can be addressed analytically, numerically, or by 
simulation. Analytical approaches generally rely on approximations and/or simplifying 
assumptions, such as that distributions of individual task completion times are normal, or that 
moments of distributions characterize all that is necessary to know about them (e.g. Mehrotra et 
al. 1996).  

Simulation and numerical methods pose fewer needs for such simplifications, but present 
other tradeoffs. Thus, it can be harder to accomodate potentially important aspects of a model 
within a numerical method than with simulation. An example is that combinatorial explosion 
favors simulation over numerical methods for certain problems involving multiple marginals. On 
the other hand, simulation has disadvantages relative to numerical methods as well. The best 
known is perhaps the risk of unreliable results due to insufficient iterations. Monte Carlo 
simulation in particular has several other problems as well (Ferson 1996). One potentially 
significant problem with simulation is the difficulty it can have in handling models where the 
distributions of random variables are incompletely known or are partially dependent on one 
another. For example, correlation values do not fully define a dependency since, in general, many 
different joint distributions may have the same value for correlation (Berleant and Zhang 2004(a)). 
Given a correlation value as an input, it is difficult in a simulation to avoid assuming just one 
dependency that satisfies the given correlation. Analysts may make such an assumption without 
noting this or even realizing it (Ferson et al. 2004).  

The proper outcome of such a model specification that accounts for unknown dependencies is 
that distributions resulting from an analysis, such as sums or maximums of other distributions, 
cannot be fully specified. They can however be bounded with envelopes around the space within 
which the distribution curves must be. With simulation it is difficult to deal with envelopes 
because, since the distribution is not fully specified, it is not clear how to generate samples of the 
random variable in question. This issue can be circumvented by using appropriate numerical 
methods. One such method, the DEnv algorithm (Berleant and Zhang 2004(b)), is the basis of this 
paper.  
 
Summary. Assumptions help in simplifying problems, but can be risky when not properly 
supported as results can be significantly affected. Validity of assumptions is therefore an 
important issue and one that has motivated considerable concern. Therefore it is important to 
consider how the computation of a distribution for activity network completion time can be 
affected by these assumptions. This report addresses that issue by accounting for such 2nd-order 
uncertainties by avoiding the requirement that dependencies among activity durations be 
specified. Results show that networks can exhibit a range of completion time distributions 
consistent with the input data. This illustrates the importance of assumptions in two ways: (1) that 
they often must be made in order to get results of acceptable specificity, and (2) that they must be 
made reliably to get reliable results.  
 

2. Approach 
 
Determining the time to complete all tasks in a network of tasks is easy when the time to 
complete each individual task in the network has a numerical value, harder when individual 
completion times are described using probability distributions, and still more challenging when 
these distributions are neither assumed independent nor assumed to have any other dependency 
relationship. A method is described here for determining completion times of task networks in the 
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last case. We begin by describing each task completion time with a probability distribution 
function, noting that this includes as a special case a completion time described with a precise 
number since a number may be represented as a step distribution function (Figure 1, left). We 
later generalize to the case of left and right envelopes enclosing a family of cumulative 
distribution functions (CDFs) which, as a special case, allows a completion time to be represented 
as an interval describing a range of plausible values with high and low bounds but no information 
about the probability distribution within those bounds (Figure 1, right).  

 
Figure 1. (Left) the numerical value of time t1 is a special case of a cumulative distribution 
function (CDF) which is 0 below t1, and 1 at t1 or above. (Right) an interval [tlo, thi] is a 
special case of a family of distributions containing any CDF which is 0 below tlo and 1 (at or) 
above thi. 
 

In real situations, two task completion times might be independent random variables, as when 
each is done in a different environment and they proceed independently. Alternatively, 
completion times might be highly positively correlated, as could occur if the tasks depend on the 
quality of management and proceed within the same managerial environment. As a third 
possibility, completion times might be quite negatively correlated, as could occur if the tasks 
proceed concurrently with shared personnel or other resources and faster completion of one 
entails slower completion of the other. A final and quite likely possibility is that various factors 
interact to make completion times dependent in a way that is difficult to characterize accurately. 
Therefore in the general case we wish to avoid assuming that individual task completion times are 
independent or have any other particular dependency relationship. A solution to this general case 
is offered. 

