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Abstract. In engineering applications, we need to make decisions under uncertainty. Traditionally, in
engineering, statistical methods are used, methods assuming that we know the probability distribution of
different uncertain parameters. Usually, we can safely linearize the dependence of the desired quantities y
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1. Introduction

Typically, in engineering applications, we need to make decisions under uncertainty. In
addition to measurement errors, some uncertainty comes from the fact that we do not know
how exactly the engineering devices that we produced will be used: e.g., we have limits Li

on the loads li in different rooms i, but we do not know how exactly these loads will be
distributed – and we want to make sure that our design is safe for all possible li ≤ Li.

Traditionally, in engineering, statistical methods are used, methods assuming that we
know the probability distribution of different uncertain parameters. Usually, we can safely
linearize the dependence of the desired quantities y (e.g., stress at different structural points)
on the uncertain parameters xi – thus enabling sensitivity analysis.

Often, the number n of uncertain parameters is huge – e.g., in ultrasonic testing, we
record (= measure) signal values at thousands moments of time. To use sensitivity analysis,
we must call the model n times – and if the model is complex, this leads to a lot of
computation time. To speed up the processing, we can use Monte-Carlo simulations. Their
main advantage is that for Monte-Carlo techniques, the required number of calls to a model
depends only on the desired accuracy ε and not on n – so for large n, these methods are
much faster.

In real life, we often do not know the exact probability distribution of measurement
errors; we also do not know the distribution of user loads – and if we knew, it would be a
disaster to, e.g., design a building that is stable against random loads, but could fall down
with a rare (but allowable) combination of loads. In such cases, usually, all we know is the
intervals of possible values of the corresponding parameters: e.g., we know that the load li
is in [0, Li].

In such situations, we can use sensitivity analysis, we can use interval techniques – but for
large n, this takes too long. To speed up, we developed a new Monte-Carlo-type technique
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for processing interval uncertainty (Trejo and Kreinovich, 2001; Kreinovich and Ferson,
2004).

In this paper, we will describe this new technique, discuss its applications to engineering
problems, describe its limitations, and explain how these limitations can be overcome.

2. Formulation of the Problem

In many real-life situations, we are interested in the value of a quantity y that is difficult (or
even impossible) to measure directly. In this cases, a natural idea is to measure easier-to-
measure quantities x1, . . . , xn that are related to the desired quantity y, and try to estimate
y based on the results x̃1, . . . , x̃n of these measurements. To be able to produce such an
estimate, we need to have an algorithm f(x1, . . . , xn) that, based on the values x1, . . . , xn

of the directly measured quantities, reconstructs the value y of the desired quantity as
y = f(x1, . . . , xn). Once we have such an algorithm, we plug in the measured values of xi

into this algorithm f , and get the following estimate for y: ỹ = f(x̃1, . . . , x̃n).
Measurements are never 100% accurate; as a result, the actual values xi of the measured

quantities may somewhat differ from the measured values. In other words, we know the
inputs to the algorithm f only with some (measurement-related) uncertainty. Because of
this input uncertainty x̃i 6= xi, our estimate ỹ = f(x̃1, . . . , x̃n) is, in general, different from
the actual value y = f(x1, . . . , xn) of the desired quantity. In other words, uncertainty in
the inputs leads to the uncertainty in the output as well. It is therefore desirable to estimate
this output uncertainty. So, we arrive at the following problem:

− We know:

• the algorithm f(x1, . . . , xn);
• the measured values x̃1, . . . , x̃n; and

• the information about the uncertainty ∆xi
def= x̃i−xi of each direct measurement.

− We must estimate: uncertainty ∆y = ỹ − y of the algorithm’s output.

In order to solve this problem, we must know what are the possible types of information
that we can have about the uncertainty of each measurement error ∆xi.

We do not know the exact values of the measurement errors ∆xi; as a result, in real
life, we may have (and often we do have) several situations in which we get exactly exactly
the same measurement results x̃1, . . . , x̃n, but the actual values x1, . . . , xn of the measured
quantity are different. Thus, to describe the uncertainty, we need to know:

− what are the possible values of ∆xi, and

− how often can different possible values occur.

