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Abstract.  The paper presents a stochastic methodology for handling uncertainty in process 
development as part of a general framework for batch and continuous process models. The 
method combines systematic modelling procedures with Hammersley sampling based uncertainty 
analysis and a range of sample-based sensitivity analysis techniques, used to quantify predicted 
performance uncertainty and identify key uncertainty contributions. The methodology was 
implemented on a batch reactor process and some clear recommendations as to how to reduce the 
uncertainty in the main output variables are obtained. The paper concludes with some discussion 
about an alternative approach to use instead error bars from experimental data as intervals and 
using interval methods to determine the best ‘worst-case’ design. 
 
 

1. Introduction 
 

In the development of new chemical manufacturing processes, particularly in the pharmaceutical 
industry, there is a large element of process uncertainty since detailed knowledge of the chemical 
reaction mechanisms and of the power and effectiveness of separation devices (to purify the 
product and recover raw materials) is often limited.  Data is obtained from the laboratory during 
the identification stage of a new product (for example a new drug) and this is used during the 
manufacturing process development stage.  Much data is generated but often not useful for the 
development of the large scale manufacturing process.  In some cases large amounts of data are 
available but often single data points with confidence limits are obtainable in the form of interval 
bounds. Using a structured approach with the computational process design tools, which are used 
extensively, the uncertainty can be managed and improved process performance may be obtained. 
The methodology proposed is based on a stochastic formulation but the use of interval methods 
which have a natural role arising from the form of data used is also discussed briefly. 
 This work was undertaken for process development in the pharmaceutical industry.  New 
products are constantly being proposed and the decision about whether to proceed with 
development depends on the efficacy of the drug but also whether the manufacturing process will 
be possible and will make a profit.  It is therefore necessary to develop new processes but this is 
often done without regard to the data being obtained in the laboratory and without consideration 
of the accuracy of that data.  The objective was to develop a model based approach that could 
help identify major causes of uncertainty and hence help to direct when better data is required.  
Much good data is developed but often the data required for manufacturing process development 
is not available or of poor quality.  

Pharmaceutical processes typically consist of a sequence of unit operations, for example 
reactors and separation devices.  It is important that the methodology is able to handle a large 
sequence of units as well as single units.  The main causes of uncertainty in process development 
are in the data obtained about reaction and separation which are then used in the model and also 
in the quality of the raw materials that are used in the reactions.  Assumptions about models are 
also uncertain which can cause the mathematical structure to be incorrect as well as the model 
parameters, for example in the case of the order of the reaction kinetics. 



 

REC2004 

2 

While the approach was developed with pharmaceutical processes in mind it could in fact be used 
for any type of process.  
 
 

2. A Methodology for Design Under Uncertainty: Combined risk analysis and 
systematic model development 

 
The proposed methodology aims to introduce some form of management of the uncertainty 
associated with the model representations of the current process knowledge. It is assumed that the 
conceptual process design (equipment allocation and design) is already decided. The 
deterministic process models may exhibit non-linear and dynamic characteristics as may be 
expected in typical pharmaceutical processes. However, spatially distributed models are not 
considered for computational reasons.  

In the face of large amounts of uncertainty predicted in the important process output criteria, 
three issues have been considered:  
(i) reduction of the uncertainty by improving current models/parameter estimations associated 

with the  key contributing uncertainty factors identified, 
(ii) manipulation of the available process decisions (operating policy) to improve process 

robustness to model uncertainty, 
(iii) consideration of process alternatives.  
Issue (i) concerns the gathering of additional information for systematic model development for 
more reliable models. Issues (ii) and (iii) concern the optimisation and comparison of uncertain 
but integrated processes sequences.  This will be dealt with in a future paper. 
 

Systematic model development 

 
Improve model 

Get data 

 

Process models 
Uncertainty  

characterisation 
Feedback   

Stochastic system 
 

Risk Analysis:  
Uncertainty Analysis 
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uncertainty limits 

Implement  
Get new data 

 
 
Figure 1. Management of uncertainty in a model-based approach to integrated design under 
uncertainty for pharmaceutical processes. 
 
