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Abstract. Structural engineers use design codes formulated to consider uncertainty for both reinforced
concrete and structural steel design. For a simple one-bay structural steel frame, we survey typical un-
certainties and compute an interval solution for displacements and forces. The naive solutions have large
over-estimations, so we explore the Mullen-Muhanna element-by-element strategy, scaling, and constraint
propagation to achieve tight enclosures of the true ranges for displacements and forces in a fraction of
the CPU time typically used for simulations. That we compute tight enclosures, even for large parameter
uncertainties used in practice, suggests the promise of interval methods for much larger structures.
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1. Introduction

Structural engineers have used design codes formulated to consider uncertainty for both
reinforced concrete and structural steel design for several decades. The format for these
design codes has been termed Load and Resistance Factor Design (LRFD). The LRFD
format for structural steel design is founded upon first-order, second-moment reliability
theory applied to structural loads and resistances (Cornell, 1969). LRFD-based design rests
on the following definition for the probability of structural failure,

PF = P ((R−Q) < 0) , (1)

where

R = a structure’s resistance, which is considered a random variable, modeled using a known
probability density function (PDF);

Q = the load effect, which is also a random variable with known PDF.

The frequency distribution of the resulting random variable, R−Q, allows the definition of a
safety margin against structural failure. The probability of failure expressed in Equation (1)
is re-phrased as (Ravindra & Galambos, 1978),

PF = P (ln (R/Q) < 0) .

If one knew the probability distribution of ln (R/Q), determining the probability of failure
for the structure would be very easy. Unfortunately, there are several random variables that
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contribute to structural resistance as well as load effect. These contributors do not all follow
the same PDF’s, and the process of characterizing them also is uncertain. In this paper, we
use interval arithmetic to compute reliable bounds for structure responses in the presence of
uncertain parameters. In section 2, we discuss the nature of the uncertainties and realistic
bounds.

The first-order second-moment method approximates the failure of a structure by the
safety index (Ravindra & Galambos, 1978),

β =
mean (ln(R/Q))

σ (ln(R/Q))
,

where σ (ln(R/Q)) is the standard deviation of the natural logarithm of the ratio of resis-
tance to load. In a simplistic sense, the LRFD formulation seeks to define a probability of
a failure using an acceptable number of β’s away from mean (ln(R/Q))). The acceptable
value of β for various structural components is determined using calibration with existing
structural systems. In other words, the LRFD design procedures that were proposed, and
are currently in use, provide a level of reliability against structural failure that is near that
of structures designed using pre-LRFD criteria.

In the discipline of structural engineering, the engineer is often concerned with determin-
ing response quantities for which there is very small probability of exceedance. For example,
one may be interested in the lateral displacement at the top of the frame shown in Figure 1
for which the probability of exceedance is 0.1%. Since life-safety is involved in design of
structural systems, we may desire a very small coefficient of variation in this probabilistic
estimate.
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Figure 1. Simple one bay portal frame with partially constrained connections.

Monte-Carlo simulation is a traditional approach for establishing safety indices or prob-
abilities of failure for structural systems. Unfortunately, simulation also includes a level
of uncertainty in the results. Better results require more simulations. Soong and Grigoriu
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(Soong & Grigoriu, 1993) have shown that the coefficient of variation in an estimated
probability P can be written as

VP =

√
1− Ptrue

N · Ptrue
, (2)

where Ptrue is the true probability, and N is the number of simulations. Equation (2) can
be solved for a required number of simulations using a desired probability and coefficient
of variation. If our structural analysis determining the unlikely structural response should
have a probability of failure of 0.001 and we need to have a small coefficient of variation in
that estimate (e.g., 0.05), then by Equation (2), 399,600 simulations are necessary. That is,
nearly 400,000 structural analyses are required to be able to determine structural response
for an event with very low probability with high confidence. Other simulation techniques
are available, e.g., importance sampling (Melchers, 2001). However, in general, simulation
can be a highly expensive tool for understanding uncertainty in structural engineering.

Recent work (Mullen & Muhanna, 1999; Muhanna & Mullen, 2001) introduced intervals
as a means for reliably accounting for uncertainty in structural engineering. The present
study considers load and resistance uncertainty using interval-based structural analysis.
The success of the present work foreshadows additional applications of interval methods in
structural engineering to quantify uncertainty in progressive collapse, ground motion analy-
sis, and other highly important endeavors. Furthermore, it is hoped that the interval-based
results can be used to quantify any error present in structural engineering design as a result
of first-order, second-moment reliability-based design methods for complex structures.

2. Development of Intervals for Load and Resistance

Structural loads and resistances frequently are defined using probability density function
models for the frequency of occurrence of properties or loading magnitudes characterizing
structural behavior. This section assigns intervals of known confidence for cross-sectional
properties, loading, material properties, and connection response.

2.1. Lateral Wind Loading

The frequency of occurrence of extreme wind speeds is modeled using Fisher-Tippett Type
1 Extreme Value probability distributions (Simiu et al., 1978). To demonstrate the process,
a hypothetical extreme wind record is used to generate wind speed intervals and then a
wind pressure interval suitable for structural analysis. The mean peak wind speed (assumed
here to be for 3-second gusts) and standard deviation for a 19-year record are

V 3-sec = 62.7 mph σ3-sec = 8.63 mph.

The PDF assumed allows one to compute peak wind speeds and confidence levels asso-
ciated with those speeds that include sampling error due to the limited number of years for
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which data is available. Buildings are often assumed to have service life spans of 50 years.
If one is willing to accept that the wind speed used for design has a 5% chance of being
exceeded in 50 years, one is establishing a 1,000 year mean recurrence interval wind. In
other words, there is a 0.1% chance that the wind speeds used for design will be exceeded
in any given year.