The results have application to project management, where task completion time analyses can 
be useful as illustrated by the well-known PERT (Program Evaluation and Review Technique) 
method. 
 

3. Solution for the case of two concurrent tasks 
 
This section discusses the case of two concurrent tasks. Generalization to larger networks of tasks 
is discussed in Section 3.  

Consider concurrent tasks X and Y, each beginning when the task environment is in a start 
state S and whose joint completion brings about desired finish state F (Figure 2). Let Fx be the 
CDF of random variable tx, the completion time of task X, and let Fy be the CDF of random 
variable ty, the completion time of task Y. We begin by reviewing solution strategies when tx and 
ty are independent, and then generalize by removing the independence assumption. 

One solution strategy is the analytical one. The analytical approach to arithmetic on random 
variables is limited in the forms of the distributions it can handle and usually relies on the 
assumption of independence (e.g. Springer 1979). The Monte Carlo approach is a numerical 
strategy that does not produce definite bounds, does not handle cases where one operand is a CDF 
and the other an interval except under severe restrictions, does not handle the case of unknown 
dependency between random variables, and has other limitations (Ferson 1996). Numerical 
convolution (Ingram et. al 1968; Colombo and Jaarsma 1980) is an alternative numerical strategy 
that allows arithmetic operations to be applied to random variables with a wide variety of CDFs, 
and has been extended to capture discretization error via error bounds that propagate through the 
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calculations and lead to left and right envelopes around the true solution (Williamson and Downs 
1990; Berleant 1993; Cooper et al. 1996). See Figure 3.  
 

 
 
Figure 2. PERT diagram showing a starting state S, a finish state F, and two tasks X and Y 
that must be completed to reach state F. Two different distribution functions Fx and Fy 
describe random variables tx and ty, which represent the completion times of tasks X and Y.   
 

Envelopes consist of non-crossing CDFs that enclose the paths of all CDFs consistent with 
the problem. These envelopes are often called probability bounds (Ferson et al. 2002) and, 
because they do not cross, the right envelope has first order stochastic dominance over the left 
(Levy 1992). Coarse discretizations for random variables tx and ty (e.g. Figure 3) lead to 
correspondingly large discretization error and therefore more widely spaced left and right 
envelopes. Finer discretizations would result in left and right envelopes that have more and 
smaller steps and are closer together. The CDF for result t, the time to complete both tasks, must 
be some CDF enclosed by the left and right envelopes. 

Left and right envelopes are each derived from a joint distribution table such as that shown in 
Figure 3. The probability mass shown associated with each interior cell of a joint distribution 
table is the product of the probability masses in its corresponding marginal cells if the operands 
are independent, but relaxing the assumption of independence leaves them undetermined. 
Therefore when the dependency relationship between the operands is unknown, the process 
illustrated in Figure 3 requires significant modification (Berleant and Goodman-Strauss 1998). 
Regardless of the dependency relationship between the marginals, the masses of the interior cells 
are constrained to some extent by the marginals, which require the masses of all the interior cells 
in a row to sum to the mass of the marginal cell at the right of that row, and the masses of the 
interior cells in a column to sum to the mass of the corresponding marginal cell at the bottom of 
that column. Consequently the summed mass of any particular subset of interior cells will 
typically have a range of possible values, and for a properly chosen subset the maximum or 
minimum of this range yields a point on the left or right envelope. More specifically, obtaining 
the height of the left envelope at time t requires maximizing the collective probability mass of the 
interior cells whose intervals have low bounds below (or equal to) t subject to the row and 
column constraints, because the mass of each of those cells either may (if the interval’s high 
bound is above t) or must (if the interval’s high bound is not above t ) be in the cumulation at t. 
The process is analogous for finding the height of the right envelope: minimize the sum of the 
probability masses of the interior cells whose intervals have high bounds below or equal to t 
(Berleant and Goodman-Strauss 1998). Figure 4 explains the process, which can be done by hand 



