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Abstract.  To address the need for efficient and unbiased experimental testing of methods for 
decision under uncertainty, we devise an approach for probing weaknesses of these methods by 
running numerical experiments on readily available or easily obtainable databases of real life 
data. Since the approach uses real life data, it allows us to study the effect of modeling error on 
the performance of a method.  For illustration, we apply probabilistic and possibilistic approaches 
to a database of results of a domino tower competition. The experiments yielded several surpris-
ing results. First, even though a probabilistic metric of success was used, there was no significant 
difference between the rates of success of the probabilistic and possibilistic models. Second, the 
common practice of inflating uncertainty when there is little data about the uncertain variables 
shifted the decision differently for the probabilistic and possibilistic models, with the latter being 
counter-intuitive. Finally, inflation of uncertainty proved detrimental even when very little data 
was available.  
 

1. Introduction 
 
Engineering design decisions commonly involve mathematical models, such as models for calcu-
lation of stresses in structural design, to help decision makers predict the outcomes of alternative 
courses of action.  Errors in models are usually investigated experimentally, such as in aircraft 
certification tests, and occasionally such tests reveal weaknesses in the underlying models.  An 
example of such weakness is sensitivity of failure loads to inevitable small imperfections in geo-
metric shape. 

Uncertainty affects the ability of a decision maker to make good decisions.  Increasingly, un-
certainty is taken into account in design decisions using models, such as probability distributions. 
Again, design decisions that are sensitive to errors in models of uncertainty may look good on 
paper but may be very poor in reality. However, there has been little work on using experiments 
to probe for such sensitivity or other weaknesses in methods or practices for building models of 
uncertainty. 

Examples include the Dartboard Contest, conducted by The Wall Street Journal (WSJ), (see 
Greene and Smart, 1999), which compared active and passive investing. In the contest, experts 
(analysts or fund managers) competed with the WSJ staff, which selected stocks by throwing 
darts at a printout of the WSJ stock tables.  WSJ reported that experts won 61 percent of 140 con-
tests.  Baer and Gensler (2002) re-analyzed the study, accounting for additional factors including 
dividends and risk (experts favored high-risk stocks).  With these factors included, passive invest-
ing (throwing darts) turned out to be as good as active investing.    

Walley (1991, pp. 632-638) conducted an experiment using data from the 1982 Soccer World 
Cup to compare Bayesian and imprecise (upper and lower) probabilities in making decisions 
about gambles on games.  Of 17 participants, those who used upper and lower probabilities did 
better than one participant who used Bayesian probability.  Participants whose probabilities of the 
three outcomes (win, lose, tie) of each game were uniform did better than those participants 
whose probabilities were far apart.   
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Winkler (1971) and de Finetti (1972) performed experiments to investigate how people assess 
precise probabilities.  Like Walley, Winkler observed that more uniform probabilities tend to im-
prove the degree of success. Walley's and Winkler's studies suggest that if one has low confi-
dence in the probabilities of the outcomes of an uncertain event, one should select a probability 
distribution with large variance, and consequently large Shannon's entropy. This is consistent 
with the practice of using the maximum entropy principle (Kapur and Kevasan, 1992) to model 
uncertainty.    

Unlike the game and investing examples, it is difficult to carry certification tests for engineer-
ing design decisions to probe models of uncertainty, because products are usually designed for 
low probabilities of failure, and many thousands of tests may be required to reveal weaknesses. 
Occasionally, disastrous failures reveal inadequacy of probability of failure estimates, as hap-
pened with the space shuttle. Instead of waiting for disasters, we can also use ingenuity to test 
methods for making decisions under uncertainty. This involves inventing decision problems for 
data already available in existing databases.  

Gigerenzer and Todd (2000, pp. 97-118) pioneered this approach, pitting a complex decision-
making method against a simpler, heuristic one. If the simpler method wins or draws, it reveals 
possible weakness in the more complex method. They used 20 existing available databases to 
compare methods for making binary decisions (e.g., find which of two professors has a higher 
salary, given cues such as each professor’s rank and gender).  They found that a heuristic method 
that takes into account only a single dominant cue bested the standard (and more complex) re-
gression approach that takes all the cues into account.  

We generalize Gigerenzer’s testing procedure to compare methods for making decisions un-
der uncertainty that require choice of optimum values of design (decision) variables.  We have 
two objectives. First, we want to demonstrate that it is easy to take a database and invent scenar-
ios calling for a decision (in short, decision scenarios) that lead to meaningful tests of the effec-
tiveness of decision-making methods. Our testing procedure allows us to study the effect of mod-
eling error because it uses real life data.  Second, we wish to demonstrate with a simple example 
that such tests can raise concerns about aspects of methods that may not be readily apparent by 
examining the theoretical foundations of the methods.  

As an example, we use a database (Table 1) of experiments in which one of us (Rosca), as 
well as a group of students engaged in a competition (Rosca, 2001), stacked domino blocks until 
they toppled (Fig. 1).  We invent a decision scenario for a decision maker to guarantee a height 
for a domino tower that she will build so as to best a competitor by selecting a guaranteed height 
that is both attainable and competitive (it is unlikely that Competitor’s tower will be taller by a 
given margin).  This scenario is similar to a class of decision problems where a decision maker 
guarantees a performance level, and wins if she delivers it and the competitor fails to do so.  This 
example allows us to compare the use of probability and possibility for making decisions.   

Section 2 presents the approach for probing such methods for design under uncertainty using 
existing data.  Sections 3-4 present the example with the domino towers, the results, and the les-
sons learned.  Section 5 summarizes the conclusions of the study. 

 
2. Testing approach 

 
Figure 2 is an influence diagram of a decision with imperfect information. Elements of the deci-
sion are a decision maker(s), alternative courses of action (in short, actions), uncertain event(s) 
and their outcomes, consequences of actions and information about the likelihood of the outcomes 
of the uncertain events. The consequence of an action depends on the outcomes of the uncertain 
events.  The decision maker wants to select the action with the most desirable consequence. The 
decision maker has imperfect information about the likelihood (e.g., the probabilities) of the pos-
sible outcomes of the uncertain events.  In this paper, we consider uncertain events whose out-
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comes are characterized by variables (e.g., the uncertain collapse height of a tower of domino 
blocks is a variable).   