The elements of the Risk Analysis approach have been combined with systematic procedures for 
the development of deterministic process models (Figure 1). A stochastic representation of the 
complete model of the integrated process sequence is generated to quantify modelling 
uncertainties and to identify and rank the most important contributors in the uncertain (but 
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structured) system with respect to the important system responses. The suggestion is that this 
information can be used to drive the general direction for data collection (within process 
development) to improve the key models and reduce the uncertainty in the most significant areas. 
As more data becomes available the methodology allows the tracking of the effect of increased 
knowledge in certain process models and the effect this has on the complete system, in an 
iterative manner. A key issue is the flexibility of the approach to incorporate new data into the 
analyses.  A more detailed schematic of the approach is shown in Figure 2. The reader is referred 
to Hangos and Cameron (2001) for further detail about conventional model development.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Schematic for the systematic model development incorporating the Risk Analysis 
approach under uncertainty. 
  
Once a model has been developed and before the Risk Analysis methods are implemented a 
screening procedure is used to determine which of the parameter uncertainties in the complete 
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sequence model may be potentially significant regarding the response variables in the stochastic 
representation of the system. This is necessary when the number of parameters increases and it is 
necessary to limit the number of dimensions in the following Risk Analysis. For this purpose a 
Perturbation Analysis (one at a time approach) is used since it is a common and easy method to 
implement. The deterministic model is systematically simulated at  positive and negative 
deviations from the nominal parameter estimates. The magnitude of the deviations may be based 
on the judgement of the developer (for example these could be the approximate precision ranges 
for different types of model parameters as suggested by Hangos and Cameron, 2001), or at 
estimated confidence limits if available. 
 
 

3. Uncertainty Analysis 
 
Following the selection of the significant uncertain parameters, Steps 1 to 7 in figure 2 comprise 
the elements of Uncertainty Analysis. The information required for the stochastic distributions of 
the input variables needs to be developed typically from sparse data sets so the methodology 
includes the development of these distributions. In Step 1 the approach used for the quantitative 
estimation of the uncertainties in these parameters is determined by the data available for 
parameter estimation which may be based on three different information sources:  
• analysis of the performance of the model building based on experimental measurement data 

(Step 1a), allows the estimation of uncertainty in the parameter estimates using confidence 
intervals or regions,  

• expert technical judgement is needed when quantitative data is not available for systematic 
model building and models are assumed whose parameter values are instead based on 
observations and/or assumed along with associated confidence intervals and probability 
distributions (Step 1b),  

• either specific published information or information from which judgements can be inferred 
(Step 1a or 1b).  

If parameters are estimated or assumed independently of each other, the joint sampling space 
may be described as a hyper-rectangle where each dimension represents one uncertain input 
bounded by its respective upper and lower confidence limits. If no data is available for model 
parameter estimation, confidence limits around the nominal values are assumed as some 
percentage of the nominal. For uncertainty in independent parameters of assumed nominal values, 
to be characterised by normal distributions, the standard deviation is assumed at some percentage 
of the nominal value. Confidence limits around the nominal value can be assumed at some 
number of standard deviations (typically two or three deviations for approximately 95 or 99.9% 
probability of containment according to Chebyshev’s rule).  

Least squares regression is a commonly used parameter estimation method for which 
confidence intervals can be simply stated assuming normally distributed uncertainty. Although 
likelihood and lack of fit are more accurate methods for estimating parameter confidence regions 
for non-linear models, Donaldson and Schnabel (1987) conclude from their general study on 
regression parameter confidence regions that the linearization methods provide the most concise 
representation of information required to construct confidence intervals and regions.  
For a model that is non-linear in its parameters, individual confidence intervals can be 
approximated assuming a linearization of the model about its optimal estimated parameter values, 
θ′, 