 

REC2004 

6 

for a very small table although in the general case linear programming (LP) is more practical. The 
left and right envelopes have staircase-like forms. In Figure 4, for example, the heights of the left 
and right envelopes at t=3.5 hold for all other values of t between 3 and 4. Because for staircase-
shaped curves the heights for only a limited number of values of t need to be found to fully 
characterize the envelopes, the number of LP problems is correspondingly limited. Figure 4 also 
shows the full envelopes.  

 
t = max(tx,ty),  tx and ty independent 

 
[ ]3,2∈t  

p = 1/8 
[ ]4,2∈t  

p = 1/8 
[ ]3,2∈yt

 
 p = ¼ 

[ ]4,3∈t  
p = 1/4 

[ ]4,3∈t  
p = 1/4  

[ ]4,3∈yt
 p = ½ 

[ ]5,4∈t  
p = 1/8 

[ ]5,4∈t  
p = 1/8 

[ ]5,4∈yt
 p = ¼ 

[ ]2,1∈xt
 
 p = ½ 

[ ]4,2∈xt
 
 p = ½ 

←        ↑ 
tx        ty 

 
Figure 3. Random variable tx is coarsely discretized (bottom row), and similarly for ty (right 
hand column). The binary operation appropriate to the task completion problem is max(tx,ty) 
because, for any samples of tx and ty, both tasks are complete when the one that finishes last 
is complete. The distribution of joint completion times is implicit in the set of interior cells 
(unshaded) of the joint distribution table, each of which is calculated from its corresponding 
marginal cells. For example, the upper left cell contains probability mass 1/8, which is the 
product of the probabilities of its marginal cells in the right hand column and bottom row, 
1/4 and 1/2 respectively. The product is used because tx and ty are assumed independent (this 
assumption will be relaxed later). The upper left cell contains the interval [2,3] because its 
marginal cells have task X complete in time [1,2] and Y in time [2,3], so the time to complete 
both could potentially be anywhere within that interval. The cumulation over t of the 
interior cells is bounded by the left and right envelopes shown, with the separation between 
the envelopes due to the undetermined distribution of each cell’s mass across its interval 
which could, in extreme cases, be concentrated at the interval low or high bound (Berleant 
1993).  
  

When linear programming is applied to minimization and maximization problems of this type 
the objective function is the sum of the probabilities of the subset of interior cells to be 
maximized or minimized, and the constraint set consists of one for each row and one for each 
column. A general-purpose linear programming algorithm such as the simplex method can be 
used, but a faster choice is the transportation simplex method, which applies to certain problems 
such as these containing only row and column constraints. 

To apply the transportation simplex method to optimize the distribution of probability masses 
across interior cells, the cost coefficients of the cells in the subset whose probability mass is to be 
maximized or minimized are set to one, the cost coefficients of the remaining cells are set to zero, 
and the allocations of the cells are their probability masses. In our software implementation, 
problems involving generating envelopes from a 16x16 joint distribution table require 
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approximately 14 seconds using the simplex algorithm but only 1 second using the transportation 
simplex algorithm, on a Pentium III PC running Windows NT. 

 

Figure 4. An example. 

Each interior cell interval in the following joint distribution table has bounds defined by 
max(tx,ty) for its associated (shaded) marginal cell intervals. While interior cell probabilities 
are constrained by the marginal cell probabilities, they are not fully determined because no 
assumptions are made about the dependency relationship between tx and ty. 
 