Our approach for testing methods for decision making under uncertainty is to select a data-
base with samples of some variables, construct a decision scenario in which these variables repre-
sent the uncertainties that the decision maker faces, make repeated decisions and evaluate the 
consequences of these decisions using the database. The four steps of the testing approach are 
explained in detail in the following (Fig.3).  Note that the variables in the data base do not have to 
be random; rather, the decision maker is uncertain about the values that they assume.  

 
Table 1. Domino competition database: maximum built height (in domino units) 
 

Number of towers 
of given height 

Number of towers 
of given height 

Number of towers 
of given height 

Height 

Ro-
sca 

Competi-
tors 

Height

Ro-
sca 

Competi-
tors 

Height

Ro-
sca 

Competi-
tors 

20 1 0 32 3 7 44 0 1
21 1 0 33 4 7 45 2 2
22 0 1 34 4 4 46 2 4
23 2 0 35 1 7 47 0 3
24 0 0 36 3 3 48 0 0
25 2 1 37 5 9 49 0 0
26 1 0 38 1 2 50 0 0
27 1 9 39 2 3 51 0 0
28 3 2 40 2 1 52 0 0
29 3 4 41 1 3 53 0 0
30 3 6 42 0 2 54 0 0
31 3 5 43 0 3 55 0 1
 
Step A.  Select a database.  We can start with almost any database with samples of a reason-

able size (e.g., greater than or equal to 30).   
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Figure 2. Decision under uncertainty.  Arrows show relationships between 

the elements of a decision. 
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Figure 1:  Domino towers in a competition 
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Evaluate payoff of decision 
using entire database 

Finished all replica-
tions?

Step D: Calculate probability 
of success or expected utility 
and draw conclusions 

Model uncertainties using the fitting 
subset and make a decision 

Step A: Find a database with 
samples of variables 

Step B: Create a decision scenario 
in which the variables in step A 

represent uncertain events  
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NO
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Figure 3:  Approach for testing a method for decision under uncertainty 
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In the example of Table 1, the database contains heights of domino towers (just before they 

toppled) built by one of the authors (Rosca) in 50 trials and by 16 competitors in 90 trials (Fig. 1). 
The maximum height of a stable tower built by stacking domino blocks until the tower topples 
will be called maximum built height in this paper.  This data gives us some statistical information 
(summarized in the histograms of Figure 4) on the height of the domino towers that Rosca and the 
Competitor can build.   

 
Step B.  Create a decision scenario given the variables in the database selected in step A.  

This is an unusual way to construct a decision scenario; instead of identifying the uncertainties in 
a given decision scenario, we invent a decision in which the variables in the database represent 
the uncertainties.  A decision scenario is defined in terms of the following:  

 
• the decision maker(s)  
• the decision maker’s objective 
• the alternative courses of action (or choices)  
• the possible consequences of an action  
• the variables that affect the consequences of an action  
• an algorithm for determining the consequence of an action given the values of the 

variables 
• the information available for modeling the uncertainty associated with the vari-

ables. 
 

For the domino-tower competition, the decision scenario we created is for Rosca (decision 
maker) to compete with a randomly chosen competitor (called Competitor) and guarantee a 
minimum height that she would build. Rosca loses if she did not meet her guarantee even if her 
tower was taller than that of Competitor’s. To compensate for this disadvantage of Rosca, the 
rules of the competition stipulate that Competitor wins only if his tower height exceeds that of 
Rosca’s guarantee plus a handicap.  Both Rosca and Competitor are to build towers until they 
topple, and the maximum built height counts. If Rosca makes a high guarantee she risks not meet-
ing it. If she makes a low guarantee she risks Competitor beating her guarantee plus the handicap.  
Figure 5 shows the decision tree, while Table 2 shows the elements of the decision scenario. 
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Figure 4. Histograms of maximum built heights of domino towers 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Domino competition: decision/event tree 
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Table 2. Elements of decision scenario in example 

 
Element  Description  

Decision maker Rosca 
Objective Win contest 

Alternative courses of action Guarantee different tower heights, nguar  
Possible consequences  

of an action 
Rosca loses or wins 

Variables that affect the conse-
quences of an action  

Maximum built heights of Rosca’s tower (ndel) and Competi-
tor’s tower (ncomp) 

Algorithm for determining the 
consequence of an action given 
the values of the variables in the 

database 

3 Rosca’s tower collapses below guarantee,  (ndel < nguar) 
(Rosca loses) 

3 Rosca builds a stable tower with guaranteed height, (ndel ≥ 
nguar) and Competitor builds stable tower with height 
greater than the guaranteed height plus the handicap, 

ncomp >nguar + nhand (Rosca loses) 
3 Otherwise Rosca wins 

Information for modeling uncer-
tainty 

Data on maximum built heights of Rosca’s and Competi-
tor’s towers in database 

 
 

Step C.  Make decisions using the method(s) we want to test using part of the database.  We 
select a part of the database (called fitting dataset) to construct models of the uncertainties, which 
are used to make a decision.  This adds statistical uncertainty (uncertainty in estimating the statis-
tics of the population in the database from the fitting dataset) to the uncertainty due to variability.  
It is important to investigate the effect of statistical uncertainty since it is usually present in de-
sign decisions.  

Using a part of the database to construct models of the variables allows us to test the method 
on many decisions; each obtained using a different fitting part. We reduce the element of chance 
in the choice of the fitting part by selecting it randomly, and repeating the process many times. 
Thus we obtain a large number of decisions whose payoffs can be evaluated.  This concept of 
testing a model using multiple random fitting datasets is commonly used in validating response 
surface approximations, such as neural networks (e.g., Hush and Horne 1993). 