 ( )
2

2
1

1,
ˆ

αθθ
−−

≤′−
PNpppp tV  (1) 

where subscript p is the index of the input uncertainty (θ), V is the covariance matrix, and the 
values of the confidence limits are defined where the value of t is taken from the Student’s t-test 
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distribution with N-P degrees of freedom (number of regression data points, N, and number of 
parameters, P, in the regression model), assuming a desired level of confidence, 1-α. In a multi-
parameter model where the parameters are estimated simultaneously, a joint confidence region 
provides a more appropriate measure of the (normally distributed) uncertainty space that would 
be a hyper-rectangle comprising the individual confidence intervals. Similarly, for a non-linear 
model, a hyper-ellipsoidal joint confidence region is approximated by, 
 

 ( ) ( ) αθθθθ −−
− ≤′−′− 1,,

1ˆ
PNN

T PFV  (2) 
 

 
where θ is a vector of the model parameters and the value of F is taken from the F distribution. 
This is the distribution of a random variable, F, defined as the ratio of two independent chi-
squared random variables divided by their respective degrees of freedom.  
Linearization methods for the estimation of confidence intervals and regions require the 
estimation of the parameter covariance matrix. Donaldson and Schnabel (1987) state that the 
most common and easily computed estimate for the covariance matrix is,  
 

 ( )( ) 12ˆ −
′′= JJsV Tθ         (3) 

 
where ( )J ′θ  is the Jacobian matrix of the model predictions at the optimal parameter estimates 
(i.e. the N × P matrix with the (n, p)th element estimated by ∂f(xn, θ)/∂θp at θ′, for N data points 
and P parameters), s2 is the estimated residual variance computed from the residual sum of 
squares (RSS) between the regression model predictions, $Φ , at the optimum parameter estimates 
and the measurement data, Φ,  
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and where $Vpp  is the ppth element of the covariance matrix, $V , and is the variance estimate of 
the pth model parameter (input uncertainty). J is estimated numerically using the first order 
Taylor’s approximation J by introducing deviations into each optimal parameter value in turn and 
re-evaluating the change in the predicted dependent variable at each data point. 
Given the covariance matrix it is straightforward to determine the correlation matrix, $C ,  
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where ρ is the correlation coefficient and σ is the parameter standard deviation (determined from 
the square root of the parameter variances, σ2, in the leading diagonal of the covariance matrix). 
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Step 2 defines the stochastic system considered by combining the deterministic process model 
sequence with the uncertain parameter characterisations as obtained in step 1.  

A sampling procedure is invoked in Step 3 in order to approximate the uncertain system. In 
this methodology, the quasi-Monte Carlo Hammersley Sequence Sampling (HSS, Diwekar and 
Kalagnanam, 1997) is implemented. Sampling approaches are the most flexible because of their 
capacity to capture different perspectives of risk, the examination of the entire Θ-space, and they 
are not severely limited by the number of dimensions, of which HSS appears to be the most 
efficient. A unit hyper-rectangle of dimension P is sampled using HSS in Step 3.  
Diwekar and Kalagnanam (1997) define the M points of the Hammersley sequence variant, ep(m) 
in a P-dimensional hyper-cube.  Rank correlation coefficients are a meaningful way to describe 
dependencies between stochastic inputs. The desired rank correlation matrix, $ *C , of a matrix of 
independently generated sample input column vectors, X, is set as equal to $C  (the desired 
correlation matrix of X). A new matrix, K, is defined which has the same dimension as X but is 
independent of X, to give a correlation matrix close to the identity matrix. These are inverted 
over the standard normal cumulative distribution and the elements in K are rearranged to obtain 
the correlation structure defined by $C , to give a matrix, K*. Not only is it necessary that the 
correlation matrix of K is close to the identity matrix but also that the correlation and rank 
correlation matrices of K* should be close to each other.  