[ ]3,2∈t
p11 

[ ]4,2∈t  
p12 

[ ]3,2∈yt
P = ¼ 

[ ]4,3∈t
p21 

[ ]4,3∈t  
p22 

[ ]4,3∈yt
P = ½ 

[ ]5,4∈t
p31 

[ ]5,4∈t  
p32 

[ ]5,4∈yt
P = ¼ 

[ ]2,1∈xt
p = ½ 

[ ]4,2∈xt
p = ½ 

  ←     ↑ 
  tx     ty 

Consider for example the cumulative probability of t at 3.5. Bolded probabilities masses p11, 
p12, p21, and p22 can contribute to the left envelope of t at 3.5, because the low bounds of the 
intervals in those cells are ≤3.5. Therefore those probabilities could all be in the cumulation 
at t=3.5, and in the extreme case that p12, p21, & p22 happen to be concentrated at the low 
bounds of their intervals, will be (and to find points on the envelopes, we are interested in 
extreme cases). To maximize this cumulation of p11, p12, p21, and p22, their sum must be 
maximized (at the expense of non-bolded probabilities p31 and p32), yielding  
p11+p12,+p21+p22=3/4  as shown in the following solution: 

 
[ ]3,2∈t

p11=¼ 
[ ]4,2∈t  

p12=0 
[ ]3,2∈yt

P = ¼ 
[ ]4,3∈t

p21=0 
[ ]4,3∈t  

p22=½ 
[ ]4,3∈yt

P = ½ 
[ ]5,4∈t

p31=¼ 
[ ]5,4∈t  

p32=0 
[ ]5,4∈yt

P = ¼ 

[ ]2,1∈xt
p = ½ 

[ ]4,2∈xt
p = ½ 

←      ↑ 
tx      ty  

For the other envelope, the (unary “sum” of) italicized probability mass p11 is minimized, 
yielding 0 as shown in the following solution: 
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[ ]3,2∈t

p11=0 
[ ]4,2∈t  

p12=¼ 
[ ]3,2∈yt

P = ¼ 
[ ]4,3∈t

p21=½ 
[ ]4,3∈t  

p22=0 
[ ]4,3∈yt

P = ½ 
[ ]5,4∈t

p31=0 
[ ]5,4∈t  

p32=¼ 
[ ]5,4∈yt

P = ¼ 

[ ]2,1∈xt
p = ½ 

[ ]4,2∈xt
p = ½ 

←      ↑ 
tx      ty  

These maximum and minimum cumulations of  3/4 and 0 hold not only for t=3.5 but also for 
all other t from 3 to 4, because no interior cell has an interval with an endpoint in that range, 
as graphed next. 

 
  
Repeating this process for appropriate values of t yields the following full envelopes around 
t=max(tx,ty). 
 

     
 
Although the marginals used here are the same as in Figure 3, the envelopes are farther 
apart because the dependency between the random variables is unspecified, so the 
inferential power of the independence assumption is absent. The discretization,   coarse  in  
this  example, also affects the degree of separation of the envelopes. Finer discretization 
would yield smaller steps in the envelopes and hence envelopes that are, on average, closer 
together. 
 

Figure 4 (end). 
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4. Generalizing the solution to networks of concurrent and sequential tasks 

Extending the approach from two concurrent tasks to larger networks of tasks requires solving 
three problems: (1) determining the completion time of two tasks that run not concurrently but 
sequentially, (2) determining the completion time of three or more concurrent tasks, and (3) using 
results as inputs to obtain further downstream results. These problems may be solved as follows.  

(1) To determine the completion time of two sequential tasks, their individual completion 
times are added, because one completes and then the next begins. To add them, the same 
procedure that was described earlier for concurrent tasks is applied except that the 
intervals in the interior cells of the joint distribution table are obtained by performing 
tx+ty instead of max(tx,ty). Thus for each joint distribution tables in Figure 4, the top left 
cell would contain the interval [3,5]=[1,2]+[2,3] instead of [2,3]=max([1,2],[2,3]). 