For the domino-tower problem, we employ probabilistic and possibilistic methods to decide 
what height to guarantee. We provide Rosca with a small random sample (the size is five for the 
results presented in this paper) of her own past performance as well as a similar sample of Com-

petitor’s past performance. We could select 







5

50
different parts of the database with values of 

the collapse heights of Rosca’s towers, where the notation 







5

50
 indicates the number of all dif-

ferent 5-tuples taken from a population of 50 objects.   
 
Step D. Evaluate the payoff of a decision by using the database as the entire universe of pos-

sible outcomes.  
For a binary consequence (success or failure), we measure the payoff of a decision by its 

probability of success evaluated from the entire universe of all possible outcomes.  If success is a 
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matter of degree, then we use the expected utility (Marston and Mistree, 1998, Hazelrigg, 1997, 
chapter 7) instead. 

 
In the domino-tower problem we have 90×50=4,500 possible combinations of maximum built 

heights of Rosca and Competitor, and we can readily calculate the ratio of successful decisions 
out of the total. 
 
Student grade data base 
To demonstrate the generality of the testing approach, we present a database with very different 
characteristics from the domino database. As faculty members we regularly create student grade 
files, such as the one shown in the table below. 
 
 

student quiz1 quiz-2 quiz-3 Exam-1 quiz-4 … 
Course 
average Grade 

1 30 26 0 73 22 … 80.91 B 
2 18 25 28 99 11 … 95.05 A 
: : : : : : : : : 

44 25 31 30 62.5 24 … 48.53 F 
45 23 21 10 68 11 … 86.13 B+ 

 
Using the student-grade database we can create the following decision scenario. A professor 

wants to identify students who are likely to get D or below (considered failure here) in order to 
call them for consultation. It is desirable to make the decision process simple and transparent. 
Therefore, the process is that if a student’s course average is below a cutoff value, ac, at the end 
of week T of the semester, the student will be called. To aid the professor identify which students 
to call for consultation, a teaching assistant (decision maker) wants to develop a model predicting 
if a student, whose course average at the end of week T is known, will fail.  The construction of a 
predictive model can be viewed as a decision in which the teaching assistant decides on the con-
sultation time and cutoff grade (decision variables).  The teaching assistant’s objectives are to 
maximize the model accuracy and minimize the waiting time to issue a warning.   

The consequences of a choice of the consultation time and the cutoff grade include the num-
ber P of false positives (students called for consultation who would have passed), and the number 
N of false negatives (students who failed but were not called for consultation). It is desirable to 
minimize P and N, which would call for waiting as long as possible. On the other hand, the longer 
the professor waits, the smaller is the chance that the student can improve much. We therefore 
define the following loss function to be minimized by the decision maker: 

 
L = kP P+kN N+kT T  
 
The coefficient kP is the weight assigned to wasted time with students who do not need the 

consultation, kN is the weight assigned to missing students who need it, and kT is the weight as-
signed to the loss of time available to the student for corrective action.  

In this problem the decision maker is uncertain if a given student will pass or fail.  The 
grades in the database provide information that the teaching assistant can use to model this uncer-
tainty.  Figure 6 explains the decision of the teaching assistant.  Using the information in the da-
tabase the teaching assistant builds a model of the random variables.  Then he/she chooses the 
waiting time and the cutoff grade so as to minimize the loss function of the model for predicting 
if a student will fail.   
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This problem may be particularly useful for testing Bayesian approaches against more tradi-
tional probabilistic approaches, because data from other courses and previous experience with the 
same course may be used to create prior probability distributions of failure as functions of the two 
decision variables. We can update the prior probability distributions using the grades in the data-
base.   

The testing procedure involves providing information on the entire semester history for a 
few students, using it to select the two decision variables, and then testing the consequences on 
the remaining students. That is, once the week T and cutoff ac have been chosen, we can use the 
final grade information to obtain the number of false positive P and number of false negative N, 
and calculate the loss function. The procedure can be repeated for many random subsets of the 
students. 

The loss function implicitly assumes that a consultation with the student will increase the 
chances of the student to pass. While this is not obvious, we note that this issue does not lessen 
the value of this example for testing methods for making decisions, as the loss function involves 
diagnosis rather than corrective effects. 

 
3. Comparing Possibilistic and Probabilistic Formulations for Domino Problem 

 
A common option for modeling the uncertainty in the maximum built height in the domino deci-
sion problem of Table 2 is to fit probability distributions to data on past performance (data from 
Table 1 or Figure 4). Our previous investigation into the mechanics of the domino problem re-
vealed that the probability distribution of stack heights for a single builder or for a group of 
builders can be approximated well by a shifted Gamma distribution but is approximated almost as 
well by a normal distribution (Rosca, 2001).  

In order to demonstrate the utility of our testing approach we compare a probabilistic and a 
possibilistic method for making the decision. The latter is based on a simpler representation of the 
uncertainty via a triangular possibility distribution function and may be therefore less sensitive to 
the lack of available data. Possibility theory is presented in several books and papers including 
Dubois and Prade (1988), Joslyn (1994, 1995), and Nikolaidis et al. (2004). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Decision about consultation time and cutoff grade when constructing a model 
for predicting a student’s performance 
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Problem formulation 
In possibility theory, the possibility of an event and the possibility of its complement do not nec-
essarily add up to 1 (as is the case for probability theory).  Therefore, we can maximize the possi-
bility of success or minimize the possibility of failure without necessarily obtaining the same 
guarantee.  We assume that the maximum built heights of Rosca’s and Competitor’s towers are 
independent.  Then the possibility of Rosca winning is equal to the minimum of the possibility of 
Rosca building a stable tower (Rosca delivers) with guaranteed height n and the possibility of 
Competitor failing to build a tower taller than the guaranteed height plus the handicap (Competi-
tor fails):  

Pos (winning (nguar)) = Pos (Rosca delivers and Competitor fails) =  

                                                        min [Pos (ndel ≥ nguar), Pos (ncomp< nguar +nhand+1 )] (1a) 
 
Similarly, the possibility of Rosca losing is: 

 
Pos (losing (nguar)) = max [Pos (ndel < nguar), Pos (ncom ≥ nguar +nhand+1)].         (1b) 

 
Both formulations can provide multiple optima.  For our data, the sets of optima given by 

these two possibilistic approaches were not disjoint.  We call the intersection of these two sets the 
possibilistic optimum.  There might be cases where the intersection contains more than one ele-
ment.  