The stochastic system is solved in Step 4, to obtain probability distributions and distribution 
parameters for the desired process performance variables (i.e. the desired output variables). This 
is achieved by sequential simulation of the deterministic model in Step 6 at each observation of 
the uncertain parameters and at the initial conditions and operating conditions fixed in Step 5, 
given the matrix of stochastic input observations with any induced correlation structures (X*) and 
the deterministic model of the complete flowsheet. To terminate the solution of the stochastic 
model, a convergence test is employed (Step 7). The convergence test used in this methodology 
is a tolerance limit on the average sum of squared deviations measured in a distribution parameter, 
w, over all  previous iterations up to the current iteration observation, mi. This limit, ∆w, for the 
qth predicted process output quality criterion is shown in Equation 7,  
 

( ) qw

m

m
mqmq

i
q

i

i
ww

m
w ,

1

2
,,

1 ε≤−=∆ ∑
=

   (7) 

 
where w is the mean or variance estimate from all the previous observations and ε is a permitted 
tolerance. The test requires that tolerances on the mean and variance parameters characterising 
the distributions in the key outputs are met. 
 
 

4. Validation 
 

The individual models of the process sequence need to be validated with available independent 
data of good quality. In the case of using data from a pilot plant run, data for individual 
operations may not be available since measurements are not taken at all points in the sequence. 
Here, validation may only be possible over sub-sequences of integrated models. In Step 8, a form 
of statistical model validation compares distributions of performance predicted from Uncertainty 
Analysis with independent data to validate the uncertain sequence model. Both the location and 
spread of the predicted distributions in relation to the independent data are important in the 
validation. Independent data may already be available from previous runs or if resources permit 
from specific model validation runs (for specific operations). As stated by Basu et al. (1999) 
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there should be plenty of opportunities to obtain more data for this purpose given the nature of 
pharmaceutical process development.  

Following this, Sensitivity Analysis is used to estimate the ranking priority of the key 
stochastic inputs contributing to the uncertainty in the stochastic process output criteria (Step 9). 
In an efficient manner the sensitivity techniques employed in this methodology reuse the sample 
results generated from Uncertainty Analysis to avoid the need for any further simulations of the 
deterministic model. 
 Standardised regression coefficients (SRC) may be compared to correlation coefficients (CC) 
to avoid the affect of spurious correlations to which the CCs are susceptible. SRCs may be 
calculated either from first determining the linear regression coefficients, bp, and then multiplying 
these by the parameter sample standard deviation, sθ, and dividing by the output standard 
deviation, sΦ, 

 SRC
b s

sp
p p=

θ

Φ
  (8) 

 
or by standardising the raw sample data and then applying the regression,  
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=
∑ θ

1
   (9) 

where θ  and Φ  are the sample means of θ and $Φ , and the subscript ‘std’ represents a 
standardised value. To avoid over-fitting problems in determining SRCs, stepwise regression 
procedures are employed.  

The input sample set is split into a number of disjoint intervals which each contain an equal 
number of observations. In this way the conditional means of the outputs at given values of the 
inputs can be approximated for the first order CRp for θp,  

 
{ }{ }
{ }

{ }{ }
{ }

CR
Var E

Var

E Var

Varp
p pp p2 1= = −

θ θθ θΦ

Φ

Φ

Φ
  (10) 

 
where Φ is the vector of deterministic model performance outputs, θp is the vector of 
observations in the pth uncertain input, 