Given a number of data points in a peak wind speed record and a known probabil-
ity density function describing frequency of occurrence, an estimate of the N -year peak
wind speed and standard deviation in the estimate that includes sampling errors can be
determined using (Simiu et al., 1978)

V̂ N
3-sec = V 3-sec + σ3-sec(y − 0.5772)

√
6

π
, and (3)

SD
(
V̂ N

3-sec

)
= [1.645 + 1.462(y − 0.5772)

+1.1(y − 0.5772)2
]0.5 0.78 σ3-sec√

n
, (4)

where

y = − ln
[
− ln

(
1− 1

N

)]
;

N = mean recurrence interval (years) for peak wind in question;
V̂ N

3-sec estimated value of the N -year, peak 3-second wind;
SD

(
V̂ N

3-sec

)
= standard deviation in the estimate for the N -year 3-second wind;

V
N
3-sec = sample mean for 3-second peak winds measured;

σ3-sec = sample standard deviation for 3-second peak winds measured;
n = sample size in years.

We define an interval for peak wind speeds using Equations (3) and (4). Our target for
the design analysis is to set a 0.1% probability that the peak winds used to assign lateral
wind load magnitudes will be exceeded. As mentioned earlier, this equates to a 1,000 year
mean recurrence interval wind, or N = 1,000 years. The estimated value of the 1,000-year
wind and the standard deviation in the estimate based upon the 19-year sample size are
computed using equations (3) and (4):

V̂ N
3-sec = 105.29 mph, and SD

(
V̂ N

3-sec

)
= 11.450 mph. (5)

Using the values given in Equation (5), we can assign intervals for peak 3-second wind
speeds in a highly flexible manner. For example, assume that we wish to have two standard
deviations of confidence in the peak 3-second wind speed. The interval of wind speeds
corresponding to this is

82.39 ≤ V̂ N
3-sec ≤ 128.19 mph or V̂ N

3-sec = 105.29± 22.9 mph. (6)

This wind speed interval can be interpreted as follows. There is a 99.9% confidence that the
peak wind speed will be less than or equal to 105.29 mph. However, this estimate is based
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upon limited peak wind speed data. Therefore, the error in the estimate that bounds this
level of confidence in the expected peak wind has been defined as two standard deviations
above and below the estimate. Thus, one has two standard deviations of confidence that
the 1,000 year wind will not be exceeded. One can then say there is an acceptably low
probability of the wind speed exceeding 128.19 mph.

Building codes (ASCE, 2002) use peak wind speeds of known averaging time to convert
these speeds into design pressures for building structures. The expression to carry out this
conversion is based upon the classical work of Bernoulli (ASCE, 2002),

q = 0.00256 ·Kz ·Kzt ·Kd · V 2 · I . (7)

For the sake of simplicity, we assume
I = 1.0 (importance factor)
Kd = 0.85 (directionality factor)
Kzt = 1.0 (topographic effect factor)
Kz = 0.70 (height factor).

Using the peak wind speed interval of Equation (6), the corresponding interval for the peak
pressures computed using Equation (7) is

10.34 ≤ qpeak ≤ 25.03 psf or qpeak = 17.685± 7.345 psf.

If we assume a structural system layout that contains the portal frame shown in Figure 1,
we can compute an interval for the peak applied lateral loads at the top of the frame. If we
assume that the height of the frame is 12 feet and the lateral load resisting portal frames
are 50 feet apart, the peak lateral loads are expected to lie within

3,102 ≤ H ≤ 7,509 lbs or H = 5,305.5± 2,203.5 lbs.

2.2. Member Material and Cross-Sectional Properties

The loading is only one aspect to the uncertainty in structural engineering problems. Ma-
terial and cross-sectional properties for component members within the structure are also
subject to uncertainty. The portal frame shown in Figure 1 contains one beam member and
two column members.

The beam members are W18×35, with mean cross-sectional area and second moment of
area (AISC, 2001)

Ab = 10.3 in2 and Ib = 510 in4 .

(Cecen, 1974) and (Ravindra & Galambos, 1978) suggest statistical data for describing the
fabrication-related variation in Ab and Ib:

µF = 1.0 (mean)
VF = 0.05 (coefficient of variation),

which lead to
σF = 0.05 (standard deviation).
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Cross-sectional properties are assumed to follow a normal statistical distribution (Ravindra
& Galambos, 1978). Therefore, two standard deviations above and below the mean ensure
approximately 95% confidence that the parameters lie within the stated interval. Therefore,
mid-point and interval radii are

Ab = 10.3± 1.03 in2 and Ib = 510± 51 in4.

Columns are W10×49 members, with mean cross-section properties (AISC, 2001)

Ac = 14.4 in2 and Ic = 272 in4.

Using the same argument as that used for the beams above, intervals that consider uncer-
tainty in the cross-sectional properties of the column members are

Ac = 14.4± 1.44 in2 and Ic = 272± 27.2 in4.

Uncertainty in material properties (e.g., material modulus) are often described using a
normally distributed random variable (Ravindra & Galambos, 1978) with mean

E = 29,000,000 lb/in2.
(Cecen, 1974) and (Ravindra & Galambos, 1978) suggest the following statistical data for
describing the variation in E:

µF = 1.0 (mean), and
VF = 0.06 (coefficient of variation),

which lead to
σF = 0.06 (standard deviation).

Two standard deviations above and below the mean ensure approximately 95% confidence
that the true values of the parameters lie within the stated interval. Therefore, interval
mid-point and radius are

E = 29,000,000± 3,480,000 lb/in2.