Since Rosca built her towers without interaction with the other builders and at a different 
time, Rosca's and Competitor's maximum built heights are assumed statistically independent.  
Therefore, the probability of Rosca winning a contest when she guaranteed a stack of height 
n=nguar is equal to the product of probability that Rosca delivers and the Competitor fails: 

 
Pro (winning (nguar))= Pro(ndel ≥ nguar)⋅ Pro(ncomp <nguar +nhand+1)= [ 1-FRosca(nguar)] 
FComp(nguar+nhand+1)  (2) 
 
where FRosca(n) and FComp (n) denote the cumulative distribution functions of the maximum built 
heights of Rosca's and Competitor's towers, respectively.  The probability that Rosca delivers de-
creases with nguar, whereas the probability of Competitor’s failure increases with nguar.  In the 
probabilistic formulation, we want to find the guaranteed stack height, nguar, that maximizes the 
probability of winning.  

We will compare the optima obtained by the two formulations when using data from the 
domino experiments to model uncertainty.  We analyze two cases: (1) all data are used to find the 
optimum, and (2) only a sample of the data is used. When little data is available a designer can 
use a standard probability distribution that it is known to describe the uncertain variable (in our 
case the maximum built height) or employ the maximum entropy principle if such a standard dis-
tribution is not known.  In this study, we consider that both the probabilistic and possibilistic de-
signers know that the Gamma and the normal distributions fit well the maximum built height of a 
tower. In case (1), there is only uncertainty due to the error in approximating the actual discrete 
distribution as Gamma or normal probability distributions (called here fitting error).  The true 
values of the parameters of these distributions are computed from the entire database of the 
maximum built heights, which in this study is considered the universe of the values of the maxi-
mum built heights.  In case (2), there is additional uncertainty in the values of the parameters of 
the distributions besides the uncertainty due to fitting error.   

In the decision scenario considered in this study, the probabilistic approach has two advan-
tages compared to the possibilistic approach:  a) the probabilistic approach seeks to maximize the 
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right objective (the probability of Rosca winning), and b) even when a small sample of data is 
available, Rosca knows that the Gamma and the normal probability distributions fit well the data 
for the maximum built heights.  The information on the type of probability distribution is one that 
the possibilistic designer cannot directly utilize, so the probabilistic designer has an advantage. 

Definition and evaluation of the likelihood of winning 
Generally, for a given sample, the possibilistic and probabilistic formulations yield different op-
tima, because they maximize different objective functions.  We compare the two optima in terms 
of their relative frequency of winning (also called likelihood of winning), considering all possible 
Rosca-Competitor competitions obtained by combining all the data for the collapse heights of the 
towers built by Rosca and Competitor.  With 50 experiments available for Rosca and 90 experi-
ments available for Competitor, the likelihood is calculated by counting the number of pairs for 
which Rosca won as a fraction of the universe of possible pairs of Rosca and Competitor data, 
that is, 4,500 pairs. Consider a competition in which the maximum built height of Rosca is 
ndel=N1 blocks and the maximum built height of the competitor’s tower is ncomp=N2 blocks.  Rosca 
won if          

  
N1≥ nguar and N2 <nguar + nhand+1.             

 
The likelihood of winning of nguar is the total number of pairs (N1, N2) for which Rosca won, 

divided by 4,500.  This likelihood of winning may be viewed as an approximation to the actual 
probability based on the limited database. We prefer to view it as an exact calculation for a prob-
lem with a limited discrete universe. 

Using the likelihood of winning as a metric of the quality of a decision and with all of the 
data and no fitting errors, the probabilistic formulation should be superior. The possibilistic ap-
proach can prevail only if the fitting errors and the errors due to incomplete data overcome the 
natural advantage of the probabilistic approach.   

 
Splitting the data into fitting and testing sets 
If we use all the data for selecting the optimal nguar, we have a single example from which it is 
difficult to draw conclusions. However, the relatively large amount of data allows us to use sub-
sets for making the decision and evaluating the payoff, and then to repeat the process for different 
subsets. This reduces the element of chance in the results. Here, we perform the comparison for 
80 randomly chosen subsets. 

We draw samples of size nsample from both the data sets of Rosca and Competitor.  Based on 
these samples, we fit a shifted Gamma or a normal probability density and a possibility distribu-
tion.  The fitting processes for the probability and possibility distributions of the collapse heights 
are described in Appendix 1.  Based on the fitted functions and using a probabilistic or a possi-
bilistic formulation, we solve the guaranteed height problem, obtaining one (or more) optimum 
guarantees.   

Step D of our testing approach calls for evaluating the payoffs of the decisions. We compare 
the guarantees selected by each method in terms of their likelihood of Rosca winning on all pos-
sible combinations of the available data. 

4. Results 
 
We studied the likelihood of winning of the two methods first when all measurements in the data-
base are known, and then when only five measurements are given.  We also investigated the ef-
fectiveness of the common practice of inflating the variance of a variable to account for statistical 
uncertainty (uncertainty in estimating the statistics of a population from those of a sample).  This 
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second study revealed an unexpected difference between probability- and possibility-based de-
signs. 