p
Varθ and E

pθ  are the variance and expectation condition 

for θp. If there is any element of doubt then scatter plots between individual input-output pairs 
can be viewed, though these may also be susceptible to spurious correlations.  
Following identification of the critical uncertain parameters from Sensitivity Analysis, the 
methodology provides the possibility to determine the minimum reduction in these uncertainties 
required to meet desired levels of reduction in the uncertainty contained in the performance 
criteria of the original system (Step 10).  A quantitative estimate of the minimum extent of 
reductions required in the important uncertainty sources to meet  desired output uncertainty levels 
can be provided by formulating a stochastic optimisation problem. In addition, trade-off curves 
between different parameter reductions can be plotted by solving at different levels of desired 
performance uncertainty reduction.  
 By defining the decision variables as the fractions of the original values (before uncertainty 
reduction) of the parameters which characterise the spread of the parameter uncertainties and 
formulating the objective function, ℑ, as a summed term of these decisions, the desired problem 
formulation is obtained. Since only normal and bounded range parameter uncertainties are 
currently considered in the combined modelling and Risk Analysis part of the methodology, the 
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space size characterising parameters, δ, in the optimisation are the standard deviation, σ, for 
normally distributed uncertainties, pN, and the deviation of the limits, θUB and θLB, from the mean, 
µ,  for bounded range uncertainties, pU. The values of these decisions are passed to the HSS 
sampling sub-routine which locates observations within the redefined uncertainty space. The new 
stochastic model is solved given the fixed initial conditions, operating policy and remaining set 
of parameters. The objective is maximised subject to inequality constraints which permit a 
fraction, α, of the original level of the uncertainties observed in the original output variables.  A 
stochastic optimisation algorithm is used to solve the following problem: 
 

 max
,δ δ

δ δ
p N pU

N U

U

U

N

N

p p
p

P

p

P
ℑ = +

==
∑∑

11
 (11) 

Subject to the deterministic model equations and constraints and  
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∆θ θ µ µ θp p
UB

p p p
LB

U U U U U
=

′
− ′ = ′ −

′   ∀ =p PU U1...    
 
where the indices o, s, m, d and q are associated with the initial conditions, process stages, 
parameter scenarios, operating policy variables (z) and performance criteria (Φ). The time 
invariant policy variables, υ, the time dependent variables, ν, and the stage duration times, tf, 
remain fixed at the values specified in the prior Risk Analysis. The measure of uncertainty in the 
performance criterion, Φ, is the width between the 5 and 95% fractiles, FW(Φ). The prime 
represents the original value before uncertainty reduction. The total uncertainty space, Θ, is the 
combined space of the normal and uniform spaces ΘN and ΘU.  The Matlab Sequential Quadratic 
Programming routine was used to solve these problems. 

It is assumed that the original values of the distribution means (nominal parameter values) 
are maintained. If the stochastic problem contains decisions in linearly correlated inputs, it is 
assumed that a change in the spread of one of the correlated parameters gives an equivalent 
change in the others, while maintaining the same correlation structure.  
 The solutions of these problems can provide a quantitative idea of the required efforts in 
reducing specific parameter uncertainties compared to returns in performance uncertainties, 
which may be used to support data collection decisions. 
 This information, combined with that obtained from model validation (Step 8) and 
Sensitivity Analysis (Step 9), provides a useful breakdown of the information required to focus 
relative experiment planning and data collection efforts towards improving a specific process 
model within the sequence (by inferring the key uncertain phenomena associated with the 
identified process sub-sequence and parameter uncertainties), with respect to the possible relative 
benefits which may be obtained in doing so. The data driver feedback loop shows the position of 
experiment planning and data collection in Figure 2, though specific decisions regarding these 
procedures are not explicitly considered in this work.  
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5. Case study: A multiphase semi-batch reactor process 
 

This case study is based on an exothermic multiphase reaction process and kinetic model 
investigated by Sano et al. (1998).  This case study is a single unit operation but the methodology 
has been used on a sequence of unit operations (Johnson). The process is for the production of a 
pharmaceutical intermediate, formed from the amination of a bromopropyl compound. Sano et al 
developed a kinetic model based on reaction calorimetry data obtained under laboratory 
conditions in order to determine the optimum feasible and safe operating policy.  There is 
considerable uncertainty in many of the experimental parameters and even in the assumptions 
underlying the model. 