2.3. Connections

The framework considered in Figure 1 also includes connections at the beam ends that are
assumed to be partially restrained. These connections will not force the 90 degree angle made
between beams and columns to remain 90 degrees after deformation of the frame laterally.
These are often modeled as nonlinear springs. However, for simplicity and demonstration
of concept, we assume the springs are linear.

Physical testing is used to determine the stiffness and strength characteristics of struc-
tural steel connections found in real structures. Unfortunately, there have been very few
studies undertaken to quantify the statistical variation in connection response. (Deierlein et
al., 1991) report examination of statistical parameters for a typical structural steel connec-
tion classified as partially-restrained. This connection is the top-and-seat angle connection
with web cleats (TSAW).
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Figure 2. Beam-line approach for linearizing connection stiffness.

Uncertainty in nonlinear response of the TSAW connections was found to be adequately
described using a normally distributed random variable (Deierlein et al., 1991). Linearization
of connection response for purposes of structural analysis is commonly accomplished using
the beam-line approach. The beam-line approach is schematically illustrated in Figure 2.
The approach is well documented, and details will not be presented here. We assume that
repeated loading and unloading of the connections results in shake-down to the linear
connection stiffness established using the beam-line.

The connection stiffness uncertainty used in the present study is generated using the
upper and lower-bound nonlinear connection curves for the TSAW connections discussed
in (Deierlein et al., 1991). These two curves (shown in Figure 2) constitute boundaries
for which there is 95% confidence that the expected connection behavior is captured. This
corresponds to plus or minus two standard deviations from the mean. The connection curves
are normalized with respect to the connection capacity, Mcn. For the present study, Mcn =
0.4Mpb, where Mpb is the plastic moment capacity of the connected beam.

Using the beam-line concept and the W18×35 beam member, the linear connection
stiffness magnitudes corresponding to the upper- and lower-bound connection curves are

αupper = 403,965 k · in/rad
αlower = 150,957 k · in/rad.

REC2004



8

The midpoint and radius for the connection stiffness 95% confidence interval are

α = 277,461± 126,504 k · in/rad .

For simplicity, we assume that the connection of the columns to the foundation is rigid,
although the present formulation can account for variability in connection response at the
foundation.

3. Frame Components

We model each component of the frame shown in Figure 1 in an object-oriented manner,
following the notation of (Hibbeler, 2002). We describe the structural components in an
object-oriented manner, foreshadowing both the mathematical analysis to follow and the
implementation in computer code.

3.1. Component: Member

Let ·N denote values at the near node and ·F denote values at the far node. We use rNẑ

instead of Hibbeler’s dNẑ to reserve dNẑ for 3-dimensional frames.

Near Farq
Nx

, d
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q
Fx

, d
Fx

q
Ny

, d
Ny

q
Fy

, d
Fy

m
Ny

, r
Ny

m
Fy

, r
Fy

y

x

Figure 3. Member local forces, moments, displacements, and rotations (after Hibbeler 2002).

Attributes (in local (̂·) or global coordinates):

− Displacements: dNx̂, dNŷ, dF x̂, dF ŷ (local) or dNx, dNy, dFx, dFy (global)

− Rotations: rNẑ, dF ẑ (local) or rNz, dFz (global)

− Forces: qNx̂, qNŷ, qF x̂, qF ŷ (local) or qNx, qNy, qFx, qFy (global)

− Moments: mNẑ, mF ẑ (local) or mNz, mFz (global)
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Properties: Frame-member stiffness equation:



AE
L 0 0 −AE

L 0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 −6EI

L2
2EI
L

−AE
L 0 0 AE

L 0 0

0 −12EI
L3

−6EI
L2 0 12EI

L3
−6EI

L2

0 6EI
L2

2EI
L 0 −6EI

L2
4EI
L







dNx̂

dNŷ

rNẑ

dF x̂

dF ŷ

rF ẑ




=




qNx̂

qNŷ

mNẑ

qF x̂

qF ŷ

mF ẑ




or κ(A,E, L,d−q) = k′d−q = 0. Typical values for frame parameters and applied loading
are (see §2):

Eb = Ec = 29,000,000± 3,480,000 lbs/in2 (12%)
Ib = 510± 51 in4; Ic = 272± 27.2 in4 (10%)
Ab = 10.3± 10.3 in2;Ac = 14.4± 1.44 in2 (10%) (8)
H = 5,305.5 ± 2,203.5 lbs (41.6%)
α = 277,461,000 ± 126,504,000 lb-in/rad (45.6%)
Lc = 144 in; Lb = 2Lc .

Local coordinates are transformed to global coordinates by transformation matrices. For
each member, let λx = cos θ and λy = cosφ, so that λ2

x + λ2
y = 1. Let

T =




λx λy 0 0 0 0
−λy λx 0 0 0 0
0 0 1 0 0 0
0 0 0 λx λy 0
0 0 0 −λy λx 0
0 0 0 0 0 1




.

Then TT T = T T T = Identity.

3.2. Component: End

An “End” is an end of a Member (or a Joint). The Ends define the topology of the struc-
ture. Our End corresponds somewhat to the usual notion of a Node, except that we use
“Connections” to join Members and Joints.

Attributes (in global coordinates):

− Displacements: dx, dy

− Rotations: rz

− Forces: qx, qy, qEx, qEy
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− Moments: mz, mEz,

where ·E denotes externally applied forces and moments.