(2) To handle three concurrent tasks, the result for two of them is calculated, and that result 
used as the completion time for a composite task that proceeds concurrently with the third 
task. In other words, for concurrent tasks X, Y, & Z, we wish to calculate 
max(max(xt,yt), zt). This is a case of using intermediate results as inputs, discussed next. 

(3) To use a result as an input to another calculation, we must convert a pair of left and right 
envelopes, which is what a result looks like, into a set of intervals and associated 
probability masses, which is what a marginal in a joint distribution table looks like. To 
convert, first note that the envelopes consist of horizontal and vertical line segments. This 
allows the space they enclose to be partitioned into a stack of rectangles (Figure 5, top). 
Each rectangle defines an interval whose low bound is a value on the horizontal axis at 
which there is a vertical segment of the left envelope (forming the left side of the 
rectangle), and whose high bound is a value on the horizontal axis at which there is a 
vertical segment of the right envelope (forming the right side of the rectangle). The mass 
of the interval is the increment in the cumulative probability represented by the (bottom-
to-top) height of the rectangle. The result of this partition process is a set of intervals and 
their associated probabilities, usable as a marginal in a joint distribution table for another 
arithmetic operation (Figure 5, bottom). 

 
5. Using inferences from result envelopes 

Consider three types of inference that may be drawn from a pair of left and right envelopes. 

1) The probability of finishing all the tasks by some time T0 is at least P0 in Figure 6. 
Similarly, the probability of not finishing by time T0 is at least (1-P1). 

2) Suppose that p(some outcome)∈[P,1]. For example in Figure 6, p(task completion by 
time T1)∈ [P2,1]. The interval [P2,1] is qualitatively different from a point estimate 
somewhere between P2 and 1 that would derive from an analysis that produced a single 
distribution function instead of left and right envelopes. This is because, unlike a point 
estimate, p∈ [P2,1] indicates the plausibility of two distinct scenarios with different  
implications, (1) certain completion (within the model limits), and (2) uncertain 
completion. Decisions about resource allocation on the overall project or about deadlines 
to contract for could depend on which scenario is correct, yet the implied opportunity to 
seek further information to enable discriminating, or at least to reduce the second order 
uncertainty in completion time would not be available from an analysis that produced a 
point probability estimate. 

3) Consider the problem of determining the probability that one task will finish later than 
another, p(ty>tx). The probability of one task or path taking longer than another is relevant 
in such applications as project management where task networks represent PERT 
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diagrams describing the prerequisite structure of tasks in a project. A simple example is 
two tasks that begin at the same time, as in Figure 1. A generalization is two tasks 
embedded in a network of tasks, such as in Figure 7 for final tasks CF and EF. In the 
generalization the tasks need not start at the same time, and the times at which they 
complete depend on both the task itself and any prerequisite tasks in the network. These 
prerequisite tasks may form a simple sequence as in the case of task EF with prerequisite 
partial path SDE, or contain concurrency as in the case of task CF with prerequisite, 
concurrent, partial paths SAC and SBC.  

 

    t=max(tz,tw)  

[ ]5,2∈t  
p= 

[ ]7,2∈t  
p= 

[ ]7,6∈t  
p= 

[ ]9,6∈t  
p= 

[ ]9,8∈t  
p= 

[ ]3,2∈wt  
p = 0.25 

[ ]5,3∈t  
p= 

[ ]7,3∈t  
p= 

[ ]7,6∈t  
p= 

[ ]9,6∈t  
p= 

[ ]9,8∈t  
p= 

[ ]4,3∈wt  
p = 0.5 

[ ]5,4∈t  
p= 

[ ]7,4∈t  
p= 

[ ]7,6∈t  
p= 

[ ]9,6∈t  
p= 

[ ]9,8∈t  
p= 

[ ]5,4∈wt  
p = 0.25 

[ ]5,2∈zt  
 p = 0.2 

[ ]7,2∈zt  
 p = 0.1 

[ ]7,6∈zt  

 p = 0.3 

[ ]9,6∈zt  

 p = 0.3 

[ ]9,8∈zt  

 p = 0.1 

←        ↑ 
tz        tw  
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Figure 5. Staircase shaped envelopes partitioned into a set of intervals and masses 
(top). These might represent a random variable tz=max(tx,ty), used as a marginal in 
the last row of a joint distribution table (bottom), and combined with the concurrent 
completion time tw of some other task W. The interior cell probabilities of the table 
are undetermined since no dependency relationship was defined between the 
marginals, and so cannot be given values. 
 