Solid particles of the active pharmaceutical ingredient (API) bromopropyl feed compound (A) 
reside in an organic solvent (methanol) inside the reaction vessel. A fixed volume of a 50 wt% 
aqueous dimethylamine reagent (B) is added to the vessel at a constant flowrate under continuous 
agitation. The solids gradually dissolve and react with the dimethylamine. A diagram of the 
process is shown in Figure 3. The exact physico-chemical phenomena for this process are not 
known. The reaction consists of a parallel-series reaction in which the dimethylamine reacts with 
the dissolved API feed to form the desired intermediate (C) which in turn reacts with the active 
feed (A) to form a dimeric byproduct (D) in parallel, 
 

A  +  B   →   C   Main reaction  
 A  +  C   →   D   Sub-reaction 
 
By-product D is known to be very difficult to remove in the downstream purification stages. 
Intrinsic first order reaction kinetics are assumed in the deterministic process model proposed by 
Sano et al. (1998) but this is a source of uncertainty. An initial rate limiting period due to the 
dissolution of solids B, was observed to be independent of solvent concentration and agitation 
speed within the range of conditions approved. A crude approximation of first order kinetics 
(with Arrhenius constant and activation energy) is assumed in the model for this dissolution 
controlled period. This period was observed to last until approximately 55% conversion of A for 
all the conditions considered, at which point the reaction appeared to be limited by the intrinsic 
reaction kinetics.  

The kinetic model is combined with a standard semi-batch reactor model with constant 
volume addition (of reagent B).  The model equations are given in the Appendix. Consideration 
of the cooling capacity of the reactor resulted in a limiting relationship between the operating 
policy variables of feed B addition time, tadd, and isothermal temperature, Tiso. For the purposes of 
this study, this relationship is well approximated with Tiso as a quadratic function of tadd since data 
regarding the energy balance is unavailable, where the nominal values of the constants C1, C2 and 
C3 are 7.06, -43.50 and 352.67 respectively. 
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Methanol, org
Bromopropyl, solid (A)

Dimethylamine , aq (B)

 
Figure 3. Multiphase batch reaction process 
      

One of the process development objectives for which the model would be used is to help 
determine the best operating conditions for maximum product yield, YC. A reaction time, tf, of 
less than 8 hours (terminated when the rate of conversion of A falls below 0.1%) and a final yield 
in the impurity, YD, of below 2% must be maintained. The model was optimised to obtain a 
nominal set of operating conditions which maximise the yield of C. 
Of course uncertainty in the model parameters could have a large effect on any results predicted 
by the model. This may be of particular importance regarding the optimal operating policy 
determined subject to the desired limits on process performance.  Hence the methodology 
presented in figure 2 was implemented on the case study. 

Perturbation Analysis indicates 11 uncertain parameters which appear to have a non-
negligible influence on yield of C (YC), yield of D (YD) and the final time (tf): the kinetic rate law 
parameters (Ea1,int, A1,int, Ea2,int, A2,int, Ea1,diss, A2,diss), the conversion related transition point from 
dissolution controlled kinetics to intrinsically controlled kinetics, (XA,diss), the molar ratio of 
active feed (mA0) to reagent feed (mB0) and the quadratic constants of the safety constraint (C1, C2 
and C3). The assumed uncertainties of these parameters are quantified in Table 1. Correlations are 
assumed between the activation energy (Ea) and the natural logarithm of the Arrhenius 
coefficient (A) parameters for each reaction rate constant and between the safety constraint 
constants. 

A total of 490 scenarios were required to satisfy the convergence criterion of 0.5% error in 
the mean and variance parameters for both YD and tf. The key results of an Uncertainty Analysis 
under the nominal optimum isothermal operating conditions are shown in Table 2. Under 
uncertainty in the model parameters the process is predicted to perform particularly poorly 
regarding violation of the safety constraint for Tiso, with an expected probability of passing of 
only 0.281. The probability of passing the YD constraint (at most 2%) is only 0.670 with an 
expected extent of violation of 0.245%. However, the corresponding values for tf appear to 
perform better (at most 8 hours). 
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Table 1. Uncertainty characterisation in the parameters of Case Study. 
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Table 2. Uncertainty Analysis results under nominal optimum isothermal operating conditions 

  YC 
(%) 