Properties:

− Can be incident with two or more Members and Joints
− Displacements dx, dy, and rz are equal for all Members and Joints incident on an End
− Forces qEx + qx, qEy + qy, and moments mEz + mz each sum to zero for all Members

and Joints incident on an End

3.3. Component: Joint

Attributes (in local or global coordinates):

− Displacements: dNx̂, dNŷ, dF x̂, dF ŷ

− Rotations: rNẑ, dF ẑ

− Forces: qNx̂, qNŷ, qF x̂, qF ŷ

− Moments: mNẑ, mF ẑ

Properties:

− Length = 0
− Joins one Member to another
− Global displacements dx are equal for incident End and Member
− Global displacements dy are equal for incident End and Member
− Global forces qx are equal for incident End and Member
− Global forces qy are equal for incident End and Member
− Local rotations and moments satisfy

[
α −α

−α α

] [
rNẑ

rF ẑ

]
=

[
mNẑ

mF ẑ

]

4. Assembly

Following the usual practice (e.g., (Hibbeler, 2002)), we assemble a linear system correspond-
ing to the structure in Figure 4, identifying equal displacements and summing appropriate
forces, to ensure that both equilibrium and compatibility of displacements are satisfied.
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Columns 1 – 5:



12EcIc
L3

c
+ AbEb

Lb
0 6EcIc

L2
c

0 0

0 AcEc
Lc

+ 12EbIb

L3
b

0 6EbIb

L2
b

6EbIb

L2
b

6EcIc
L2

c
0 4EcIc

Lc
+ α −α 0

0 6EbIb

L2
b

−α 4EbIb
Lb

+ α 2EbIb
Lb

0 6EbIb

L2
b

0 2EbIb
Lb

4EcIc
Lc

+ α

−AbEb
Lb

0 0 0 0

0 −12EbIb

L3
b

0 −6EbIb

L2
b

−6EbIb

L2
b

0 0 0 0 −α

Columns 6 – 8:

−AbEb
Lb

0 0

0 −12EbIb

L3
b

0

0 0 0

0 −6EbIb

L2
b

0

0 −6EbIb

L2
b

−α

AbEb
Lb

+ 12EcIc
L3

c
0 6EcIc

L2
c

0 12EbIb

L3
b

+ AcEc
Lc

−6EbIb

L2
b

6EcIc
L2

c
−6EbIb

L2
b

4EcIc
Lc

+ α







d2x

d2y

r2z

r5z

r6z

d3x

d3y

r3z




=




H

0

0

0

0

0

0

0




(9)

The global stiffness matrix K given by Equation (9) has condition number cond(K) =
4.7e+04. Solving using mid-point values of parameters given in Equation (8) yields

Displacement dx Displacement dy Rotation rz

Connection 2 0.15356843 0.00033236 -0.00096285
Connection 3 0.15102784 -0.00033236 -0.00094313
Connection 5 -0.00045995
Connection 6 -0.00044556

Force qx Force qy Moment mz

Connection 1 -2670.516 -963.856 245019.992
Connection 4 -2634.984 963.856 241381.602

The ranges given in Equation (8) for the parameters in this system suggest using interval
arithmetic (Moore, 1966; Moore, 1979; Neumaier, 1990). Interval arithmetic computes with
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Connection 1

Connection 2 Connection 3

Connection 4

Connection 5 Connection 6
d2

x

d2
y

r2
z

r5
z

r6
z

d3
x

d3
y r3

z

q1
x

q1
y

m1
z

q4
x

q4
ym4

z

Figure 4. Element-by-element assembly.

guaranteed lower and upper bounds. It accounts for uncertain parameters and roundoff
errors in computation. Our problem has uncertain parameters, and the condition number of
4.7e+04 for even such a simple frame suggests that roundoff is a potential concern, especially
as we scale to larger structures.

In interval arithmetic, operations are defined set-wise. That is, if [a] = [a, a] and [b] = [b, b]
are intervals,

[a] + [b] = {a + b : a ∈ [a], b ∈ [b]} = [a + b, a + b].

In a practical implementation, the additions of the endpoints are done using IEEE outwardly
directed rounding. Other operations and elementary functions are defined similarly.

Initially, we use intervals of uncertainty 1% of those given in Equation (8). For example,
instead of using H = 5,305.5± 2,203.5 lbs, we use 5,305.5± 22.035 lbs. We form the global
stiffness matrix K given by Equation (9) using interval values of the parameters and solve.

Table I gives the naive interval solution of the one-bay frame problem. The column
“Float” contains the floating point solutions to the system whose coefficients are given by the
midpoints of the parameter intervals. The column “Interval” contains the solution computed
by an interval linear equation solver applied to Equation (9) with interval coefficients. The
column “Midpoint ± Radius” contains the same intervals as the column “Interval,” except
that they are expressed in a midpoint ± radius form, rather than an endpoint form.

The “Interval” solutions contain the true values, but narrower enclosures are better
than wide ones. Naive interval computations, as we have done here, are prone to over-
estimation. For the rows labeled “Tight:,” we solved the 210 extremal individual problems
formed by taking lower and upper bounds of the intervals for each of the 10 parameters
in this system. Since the system is linear, the solution to any combination of parameter
values taken from the respective intervals must lie in the convex hull of the solutions to the
extremal problems. This is not simulation since parameter values are chosen not at random
but as extremal values. The column “Relative overestimation” is the width of the “Interval”
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Table I. Naive interval solution of the one-bay frame problem.