Solving this type of problem requires determining p(ty>tx), where tx and ty are sample 
values of random variables for the time points at which two tasks X and Y, or CF and EF, 
etc., complete. To do this, and relate it to standard techniques, we first provide a 
continuous solution for the case of independent distributions, then give the discrete form 
of the solution, then an intervalized discrete form, and finally remove the independence 
assumption.  

 

Figure 6.  Left and right envelopes associate probability intervals with time points. 
If the envelopes describe cumulative probability of task completion over time, then 
the probability of completion by time T0 is within the interval [P0 ,P1], and by time 
T1, [P2,1].   
 

In the case of a continuous solution for independent distributions, if the density 
functions of the task completion times are )(tfx and )(tf y  and sample completion times 
are tx and ty, then 

(1) ∫ ∫
∞

−∞= <<∞−













=>

t tt
xyxy dttfdttfttp

0

)()()( 0 . 

Figure 7. A network of tasks. The times to complete tasks SB and SD are shown as 
cumulative distributions. The time to reach state E is the sum of the times to 
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complete SD and DE, and if the dependency relationship between the completion 
times for SD and DE are unknown the sum is a pair of envelopes rather than a 
single cumulative distribution. 

 
Intuitively, ∫

<<∞− tt
x dttf

0

)( 0  is the area under xf over all times earlier than some given 

time t, which is p(t>tx), or the probability that t is later than the completion time tx of task 
X. The probability that the completion time of task Y is within a time period centered at t 
with width dt is p( dttt y 2

1±∈ )= .)( dttf y  The probability of both (t>tx) and 

)( 2
1 dttt y ±∈  is therefore the product of their individual probabilities, 

∫
<<∞− tt

xy dttfdttf
0

)()( 0 , and integrating this expression over all possibilities for t gives 

equation (1). 

Discretizing (1) gives ∑ ∑
∞

−∞= <<∞−








∆∆=>

t tt
xyxy ttfttfttp

0

)()()( 0  for values of t and 

t0 spaced ∆t apart. This can be intervalized, bounding the discretization error and giving  

(2) 









































=> ∑ ∑∑ ∑

>> y xyxy xyx T TTT
xy

T TTT
xyxy TpTpTpTpttp

,,

)()(,)()()(  

where the Tx and Ty are intervals over tx and ty such as might appear in the marginals of a 
joint distribution table, p(Tx) and p(Ty) are their associated probability masses, and 

xyx TTT ,, and yT are their low and high bounds.  

As an example of equation (2) consider the joint distribution table in Figure 8. The 
low bound of p(ty>tx) is the sum of the probability masses of cells labeled True, which is 
0.789. The high bound is the sum of the masses of cells labeled True or Uncertain, which is 
0.939, yielding ]939.0,789.0[)( ∈> xy ttp . 

To remove the independence assumption, the masses of the interior cells are 
reapportioned among the interior cells within the limits imposed by the row and column 
constraints using linear programming to minimize the summed masses of the cells labeled 
True, giving a low bound of 0.61, and then reapportioned again to maximize the summed 
masses of the cells labeled True or Uncertain, giving a high bound of 1. The new result, 

]1,61.0[)( ∈> xy ttp , as expected is wider than the earlier result of 
]939.0,789.0[)( ∈> xy ttp , which benefited from assuming independence. 
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ty>tx, tx and ty independent 