All data known  
 In this case, we do not have multiple samples, and we can make a single decision. However, we 
vary the handicap through the set of values {2, 5, 8, 11, 15}. Figure 7 shows the likelihood of Ro-
sca winning for the probabilistic (with Gamma distribution) and possibilistic designs versus the 
handicap.  As expected, the likelihood of winning increases with the handicap.  One cannot tell 
which method does better from Fig. 7, as the probabilistic design wins for a handicap of 2, 5 and 
15, while the possibilistic design wins for a handicap of 8 or 11.  Figure 7 also shows the maxi-
mum achievable likelihood of winning in the ideal case where the probability distributions of the 
populations of the maximum built heights of the two players are known.  These are the true prob-
ability distributions of the maximum built heights and they are equal to those in the histograms in 
Fig. 4.  The difference between the maximum achievable probability of winning and the likeli-
hood of winning of the probabilistic approach is due to the fitting error of the Gamma distribution 
to the data.  It is observed that the effect of the fitting error is small. 

Table 3 shows the optimum guarantee selected by the two probabilistic models and the possi-
bilistic approach. The optimum guarantee decreases with the handicap increasing.  This is be-
cause the increased handicap makes it harder for Competitor to build a tall enough stable tower 
and a low guarantee will reduce the risk of Rosca’s failure to deliver the guarantee. The average 
likelihoods of winning of the three methods over the five values of the handicap are: 0.5289 for 
the probabilistic design method using the Gamma distribution, 0.5258 for the probabilistic design 
method using the normal distribution and 0.5234 for the possibilistic design approach, which are 
very close.  These results may indicate that when all the data is available to the decision maker, 
the errors incurred by fitting the data to a probability distribution offset the advantage of the 
probabilistic approach over the possibilistic one (that it maximizes the same objective as the one 
used to score the results). 
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Figure 7. Comparison of the likelihood of success of probabilistic and possibilistic de-
signs versus the handicap for the case where the decision maker has all the data in the 
database and the case where the decision maker knows the true probability distribution 

of the population of maximum heights 
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Table 3: Variation of optimum guarantee and its likelihood of winning with handicap val-
ues when all data are known; cases where the optimum guarantee was found are 
marked in bold. The optimum guarantee for a handicap of 11 is 28, corresponding to a 
likelihood of winning of 0.6533. 

 
Probabilistic optimum 
(shifted Gamma fit) 

Probabilistic optimum 
(normal fit) 

Possibilistic optimum 
(triangular fit) 

Handicap 
 

Optimum Likelihood 
of winning 

Optimum Likelihood 
of winning 

Optimum Likelihood 
of winning 

2 32 0.3067 33 0.3180 33 0.3180 
5 31 0.4107 32 0.4333 32 0.4333 
8 29 0.5633 30 0.5360 31 0.5133 

11 27 0.6402 29 0.6153 29 0.6153 
15 26 0.7236 27 0.7262 28 0.7373 

 
When only few experimental data are available to fit a probability distribution, a standard 

practice (Fox and Safie, 1992) is to inflate the variance of a distribution, keeping the mean value 
the same.  Considering the parameters of a probability distribution to be random variables in or-
der to account for statistical uncertainty also increases the variance of the distribution.  We inflate 
the variance by adding to it an inflation factor multiplied by the standard deviation of the variance 
(see Appendix 2).  When all the data is known, the effect of inflation is small because the stan-
dard deviation of the variance is small (see for example Table A1).  Therefore, in order to under-
stand the effect of inflation, we consider also the extreme case of an inflation factor of 15.  

For a possibility distribution, there is no standard way to inflate the uncertainty.  We use the 
simple approach of keeping fixed the mode of the distribution, which is equal to the sample mean, 
and inflating the support by the inflation factor. That is, if the mean is 32, and the support of the 
possibility distribution function is the interval (30, 35), then an inflation factor of 1 will inflate the 
interval to (28, 38), and an inflation factor of 2 to (26, 41). Here we use an inflation factor of 2, 
which corresponds to extreme inflation, similar in magnitude to an inflation factor of 15 for the 
probabilistic data. 

From Table 4 we observe that when the uncertainty in Competitor’s performance increases 
(inflation of 15), the probabilistic optimum guarantee decreases.  On the other hand, when the 
uncertainty in Rosca’s performance increases, the probabilistic optimum guarantee increases. The 
possibilistic optimum guarantee exhibits the opposite trend. 

 
Table 4:  Effect of inflating the uncertainty Rosca’s and the Competitor’s performance on 
the optimum guarantee and its likelihood of winning; handicap value, nhand is 5, all-data 
case.  The true optimum height is 32. The probabilistic optimum decreases when the 
variability in Competitor’s performance increases, and increases when the variability in 
Rosca’s performance increases; the possibilistic optimum exhibits the opposite trend. 
 

Rosca  Com-
petitor  

Probabilistic optimum 
(shifted Gamma fit) 

Probabilistic opti-
mum (normal fit) 

Possibilistic optimum 
(triangular fit) 

Inflation factor  Opti-
mum 

Likelihood of 
winning 

Opti-
mum 

Likelihood of 
winning 

Opti-
mum 

Likelihood of 
winning 

0 0 31 0.4107 32 0.4333 32 0.4333 
0 15 28 0.3920 29 0.3987 33 0.4020 

15 0 33 0.4020 34 0.3578 31 0.4107 
15 15 30 0.4240 32 0.4333 32 0.4333 
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When the variance of the Competitor’s performance is inflated by a very large amount then 
the probabilistic optimum guaranteed height always decreases. The reason is that when the vari-
ance becomes very large, the probability of the Competitors’ failure becomes insensitive to the 
guaranteed height. Therefore, for increasing the probability of winning given by (Eq. 2)  Pro 
(winning (n)) = [ 1-FRosca(n)] FComp(n+nhand+1) it is more important to increase the probability of 
Rosca’s delivering the guarantee than to increase the probability of Competitor’s failure. 