Disp. Float Interval Midpoint ± Radius
True range Rel. overest.

d2x 0.153568 [ 0.09375783, 0.21337873 ] 0.1535683 ± 0.05981
Tight: [ 0.15237484, 0.15476814 ] 76.34%

d2ye+3 0.332364 [ 0.19060424, 0.47412283 ] 0.3323635 ± 0.1418
Tight: [ 0.32940418, 0.33533906 ] 83.52%

r2ze+3 -0.962852 [ -1.3531968, -0.57250484 ] -0.9628508 ± 0.3903
Tight: [ -0.97085151, -0.95490139 ] 79.42%

r5ze+3 -0.459955 [ -0.6557609, -0.26414725 ] -0.4599541 ± 0.1958
Tight: [ -0.4638112, -0.45611532 ] 83.47%

r6ze+3 -0.445563 [ -0.64100045, -0.2501251 ] -0.4455628 ± 0.1954
Tight: [ -0.44930811, -0.4418354 ] 86.05%

d3x 0.151028 [ 0.091230936, 0.21082444 ] 0.1510277 ± 0.0598
Tight: [ 0.14985048, 0.15221127 ] 77.62%

d3ye+3 -0.332364 [ -0.47412283, -0.19060424 ] -0.3323635 ± 0.1418
Tight: [ -0.33533906, -0.32940418 ] 83.52%

r3ze+3 -0.943133 [ -1.3330326, -0.55323186 ] -0.9431322 ± 0.3899
Tight: [ -0.95100335, -0.93531196 ] 81.02%

solution not contained in the “Tight” solution, scaled by the “Float” solution, and expressed
as a percentage. Given that intervals are guaranteed to enclose the true answers, the goal
is to compute enclosures with as little over-estimation as possible.

We observe

− “Interval” solutions contain the approximate “Float” solutions and the “Tight” solu-
tions, illustrating the claim of enclosure.

− “Interval” solutions are hopelessly pessimistic. The relative over-estimations are too
large to have practical utility.

− We used parameter uncertainties of 1% of the intervals given in Equation (8). If we use
4%, the interval linear solver fails because the global stiffness matrix includes matrices
that are singular since we have perturbed by 4% elements of a matrix with condition
4.7e+04.

− In the Matlab environment we used, the “Interval” solution takes 1,200 times the CPU
time for the approximate solution. That CPU cost should be compared with the CPU
cost of 400,000 simulation runs, which do not provide the reliability of the interval
results.

Rather than conclude interval arithmetic is not practical, we conclude that we must be more
clever in its application. The rest of this paper leads us through a sequence of increasingly
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sophisticated formulations until we are able to solve a system equivalent to Equation (9)
with parameter uncertainties 1.5 times the widths of the intervals given in Equation 8.

5. Element-by-Element

The excessive overestimation in Table I comes from the “dependency problem” common in
evaluation of expressions in interval arithmetic. For example, if we take [x] = [−1, 2], Table II
shows that even for some simple expressions, mathematically equivalent expressions do not
give the same interval results because the set-wise definition of interval operations does not
recognize that the same interval appearing in different contexts must be the same value. The
interval operator − cannot distinguish [x]− [x], which equals 0, from [x]− [y] with [x] = [y],
which does not. In general, expressions in which each variable appears only once (Single
Use Expression, SUE) are evaluated with no over-estimation. In naive Gaussian elimination
with back substitution applied to a system of order n, the coefficient K1,1 appears in the
symbolic expression for d1x a total of O(n2) times, hardly a Single Use Expression.

Table II. Overestimation from dependencies in ex-
pressions with [x] = [−1, 2].

x− x [-3, 3] vs. 0 [0, 0]

x ∗ x [-2, 4] vs. x2 [0, 4]

(Mullen & Muhanna, 1999) suggested an element-by-element approach for structural
engineering trusses. Instead of a finite element formulation, they introduced extra variables
and added extra equations to the system to reduce the interval dependencies. We apply the
Mullen-Muhanna element-by-element approach to frames. The difference is in the way we
assemble the global stiffness matrix. From an object-oriented perspective, “End” becomes
an inherent attribute of the Member and Joint classes. Each Member and Joint in the
structure becomes its own block in the global stiffness matrix, with both displacements and
forces at each end as unknowns. “Node” becomes a new Connector class, adding rows to
the global stiffness matrix rows expressing that adjacent ends have identical displacements
and rotations and that forces and moments at each connection sum to zero.

Joint J1 global stiffness matrix:

d3x − d4x = 0; d3y − d4y = 0
αr3z − αr4z −m3z = 0
q3x + q4x = 0; q3y + q4y = 0
−αr3z + αr4z −m4z = 0 .
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Member M1 global stiffness matrix:



12EcIc

L3
c

0 − 6EcIc

L2
c

− 12EcIc

L3
c

0 − 6EcIc

L2
c

0 AcEc

Lc
0 0 −AcEc

Lc
0

− 6EcIc

L2
c

0 4EcIc

Lc

6EcIc

L2
c

0 2EcIc

Lc

− 12EcIc

L3
c

0 6EcIc

L2
c

12EcIc

L3
c

0 6EcIc

L2
c

0 −AcEc

Lc
0 0 AcEc

Lc
0

− 6EcIc

L2
c

0 2EcIc

Lc

6EcIc

L2
c

0 4EcIc

Lc







d1x

d1y

r1z

d2x

d2y

r2z




−




q1x

q1y

m1z

q2x

q2y

m2z




= 0 .

Members M2 and M3 and Joint J2 are handled similarly.
Connector C2 (we’ll see C1 later) connecting Member M1 with Joint J1 requires equality

of incident displacements:

[d2x, d2y, r2z]T − [d3x, d3y, r3z]T = 0 ,

and that incident forces sum to zero:

q2x + q3x = H; q2y + q3y = 0; m2z + m3y = 0 .

This is the first non-zero right hand side so far. Connector C3 connecting Joint J1 with
Member M2 requires equality of incident displacements and that incident forces sum to
zero:

[d4x, d4y, r4z]T − [d5x, d5y, r5z]T = 0

[q4x + q5x, q4y + q5y,m2z + m3y]T = 0 .