True 
p=.00

5 

True 
p=.00

6 

True 
p=.00

8 
True 
p=.01 

True 
p=.02

1 

Uncertai
n 

p=.021 

Uncertai
n 

p=.01 
False 

p=.008 
False 

p=.006 
False 

p=.005 

[10.1,11.1
] 

p=.1 

True 
p=.01 

True 
p=.01

2 

True 
p=.01

6 
True 
p=.02 

True 
p=.04

2 
True 

p=.042 
Uncertai

n 
p=.02 

Uncertai
n 

p=.016 
False 

p=.012 
False 
p=.01 

[11.1,12.1
] 

p=.2 

True 
p=.02 

True 
p=.02

4 

True 
p=.03

2 
True 
p=.04 

True 
p=.08

4 
True 

p=.084 
True 
p=.04 

Uncertai
n 

p=.032 

Uncertai
n 

p=.024 
False 
p=.02 

[12.1,13.1
] 

p=.4 

True 
p=.01 

True 
p=.01

2 

True 
p=.01

6 
True 
p=.02 

True 
p=.04

2 
True 

p=.042 
True 
p=.02 

True 
p=.016 

Uncertai
n 

p=.012 

Uncertai
n 

p=.01 

[13.1,14.1
] 

p=.2 
True 
p=.00

5 

True 
p=.00

6 

True 
p=.00

8 
True 
p=.01 

True 
p=.02

1 
True 

p=.021 
True 
p=.01 

True 
p=.008 

True 
p=.006 

Uncertai
n 

p=.005 

[14.1,15.1
] 

p=.1 
[5,6] 
p=.05 

[6,7] 
p=.06 

[7,8] 
p=.08 

[8,9] 
p=.1 

[9,10] 
p=.21 

[10,11] 
p=.21 

[11,12] 
p=.1 

[12,13] 
p=.08 

[13,14] 
p=.06 

[14,15] 
p=.05 

←      ↑ 
tx      ty 

 
Figure 8. Joint distribution table representing ty>tx, for independent tx and ty. Each 
interior cell is labeled True if ty>tx for ty and tx in the intervals of the marginal cells of 
that interior cell,, False if instead ty<tx, and Uncertain if the marginal cell intervals 
overlap (indicating that the unspecified details of the distributions of the marginal 
cell masses over their intervals determine whether ty>tx for all, some, or none of the 
interior cell mass). 

 
To restate an example, this process could be used to bound the probability that the 
completion time of task X will be later than that of task Y in a PERT diagram conforming 
to Figure 1. The process could also be used in a more complex example such as bounding 
the probability that task CF will complete later than task EF in Figure 7. The completion 
time of each of these tasks will be in the form of envelopes, which when converted to 
marginals will have overlapping intervals as in Figure 5. However any overlap is 
irrelevant to equation (2), which justifies Figure 8. Ultimately such results could support 
management decisions about resource allocation intended to optimize the overall 
completion time of the entire project.  

 
6. Software 

 
Crystal Ball (www.decisioneering.com) and @risk (www.palisade.com) are well-known 
commercial products that rely on Monte Carlo simulation, thereby inheriting the shortcomings of 
Monte Carlo simulation noted earlier in Section 2. RiskCalc (Ferson 2002) is a commercially 
available package that can do the operations on random variables used here, although its 
algorithm (Williamson and Downs, 1990) is different and more complicated than the one used 
here, some further details of which have been described by Berleant and Zhang (2004(a)). Our 
software, Statool, is downloadable from http://www.public.iastate.edu/~berleant/statool.html.  
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7. Conclusion 

We have shown how to solve a simply stated problem with significant implications: determining 
completion times of networks of tasks in the absence of assumptions about both the forms of 
distribution functions and their independence or other dependency relationships. Results are left 
and right envelopes bounding the space of plausible CDFs. Completion times of individual tasks 
may be expressed as numbers, intervals, distribution functions, or left and right envelopes.  

Real problems frequently pose a variety of uncertainties. Therefore methods for obtaining 
results with minimal assumptions and while accounting for uncertainty remain an important area 
of investigation. 
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