The effect of inflating uncertainty on the optimum can be understood by examining the con-
dition that the optimum must satisfy.  At the optimum, the derivative of the logarithm of the 
probability of success is zero, 
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The two terms on the right hand side of the above equation are the sensitivities of the logarithms 
of the probabilities that Rosca delivers and Competitor fails.  Extreme inflation of the uncertainty 
in the Competitor’s performance makes the sensitivity of the derivative of the probability that the 
Competitor fails almost zero. The optimum guaranteed height decreases in order to maintain 
equality of the two terms in Eq. (3) (Fig. 8).  Rosca (2001) provided a similar explanation as to 
why the optimum guarantee increases when the probability density function of the decision maker 
(Rosca) is inflated. 

So in this probabilistic guarantee-setting problem, when the decision maker is highly uncer-
tain about the capability of the competition, she should set conservative goals. On the other hand, 
when the decision maker is very uncertain in her own capability, she should set aggressive goals 
because it is more important to prevent the Competition from succeeding than to help the decision 
maker deliver the guaranteed performance. This fits the common sense notion that given two 
dangers, one should pay more attention to the danger which one can manage more easily. 

In possibility, we can minimize the possibility of Rosca losing the contest or maximize the 
possibility of her winning.  We minimize the possibility of losing because the possibility of win-
ning is equal to one for heights between 30 and 33.  The height for which the possibilities that 
Rosca delivers and the Competitor fails become equal (nopt in Fig. 9), minimizes the possibility of 
losing. Indeed, any deviation from nopt increases the possibility of Rosca losing.  Smaller heights 
than nopt have higher possibility of Competitor success, while larger heights have higher possibil-
ity of Rosca failure.  In both cases, the possibility of Rosca losing the contest (Eq. 1b) is higher 
than that for nopt.  In Table 4, the possibilistic optimum displays the opposite trend than the prob-
abilistic optimum, increasing when we inflate Competitor’s possibility distribution and decreas-
ing when we inflate Rosca’s possibility distribution.  This can be explained by observing Fig. 9; 
inflating the Competitor’s possibility distribution will increase the optimum (which is the inter-
section of the possibility distributions of the two players).  Thus, in contrast to probabilistic de-
sign, inflation increases the importance of a failure mode in the possibilistic approach. 

The philosophies of the probability and possibility can be further understood by examining a 
scenario that accentuates the difference of the optima of the two approaches.  Consider the ex-
treme case where the uncertainty in the Competitor’s performance is very large and the uncer-
tainty in Rosca’s performance very small (that is, Rosca predicts quite accurately the maximum 
height of a tower that she can build but she does not know much about Competitor’s perform-
ance). Figure 10 shows the probability densities and possibility distributions of the maximum 
built heights of the two players.  The optimum guarantee that maximizes the probability of suc-
cess is on the left tail of Rosca’s probability density function where there is a small probability 
that she will not deliver.   Then, the probability of winning is approximately equal to the probabil-
ity of Competitor’s failure for this height, which is 0.5.  On the other hand, the possibilistic opti-
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mum is very close to the mean value of the Rosca’s distribution and has a probability of success 
0.256, which is approximately equal to one half of the probability of success of the probabilistic 
optimum.  It is also interesting that the possibilistic optimum is less robust to errors in the mean 
value of Rosca’s maximum built height than the probabilistic optimum.  For example, even a 
small reduction in the true mean value of Rosca’s probability distribution will reduce greatly the 
probability of success of the possibilistic optimum. Even though we have been comparing prob-
ability and possibility for the past few years, we needed this experimental result to discern the 
important differences between probability and possibility identified in this study. 

It is not difficult to check that the effect of inflation of the possibilistic optimum depends on 
the relative positions of the peaks for the two possibility distributions. That is, when the two are 
reversed, probability and possibility will behave in the same way. However, for probability distri-
butions, the relative positions of the peaks do not affect the result that the inflated mode loses im-
portance.   
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Figure 8.  Extreme inflation of the uncertainty in Competitor’s performance reduces the sensi-
tivity of the probability of Competitor’s failure to the guaranteed height, thereby reducing the 
optimum guaranteed height.   
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Figure 9.  Inflation of the uncertainty in Competitor’s performance increases importance of 
competitor’s failure, thereby increasing the optimum guaranteed height.   
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Figure 10. Probabilistic and possibilistic optima when there is high uncertainty in Com-
petitor’s performance and little uncertainty in Rosca’s performance.  The difference be-
tween the ways probabilistic and possibilistic design find the optimum guaranteed height 
is accentuated in this case.  The probability density of Competitor’s maximum built 
height is almost zero over the entire range of heights in the figure.   
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The contrast between the effect of inflation on probability and possibility is clearly due to the 
non-additivity of possibilities. Consider in Fig. 8 the optimum guarantee when the probability 
distributions of the players are not inflated. Reducing the optimum guarantee by 1 increases the 
chance that Rosca delivers more than reducing the chance that the Competitor fails. In probabil-
ity, inflating the probability distribution of Competitor automatically reduces the probability of 
any one outcome. Thus, it allows us to reduce the guarantee by 1 with a smaller reduction of the 
chance of Competitor’s failure. In the possibility model we can increase the possibility of one 
event without reducing the possibility of another. Thus inflating Competitor’s possibility distribu-
tion increases the possibility of all the outcomes.  

Finally, Table 4 shows that inflating only one of the uncertain variables reduces the likeli-
hood of success of both methods.  The reason is that increasing the uncertainty in the perform-
ance of a player introduces bias in the probabilistic model, which reduces the quality of a deci-
sion.  Also, inflation affects probabilistic design more that the possibilistic design.  

Scarce data – small sample size   
For the scarce data case, we use only a randomly selected small subset of the data for fitting a 
distribution and selecting a guarantee.  The process is repeated 80 times to average out the effect 
of chance in the selection of the sample.  Rather than presenting all 80 examples of optima, we 
present their average (over the 80 samples) likelihood of success.  We tested the models of uncer-
tainty for five handicap values.  Thus, we were able to test the models on 5×80 = 400 different 
decisions using the same pair of datasets for Rosca’s and Competitor’s collapse heights.  Each 
decision was evaluated using 4,500 pairs of maximum built heights. 