Connectors C4 and C5 are handled similarly. Connector C1 fixes Member M1 to the ground,
and connector C6 fixes Member M3:

[d1x, d1y, r1z]T = 0; [d10x, d10y, r10z]T = 0 .

For simplicity of exposition, we retain the last two sets of equations corresponding to
displacements and rotations known to be zero. The solution of the element-by-element global
stiffness system using intervals of uncertainty 1% of those given in Equation (8) in interval
arithmetic is shown in Table III. The condition number is 1.2e+17. This condition number
leads one to suspect that, in exact arithmetic, the matrix may be exactly singular.

With such a large condition number, it is surprising that we get essentially the same
answers as before, but it is disappointing that the interval radii are not significantly smaller
than for the naive interval solution shown in Table I. However, there are many common
terms in many of the matrix coefficients. For example, see the global stiffness matrix for
Member M1. We can factor them out and take advantage of subdistributivity.
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Table III. Interval solution the Mullen-Muhanna element-by-element approach.

Disp. Float Interval Midpoint ± Radius
True range Rel. overest.

d2x 0.153568 [ 0.09246203, 0.21467453 ] 0.1535683 ± 0.06111
Tight: [ 0.15237484, 0.15476814 ] 78.02%

d2ye+3 0.332364 [ 0.18751797, 0.4772091 ] 0.3323635 ± 0.1448
Tight: [ 0.32940418, 0.33533906 ] 85.38%

r2ze+3 -0.962852 [ -1.361667, -0.56403468 ] -0.9628508 ± 0.3988
Tight: [ -0.97085151, -0.95490139 ] 81.18%

r5ze+3 -0.459955 [ -0.66002154, -0.25988661 ] -0.4599541 ± 0.2001
Tight: [ -0.4638112, -0.45611532 ] 85.32%

6. Subdistributivity

In interval arithmetic, we have

a(b + c) ⊆ ab + ac (subdistributivity).

For example, [−1, 2]∗([4, 5]+[−3,−2]) = [−3, 6] ⊆ [−1, 2]∗[4, 5]+[−1, 2]∗[−3,−2]. Hence, to
get tighter enclosures, we want to extract common factors whenever possible, as suggested
by (Mullen & Muhanna, 1999) for trusses.

For example, consider equations 9 and 12 from the Joint J1 stiffness matrix and equations
21 and 24 from the Joint J2 stiffness matrix. Let d61 := r3z − r4z and d62 := r7z − r8z.
Then

Eq. 9 & 21: αd61 −m3z = 0; αd62 −m7z = 0
Eq. 12: αd61 + m4z = 0 or m3z + m4z = 0
Eq. 24: αd62 + m8z = 0 or m7z + m8z = 0
Eq. 61 & 62: r3z − r4z − d61 = 0; r7z − r8z − d62 = 0 .

Next, consider the Member M1 global stiffness matrix:



12EcIc
L3

c
0 −6EcIc

L2
c

−12EcIc
L3

c
0 −6EcIc

L2
c

0 AcEc
Lc

0 0 −AcEc
Lc

0

−6EcIc
L2

c
0 4EcIc

Lc

6EcIc
L2

c
0 2EcIc

Lc

−12EcIc
L3

c
0 6EcIc

L2
c

12EcIc
L3

c
0 6EcIc

L2
c

0 −AcEc
Lc

0 0 AcEc
Lc

0

−6EcIc
L2

c
0 2EcIc

Lc

6EcIc
L2

c
0 4EcIc

Lc







d1x

d1y

r1z

d2x

d2y

r2z




−




q1x

q1y

m1z

q2x

q2y

m2z




= 0 .
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Let
d63 := AcEc

Lc
(d1y − d2y) d65 := 2EcIc

Lc
(r1z + r2z)

d64 := 6EcIc
L2

c
(d1x − d2x) d66 := 2EcIc

Lc
r1z ,

which leads to a considerably simpler system

Eq. 1 :
2
Lc

d64 − 3
Lc

d65 − q1x = 0

Eq. 2 : d63 − q1y = 0
Eq. 3 : − d64 + d65 + d66 −m1z = 0
Eq. 4 & 5 : q1x + q2x = 0; q1y + q2y = 0
Eq. 6 : − d64 + 2d65 − d66 −m2z = 0

Eq. 63: d1y − d2y − Lc

AcEc
d63 = 0

Eq. 64: d1x − d2x − L2
c

6EcIc
d64 = 0

Eq. 65: r1z + r2z − Lc

2EcIc
d65 = 0

Eq. 66: r1z − Lc

2EcIc
d66 = 0 .

The global stiffness matrices for Members M2 and M3 are handled similarly. The solution
of the element-by-element global stiffness system using intervals of uncertainty 1% of those
given in Equation (8) in interval arithmetic is shown in Table IV. Cond(K) = 1.2e+17.

Table IV. Interval solution the Mullen-Muhanna element-by-element approach.

Disp. Float Interval Midpoint ± Radius
True range Rel. overest.

d2x 0.153568 [ 0.15206288, 0.15507492 ] 0.1535689 ± 0.001506
Tight: [ 0.15237484, 0.15476814 ] 0.40%

d2ye+3 0.332364 [ 0.32918317, 0.33554758 ] 0.3323654 ± 0.003182
Tight: [ 0.32940418, 0.33533906 ] 0.13%

r2ze+3 -0.962852 [ -0.97485786, -0.95084958 ] -0.9628537 ± 0.012
Tight: [ -0.97085151, -0.95490139 ] 0.84%

r5ze+3 -0.459955 [ -0.46757208, -0.45234116 ] -0.4599566 ± 0.007615
Tight: [ -0.4638112, -0.45611532 ] 1.63%

These results in Table IV are about two orders of magnitude tighter than the interval
element-by-element method shown in Table III. Further, we can solve the system with
relative uncertainty 1.5 times the intervals of uncertainty given in Equation (8), compared
with 0.01 before. That allows us to handle practical engineering tolerances.
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So far, we have replicated the work of Mullen and Muhanna, except applied to frames
instead of trusses. Their work speaks of factoring the stiffness equations, although they
might not have done so in exactly the same way we have done it. To further reduce interval
over-estimation, we try scaling the equations and applying constraint propagation.