YD 
(%) 

tf 
(hr) 

safety 
constraint 

Expected value 96.34 1.79 6.33 - 
Expected extent of constraint violation - 0.245 0.118 0.440 
Probability of passing - 0.670 0.876 0.281 

 
Sensitivity Analysis (step 9) shows which of the parameters are identified as key to the 

important output criteria. Correlated parameters are not included in the analysis since the 
presence of strongly correlated inputs invalidates the linear regression for the standardised 
regression coefficients. Approximate correlation ratios, Figure 4, show that the variance in the 
activation energy of the intrinsic parallel reaction, Ea2 which is parameter number 2 in the figure 
(and the Arrhenius parameter, A2, through correlation and the assumption of a linear joint 
confidence region), is the key uncertain parameter affecting the uncertainty in the prediction for 
both Yield D and Yield C. No single uncertain parameter is identified as being the main 
contributor to the uncertainty in the final time, tf.  
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Figure 4. Sensitivity Analysis results under nominal optimum isothermal operating conditions 
 
 
Further information quantifying the potential uncertainty reduction requirements to meet levels of 
reduction in the YC, YD and tf criteria (step 10) is obtained from the solution of the following 
problem at different levels of desired output uncertainty reduction: 

max
,δ δ

δ δ
p N pU
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subject to 
deterministic process stage model equations and the following conditions on the 5% and 

95%fractile requirements of the products ranges, constraints on δ to ensure the range is not 
exceeded, and the uncertainty description (θ) 
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The stochastic optimisation in step 10 determines the minimum reduction in the uncertain 
parameters, 

Npθ and θ pU
 required in order to maintain stochastic inequality constraints for α% 

reductions in the widths of the predicted 5-95% fractile intervals for YC, YD and tf from their 
original values. The parameters manipulated are the fractions of the original standard deviations 
of the normally distributed uncertain parameters, Ea1,int, Ea2,int, Ea1,diss, C1, C2, C3 and those of the 
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original bounding widths about the means of the uniformly distributed uncertain parameters, 
mA0,ratio and XA,diss. Equivalent reductions in the uncertainty in the correlated parameters (A1,int, 
A2,int, A1,diss) are assumed, to maintain the original correlation structures.  
 

 
Figure 5. Model parameter uncertainty reductions meeting desired output criteria uncertainty 
reduction levels.  
Key: ∗ = σEa1,int, ×⋅⋅⋅⋅ = σEa1,diss, •--- = ∆mA0,ratio, o⋅-⋅ = σEa2,int. 
 
The key results of these optimisation problems are shown in Figure 5. Reduction of the 
uncertainty in the intrinsic product and by-product activation energies (and the correlated 
Arrhenius constants) is shown to reduce the uncertainty in the output criteria to levels of around 
60% of the original predicted uncertainties, at a constant rate. As uncertainty in the key input 
parameters is reduced in order to meet the desired levels of uncertainty in the output criteria, the 
contributions of the uncertainty in other input parameters become important and additionally 
need to be reduced. This is indicated in Figure 5 at levels of 60% and 90% output uncertainty 
reductions, where the respective optimal solutions state that reductions in the uncertainty in the 
dissolution activation energy (and the corresponding Arrhenius constant) and the API feed ratio 
become relatively more important than in Ea1,int and Ea2,int. This has clear implications for where 
further more accurate experimental data should be obtained. 
 
 

6. An interval based approach 
 
The approach as implemented above relies on developing statistical information about the data 
items (in the sampling and repeated solution of the stochastic model), often from few data points, 
and the expensive machinery of stochastic optimisation.  
 In the case of process development shown above data is often obtained as a measurement 
with error or uncertainty bounds.  These bounds give an important indication of the uncertainty 
of the measurement but it is only with in depth knowledge can someone know whether the degree 
uncertainty in the measurement is going to have a significant effect in process development.  The 
measurements are often taken by development chemists who are not involved in development of 
the manufacturing process and so while they will have a feeling for the effects on the chemistry 
they will not necessarily know the effect on the manufacturing process. 
 There is again a role for systematically incorporating the uncertainty into the development 
process using a model based approach.  If the model based approach presented in figure 2 is used 
but with intervals rather than stochastic distributions a systematic approach can be developed.  A 
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weakness is that if only intervals are used the approach could be very conservative but it should 
be able to indicate which uncertainty in which measurements have the most effect and whether 
the uncertainty in the design can be significantly improved by better measurement. If data is now 
provided as a measurement with error bounds (intervals), optimization could also be achieved by 
application of interval global optimisation algorithms. 