Figure 11 shows the average likelihoods of success of the probabilistic method that uses the 
Gamma distribution to model uncertainty in the maximum built heights of the towers and the pos-
sibilistic design for different handicaps.  Since only five data points are available to the decision 
maker instead of 50 or 90, the likelihood of success of the optimum guarantee deteriorates com-
pared to the all-data case.  The likelihood of success of the probabilistic design is slightly higher 
than that of the possibilistic design but the difference is small. Table 5 presents the average and 
standard deviation of the likelihood of success when a sample of five values is used. When a 
Gamma probability distribution is fitted to the data, the reduction of the likelihood of success 
ranges from 2% to 6%, compared to the all-data case.  The reduction in the likelihood of success 
ranges between 2% to 4% when a normal distribution is fitted to the data.  Finally, when a possi-
bilistic approach is used, the reduction in the likelihood of success ranges between 2% and 4%.    

For both possibilistic and probabilistic methods, increasing the handicap value increases the 
mean of the likelihood of success.  The average likelihoods of winning of the three methods over 
the 400 cases are 0.4947 for the probabilistic design method using the Gamma distribution, 
0.4968 for the probabilistic design method using the normal distribution and 0.4909 for the possi-
bilistic design method, which are very close, with a small advantage to the probabilistic models. 
This result surprised us, because, generally, we expected the possibilistic approach to do better 
relative to the probabilistic approach for the scarce data than for the full data case.  But in the de-
cision problem considered, probabilistic design has the advantage over the possibilistic design 
that the type of the probability distribution of the maximum built height is known even in the 
scarce data-case.  Possibility does not permit the designer to account directly for this information 
even if she knows the type of the possibility distribution.   

The poorer results of the possibilistic approach could also be due to the way we constructed a 
possibility distribution function based on the available data or the inability of the approach to 
properly account for the independence of the built heights of the towers of the two players.  The 
possibility of the intersection of two events is equal to the minimum of the possibilities of these 
events (Eq. 1).  This yields counterintuitive results when the events are known to be statistically 
independent.  For example, the possibility of Rosca building a tower with height that has high 
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possibility (e.g., 30) and the competitor building a very tall tower (e.g. 55) is equal to the possibil-
ity of both players building very tall towers as long as Rosca’s tower has higher possibility than 
Competitor’s tower.  This is clearly wrong because it is very unlikely that both players will build 
high towers simultaneously (Eq. 2). A hybrid probabilistic/possibilistic approach, that character-
izes uncertainty in the maximum built height using probability distributions and uncertainty in the 
distribution parameters using a possibility distribution would avoid the above pitfalls and could 
do better than the approach that we considered in this study. 

Table 5: Mean and standard deviation (computed over the 80 cases) of the likeli-
hood of success for probabilistic optimum (shifted Gamma and normal fit) and pos-
sibilistic optimum (triangular fit); sample size of 5. 

Likelihood of success for 
probabilistic optimum 
(shifted Gamma fit) 

Likelihood of success for 
probabilistic 

optimum (normal fit) 

Likelihood of success for 
possibilistic 

optimum (triangular fit) 

sample 
size=5 

 
nhand Mean (of 

80 runs) 
Standard 
deviation 

Mean (of 
80 runs) 

Standard 
deviation 

Mean (of 
80 runs) 

Standard 
deviation 

2 0.2850 0.0361 0.2822 0.0398 0.2896 0.0290 
5 0.3924 0.0441 0.3924 0.0451 0.3917 0.0478 
8 0.4995 0.0552 0.5031 0.0496 0.4921 0.0576 

11 0.5967 0.0622 0.5993 0.0513 0.5875 0.0656 
15 0.6997 0.0559 0.7069 0.0412 0.6937 0.0586 
 
We repeated the fitting and optimization procedure for the case of the sample size of 5, but 

this time we inflated the standard deviation of the maximum built height and the support of the 
possibility distribution of this height. We present in Table 6 only the results for symmetric infla-
tion.  
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Figure 11. Comparison of the likelihood of success of probabilistic and possibilistic de-
signs versus the handicap for the case where the decision maker has five data points 
and the case where the decision maker knows the true probability distribution of the 

population of maximum heights 
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Table 6: Mean and standard deviation (computed over the 80 cases) of the likelihood of success 
for probabilistic optimum (shifted Gamma and normal fit) and possibilistic optimum (triangular 
fit); sample size is 5. Both Rosca’s and Competitor’s inflation factors are 2. 

 
Likelihood of success for 

probabilistic optimum 
(shifted Gamma fit) 

Likelihood of success for 
probabilistic 

optimum (normal fit) 

Likelihood of success for 
possibilistic optimum 

(triangular fit) 

sample 
size=5 

 
nhand Mean (of 

80 runs) 
Standard de-

viation 
Mean (of 
80 runs) 

Standard 
deviation 

Mean (of 
80 runs) 

Standard 
deviation 

2 0.2687 0.0520 0.2797 0.0466 0.2896 0.0290 
5 0.3662 0.0591 0.3899 0.0496 0.3917 0.0478 
8 0.4732 0.0758 0.4980 0.0554 0.4917 0.0575 

11 0.5717 0.0849 0.6017 0.0481 0.5879 0.0645 
15 0.6922 0.0637 0.7075 0.0360 0.6920 0.0606 
 
Comparing Tables 5 and 6, we see that inflation had a detrimental effect on the probabilistic 

optimum.  Indeed, for all but the handicap value of 2, the mean likelihood of success of the opti-
mum given by the inflated shifted Gamma distribution is smaller than the corresponding non-
inflated one. The same effect is observed for the normal distribution for all but the handicap of 
11.  For symmetric inflation, little or no effect is observed on the likelihood of success of the pos-
sibilistic optimum, because the possibilistic optimum does not change with symmetrical inflation. 
We also repeated the study with sample sizes of 3 and 10 and obtained similar results (Rosca, 
2001).  