7. Scaling

In traditional numerical analysis, seeing solution components varying over eight orders of
magnitude and a condition number of 1.2e+17 is a warning sign. Let’s try scaling variables
to have similar magnitudes.

It appears that scaling all forces by the input force H = 5305.5 would be good. We
cannot do that by simply replacing H = 5305.5 by H = 1 because H appears only on the
right hand side, so that replacement would have no effect on cond(K).

In the right hand side, we can replace the interval [H] by its midpoint H̃ and then
multiply the solution by [H]/H̃ = [1−δ, 1+δ]. That replaces one of the interval parameters
by a degenerate interval in the computation of the solution. The result is a very slight
further reduction in the uncertainties of the solution.

Next, in each equation, we replace each variable force (q1x, . . .) by force/H̃. Each of
the intermediate variables d61, . . ., d74 introduced in the Subdistributivity section are of
the same order as forces, so we scale them by H̃, too. Hence in the global stiffness matrix,
each coefficient of a force or a newly introduced intermediate variable is multiplied by H̃,
unless all of the terms of that equation are in the scaled set. That reduces cond(K) from
about 1.7e+17 to 2.8e+08 and yields a further reduction in the widths the Mullen-Muhanna
results of Table IV, as shown in Table V.

Table V. Interval solution using scaled element-by-element approach with
parameter uncertainties 1% of those in Equation (8).

Disp. Float Interval Midpoint ± Radius

True range Rel. overest.

d2x 0.153568 [ 0.15294597, 0.15419182 ] 0.1535689 ± 0.0006229

Tight: [ 0.1531698, 0.15396904 ] 0.29%

d2ye+3 0.332364 [ 0.33111682, 0.33361393 ] 0.3323654 ± 0.001249

Tight: [ 0.3311227, 0.33360764 ] 0.004%

r2ze+3 -0.962852 [ -0.96945816, -0.95624927 ] -0.9628537 ± 0.006604

Tight: [ -0.96583881, -0.95988319 ] 0.75%

r5ze+3 -0.459955 [ -0.46515166, -0.45476159 ] -0.4599566 ± 0.005195

Tight: [ -0.46141645, -0.45849491 ] 1.62%

Table VI shows the solution to the same system as Table V, except that we use the
practical parameter uncertainties given in Equation (8). If we multiply the uncertainties
given in Equation (8) by 1.7, we get solution enclosures shown in Table VII. In either case,

REC2004



19

we can compute bounds, but bounds are quite over-estimated, and they include values of
the wrong sign, an observation which leads us to consider constraint propagation.

Table VI. Interval solution using scaled element-by-element approach with
parameter uncertainties from Equation (8).

Disp. Float Interval Midpoint ± Radius

True range Rel. overest.

d2x 0.153568 [ 0.022924888, 0.29366922 ] 0.1582971 ± 0.1354

Tight: [ 0.12130751, 0.20804041 ] 119.8%

d2ye+3 0.332364 [ 0.11407836, 0.57891094 ] 0.3464947 ± 0.2324

Tight: [ 0.21526742, 0.47234932 ] 62.51%

r2ze+3 -0.962852 [ -2.5286276, 0.55857565 ] -0.985026 ± 1.544

Tight: [ -1.4124783, -0.73502904 ] 250.3%

r5ze+3 -0.459955 [ -1.7359689, 0.77691797 ] -0.4795255 ± 1.256

Tight: [ -0.6216869, -0.3157181 ] 479.8%

Table VII. Interval solution using scaled element-by-element approach with
parameter uncertainties 1.7 times of those in Equation (8).

Disp. Float Interval Midpoint ± Radius

True range Rel. overest.

d2x 0.153568 [ -2.4422952, 2.7778163 ] 0.1677605 ± 2.61

Tight: [ 0.10506254, 0.29253671 ] 3277%

d2ye+3 0.332364 [ -3.726848, 4.4766635 ] 0.3749077 ± 4.102

Tight: [ 0.12406102, 0.59793831 ] 2326%

r2ze+3 -0.962852 [ -33.038469, 30.980172 ] -1.029148 ± 32.01

Tight: [ -2.2934663, -0.62850325 ] 6476%

r5ze+3 -0.459955 [ -27.257812, 26.220056 ] -0.5188781 ± 26.74

Tight: [ -0.76558971, -0.18556419 ] 11500%

CPU times for the 58×58 interval solution shown in Tables V - VII are about 2,000 times
the CPU time required to solve the approximate 8×8 system of Equation (9) with midpoint
values of the parameters. The figure of 2,000 times can reasonably be compared with the
nearly 400,000 simulation runs to achieve even comparable confidence intervals. Nonetheless,
the cost of the interval computation is at least partially due to the Matlab programming
environment in which these experiments were performed. Direct coding with a language
with an interval datatype, even if that datatype is implemented with operator overloading,
probably would result in an order-of-magnitude speedup of the interval computations. These
results also point to a need for a quality suite of interval sparse matrix routines.
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8. Constraint Propagation

The solution enclosures in Tables VI and VII show large uncertainty, and they include
non-physical values, e.g., compression rather than tension. The stiffness matrix is close to
singular. Constraint propagation can help, because we can always intersect with physically
known constraints.