Two important distinctions are identified in formulating flowsheeting problems. In the 
equation-oriented formulation the flowsheet is treated as a set of mass/energy balance equations 
that are solved simultaneously. The alternative sequential modular approach views the flowsheet 
as interconnected black boxes. Both approaches have their advantages; however the modular 
approach has a particular advantage in that it matches more closely the natural structure of the 
flowsheet. Modular approaches are in general more popular in the chemical industry.  Using 
modular flowsheets built from general models Byrne and Bogle (2000) showed how interval 
methods could be used in conjunction with this type of system.  Modular flowsheets are 
constructed with generic unit modules that can provide the interval bounds, linear bounds, 
derivatives and derivative bounds using extended arithmetic types. Using interval analysis and 
automatic differentiation as the arithmetic types, lower bounding information is used in a branch 
and bound network.   
 The approach shown in Figure 2 could be modified to exploit this interval information using 
interval optimization techniques to solve the optimization problems.  Step 1 requires obtaining 
intervals instead of distributions of the model parameters.  Step two defines instead a 
deterministic system but with intervals for the uncertain parameters (such as the activation 
energies) and uncertain outputs (such as yield in the example above).  The sampling procedure is 
no longer necessary since the optimization is done in terms of the interval bounds only.  Step 5 
remains as for the stochastic problem and step six involves obtaining the globally optimal 
solution for the deterministic problem using the real data points.  In step 4 the models are used to 
obtain the interval bounds on the output variables and a sensitivity analysis can be performed to 
determine the key predicted output uncertainties and hence reduce the dimensionality of the 
subsequent optimization problem.  Finally an interval optimization problem should be solved to 
determine the optimal reduction in input uncertainty that will keep the output uncertainties within 
their desired limits. 
 
This approach has the advantage of requiring only data and error bounds and can use the interval 
optimisation software that is available.  Error bounds can be conservative and this approach will 
help to indicate when it would be most appropriate to really try and improve the accuracy of 
measurements by more careful procedures or by obtaining more sophisticated measuring 
equipment. 
 
 

Conclusions 
 

A systematic approach for incorporating uncertainty in process design has been presented.  A 
stochastic optimisation problem is solved using distributions in the parameter uncertainties to 
determine where the key uncertainties in the data lie.  This was applied to a multiphase batch 
reactor problem shown here and has also been applied to a pharmaceutical process involving 15 
unit operations in sequence (Johnson).  The methodology produced some clear recommendations 
about which measurements would best be improved to reduce the uncertainty in the output 
variables which are key for ensuring that the quality of the product is acceptable. 
 Since much data is often obtained from the laboratory with error bounds we have also 
discussed briefly how the problem could be cast as an interval optimisation problem which would 
determine where error bounds on particular data points were causing particular uncertainty in 
process development. 
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Appendix 

The deterministic model for the multiphase batch reactor 
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( ) ( )T C t C t Ciso add add≥ − +1
2

2 3   (safety constraint) 
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A A

A
= −0

0
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


 ≤ −1

0

2

0

10 001.  

 ( )T C t C t Ciso add add,max = + +1
2

2 3  
Initial conditions (inside reactor) 

 m molesA0 1075= .  
m B0 0= , mC0 0= , m D0 0=  

 V dm= 0 7 3.  
 X A0 0=          
           
  
The subscripts diss and int denote dissolution and intrinsic kinetic controlled periods, and k2,diss is 
assumed to follow a similar temperature relationship as k1,diss relative to its intrinsic value.  
 
 