The observation that inflation of uncertainty is counterproductive is at odds with Walley’s 
observation in his World Cup experiment where those participants whose probabilities of the out-
comes of a game were uniform made more money than those whose probabilities differed a lot.  
We think that Walley’s experiment does not necessarily show that inflating uncertainty is an ef-
fective practice; it possibly shows that those participants who estimated uniform probabilities be-
cause they were aware of their ignorance did better than overconfident participants whose prob-
abilities were asymmetric.    

 
5. Conclusions 

 
An approach for using existing data for probing weaknesses in models for making decisions un-
der uncertainty has been developed. The approach may expose problems associated with errors in 
predictive models or in models of uncertainty because it uses real-life data.  The approach re-
quires two sets of data on one property (here, domino tower height) for two groups.  It then cre-
ates a decision problem that involves finding an optimum in terms of one or more decision vari-
ables. The same dataset can be used to test methods on hundreds or thousands of different deci-
sions within a short period at low cost.  An example employing data on a domino tower competi-
tion was used for demonstration.  

The utility of the experimental testing of methodologies for decisions under uncertainty was 
evidenced by several results that surprised us, even though we have been exploring the methods 
we evaluated for several years. These include the following: 

 
1. Small fitting errors in the probability distributions were sufficient to give an advantage to 

possibilistic decision-making, even though the metric of success was probabilistic. This 
may indicate that these fitting errors deserve further study.  

2. In contrast, the probabilistic approach suffered less than the possibilistic approach from 
small sample size. This may indicate that a better way of selecting possibility distribution 
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functions based on small samples may be needed, or that a hybrid probabilis-
tic/possibilistic approach should be used in which possibility is only used only for those 
uncertainties for which it is difficult to estimate probabilistic models.  

3. The process of magnification of the standard deviation of a probability distribution, 
which is commonly used when data are scarce, proved to be counterproductive. 

4. The effect of magnifying uncertainty had an opposite effect on probability and possibil-
ity. Inflating uncertainty reduced the effect of a failure mode on the probabilistic deci-
sion, and it increased the effect of the mode on the possibilistic decision. This result was 
shown to be due to the fact that probability, unlike possibility, is additive.  In the extreme 
case where uncertainty in one player’s performance is much greater than in the other 
player’s, the difference between the optimum decisions of the two methods is very large. 
In this case, possibility yielded a decision with much poorer performance than probabil-
ity. 

 
We note that there is a wealth of other data readily available for testing methods using the 

proposed approach, including records of student projects, insurance claims, stock market prices, 
and medical tests.  As educators, we can readily see that universities have useful student data-
bases. For example, records of the performance characteristics (e.g. the stroke and time ratio) of 
slider-crank mechanisms constructed in a class on design and analysis of mechanical systems can 
be used instead of domino heights.    
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Appendix 1: Description of the fitting process (fit of probability/possibility distri-
bution functions) 
In the possibilistic formulation, to each sample we fit an asymmetric triangular membership func-
tion, such that the mean of the sample corresponds to the peak of the membership function.  The 
minimum and the maximum values in the sample are the minimum and the maximum values of 
the support of the triangular membership function. An example is shown in Fig. A1. 

In the probabilistic formulation, we fit a probability density function (PDF, rather than CDF) 
to each sample.  When all data are available, the best PDF fit is given by normal and shifted 
Gamma density functions.  Therefore, even for small data samples (3, 5), we use the normal PDF 
and the shifted Gamma PDF to fit the data. 

To find the shifted Gamma function, we choose the scale and shape parameters such that the 
mean and standard deviation are the same for the sample and the fitted PDF.  We choose the third 
parameter (shift) as an integer that minimizes the sum of the squares of the differences between 
sample points and fit at the points of the sample. We choose the two parameters (mean and stan-
dard deviation) of the fitted normal PDF to be the mean and standard deviation for the sample. 

Figure A2 shows the CDF of experimental data and of the fit for the same Competitor sample 
as in Fig. A1. Like for scarce data, the comparison of CDFs is more meaningful than the compari-
son of PDFs.   

Appendix 2: Definition of inflation factor 
Consider {x1,…xn}, a sample of values of a random variable X.  Use of small sample sizes 

(say 5) for estimating the variance of X, may lead to large statistical errors.  It is important to es-
timate the error in the variance and adjust the variance to account for the error.   

If the mean value of the population is unknown, then an unbiased estimator of the variance of 
the variable is:  

∑ −
−

=
n

i xx
n

s
1

22 )(
1

1
                                                         (1) 



 

REC2004 

24 

where ∑=
n

ix
n

x
1

1mean sample  theis . 

The variance of the above estimator is (see Freund and Williams, 1966, pp. 151 (F.7a)): 
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4σ is the square of the variance of the population. 
The following equation is used to inflate the unbiased estimate of the variance obtained from 

equation (1): 
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where r is called the inflation factor. 
When both the mean and standard deviation of the population are unknown, we use the corre-

sponding estimates of these values in Eq. (2).  Then the variance of the estimated variance be-
comes: 
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The inflated estimate of the variance becomes:  
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Table A1 presents the standard deviation of the data to be fitted, before and after we inflate 
the standard deviation.  An inflation factor of 0 corresponds to no inflation.  In Table A1, the in-
crease in inflated standard deviation does not vary linearly with the inflation factor, but the in-
crease in inflated variance does.  

 

 

Table A1: Inflated standard deviation for 
Rosca’s and Competitor’s data; the mean of 
Rosca’s data is 33.10 while the mean for 
Competitor’s data is 35.08. 

 
Inflated standard deviation  Inflation 

factor Rosca Data Competitor Data 
0 6.21 6.30 
1 6.76 6.75 
2 7.26 7.17 

15         12.02           11.30 
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 Figure A1: Triangular membership function (solid line) fitted to the sample of 5 from the 
Competitor's experiments [ 27  37  37  27  31] and sample cumulative histogram.   
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Figure A2: Experimental data CDF (bars), fitted shifted gamma CDF (circles) and fitted 
normal CDF (asterisks) for the same data as in Fig. A1. 

 
 