Constraint propagation originated in the field of logic programming. (Van Hentenryck et
al., 1997) is an excellent explanation of constraint propagation in an interval context. The
idea is best illustrated by an example. Suppose we seek roots in [−4, 4] of f(x) = x2+x−5 =
0. Solve for the linear occurrence of x, x = 5 − x2. On the right, substitute x = [−4, 4]:
x = 5 − [−4, 4]2 = 5 − [0, 16] = [−11, 5]. That is, if a root x∗ of x2 + x − 5 = 0 lies in the
interval [−4, 4], then it must also lie in the interval [−11, 5], not an especially helpful result.

Next, solve for the quadratic occurrence of x, x = ±√5− x. On the right, substitute
x = [−4, 4]: x = ±√

5− [−4, 4] = ±√
[1, 9] = [−3,−1] ∪ [1, 3]. That is, if a root x∗ of

x2 + x − 5 = 0 lies in the interval [−4, 4], then it must also lie in the interval [−3,−1] or
the interval [1, 3]. Further iteration of x =

√
5− x from x = [1, 3] yields

x = [1.41421356237309, 2.00000000000000]
[1.73205080756887, 1.89361728911280]
[1.76249332222485, 1.80774699347866]
[1.78668771936265, 1.79930727719730]
[1.78904799343189, 1.79257141577047]
[1.79092953078269, 1.79191294614669] ,

which is converging to the root x∗ = 1.79128784747792.
Constraint propagation can be viewed as discarding candidate solutions that are infea-

sible with respect to already known information. It is Gauss-Seidel iteration, except that
we solve each equation for each variable. Constraint propagation is especially attractive for
sparse systems, such as ours.

To describe a generic constraint propagation algorithm for a linear system Ax = b, we
denote the set of unknowns by x = (xi) and use Ajx = bj , for a single equation.

Loop until converged
Loop for each j

In principle, consider equation j: Ajx = bj

For each variable xi which appears in Ajx = bj , “solve” for xi

Let [xi] := [xi]
⋂

expression for xi evaluated with [x]
If the intersection is empty, there is no solution. STOP

If any intersection is smaller, the solution is converging

There are various strategies for choosing the order of iteration of equations and variables
and many implementation details, which we ignore here.

Using the the practical parameter uncertainties given in Equation (8) and starting with
the solution enclosures shown in Table VI, we get the results shown in Table VIII. Constraint
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propagation tightened the enclosure of d2y, but did not improve significantly on the quality
of the interval solution.

Table VIII. Constraint propagation starting with solutions from Table VI.

Disp. Float Interval Midpoint ± Radius

True range Rel. overest.

d2x 0.153568 [ 0.022924888, 0.29366922 ] 0.1582971 ± 0.1354

Tight: [ 0.12130751, 0.20804041 ] 119.8%

d2ye+3 0.332364 [ 0.17032525, 0.57868876 ] 0.374507 ± 0.2042

Tight: [ 0.21526742, 0.47234932 ] 45.52%

r2ze+3 -0.962852 [ -2.5286276, 0.55857565 ] -0.985026 ± 1.544

Tight: [ -1.4124783, -0.73502904 ] 250.3%

r5ze+3 -0.459955 [ -1.7359689, 0.77691797 ] -0.4795255 ± 1.256

Tight: [ -0.6216869, -0.3157181 ] 479.8%

Starting with [0.5, 1.5] times the approximate solution using midpoint values, using no
interval system solver, and five iterations of constraint propagation, we get the results
shown in Table IX. We achieve relative over-estimations that are comparable to the relative
uncertainties in the parameters, in spite of a condition number of 2.8e+08.

Table IX. Constraint propagation starting with [0.6, 1.4] times the approxi-
mate solution using midpoint values.

Disp. Float Interval Midpoint ± Radius

True range Rel. overest.

d2x 0.153568 [ 0.076784216, 0.23035265 ] 0.1535684 ± 0.07678

Tight: [ 0.12130751, 0.20804041 ] 43.52%

d2ye+3 0.332364 [ 0.166182, 0.49854599 ] 0.332364 ± 0.1662

Tight: [ 0.21526742, 0.47234932 ] 22.65%

r2ze+3 -0.962852 [ -1.4442773, -0.48142577 ] -0.9628515 ± 0.4814

Tight: [ -1.4124783, -0.73502904 ] 29.64%

r5ze+3 -0.459955 [ -0.68993206, -0.22997735 ] -0.4599547 ± 0.23

Tight: [ -0.6216869, -0.3157181 ] 33.48%

9. Conclusions and Future Directions

To the structural engineering community, along with the work of (Mullen & Muhanna,
1999) and (Muhanna & Mullen, 2001), we have demonstrated the feasibility of interval
techniques. One set of interval computations can guarantee to enclose the displacements,
rotations, forces, and moments that could be observed from any combination of values of
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cross-sectional properties, loading, material properties, and connections, even for quite large
uncertainties. In subsequent work, we will extend these techniques to non-linear behaviors
and to larger structures.

To the interval community, we have demonstrated a variety of techniques to achieve
relatively tight enclosures of the solution to a realistic (although small) problem, even in
the face of parameter uncertainties over 40%. We used an element-by-element approach,
which adds equations specifying that two variables are the same, rather than simplifying by
identifying them with the same variable. We used symbolic rearrangement, scaling of the
equations, and constraint propagation. In subsequent work, to handle larger systems, we will
explore sparsity-preserving preconditioning, more effective and efficient constraint propaga-
tion, and branch-and-bound-like strategies for subdividing the ranges of wide interval-valued
parameters.
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