In the ideal case, when we have a complete description of uncertainty, we know the exact
frequency (probability) of all possible error combinations (∆x1, . . . ,∆xn). In other words,
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we know the exact probability distribution of the set of all n-dimensional vectors ∆x =
(∆x1, . . . ,∆xn). Often, the measurement errors corresponding to different measurements are
independent, so it is sufficient to know the distribution of each variable xi. This distribution
can be described, e.g., by a cumulative density function (cdf) Fi(t)

def= Prob(xi ≤ t).
Most traditional methods of processing uncertainty in science and engineering (see, e.g.,

(Wadsworth, 1990)) are based on the assumption that we have a probabilistic uncertainty,
i.e., that the error distributions are independent, and that we know the probability distri-
bution Fi(t) for each of the variables xi. However, in real life, we often do not have all this
information.

In some real-life situations, we do not have any information about the frequency of
different measurement error ∆xi; all we know is the range [∆−

i , ∆+
i ] of possible values

of this error. In this case, the only information that we have about the actual measured
value xi = x̃i − ∆xi of i-th quantity is that xi must be in the interval [xi, xi], where we
denoted xi

def= x̃i −∆+
i and xi

def= x̃i −∆−
i . The corresponding uncertainty is called interval

uncertainty; see, e.g., (Moore, 1979; Kearfott, 1996; Kearfott and Kreinovich, 1996; Jaulin
et al., 2001).

So far, we have describe two extreme situations:

− in the case of probabilistic uncertainty, we have a complete information on which values
∆xi are possible, and what are the frequencies of different possible values;

− in the case of interval uncertainty, we only know the range of possible values of ∆xi,
we do not have any information about the frequencies at all.

In many real-life cases, we have an intermediate situation: we have some (partial) informa-
tion about the frequencies (probabilities) of different values of ∆xi, but we do not have the
complete information about these frequencies.

How can we describe such situations? To describe the complete information about the
probabilities of different values of ∆xi, we must describe, for every real number t, the
value Fi(t) of the corresponding cdf. Thus, when we have a partial information about
these probabilities, it means that, instead of the exact value Fi(t), we only have the range
[F i(t), F i(t)] of possible values of Fi(t). Thus, to describe such an intermediate situation,
we must describe the bounds F i(t) and F i(t) for the cdf. These bounds are called probability
boxes (or p-boxes, for short) (Ferson, 2002).

Both probability distributions and intervals can be described as a particular case of
p-boxes:

− a probability distribution Fi(t) can be described as a degenerate p-box [Fi(t), Fi(t)];
and

− an interval [a−, a+] can be described as a p-box [F i(t), F i(t)] in which:

• F i(t) = 0 for t < a+ and F i(t) = 1 for t ≥ a+;

• F i(t) = 0 for t < a− and F i(t) = 1 for t ≥ a−.
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So, p-boxes are the most general way of representing these types of uncertainty.
Another way to describe partial information about the uncertainty is by using the

Dempster-Shafer approach. In this approach, for each variable xi, instead of a single interval
[xi, xi], we have several intervals [x(k)

i , x
(k)
i ] with probabilities p

(k)
i attached to each such

interval (so that for every i, p
(k)
1 +p

(k)
2 + . . . = 1). For example, we may have several experts

who provide us with different intervals [x(k)
i , x

(k)
i ], and p

(k)
i is the probability that k-th

expert is right. The collection of intervals with probabilities attached to different intervals
constitutes a DS knowledge base.

Thus, depending on the information that we have about the uncertainty in xi, we can
have five different formulations of the above problem:

− we know the probability distribution Fi(t) for each variable xi, we know that these
distributions are independent, and we must find the distribution F (t) for y =
f(x1, . . . , xn);

− we know the interval [xi, xi] of possible values of each variable xi, and we must find the
interval [y, y] of possible values of y;

− we know the p-boxes [F i(t), F i(t)] that characterize the distribution of each variable
xi, we know that the corresponding distributions are independent, and we must find
the p-box [F (t), F (t)] that describe the variable y;

− we know the DS knowledge bases

〈[x(1)
i (t), x(1)

i (t)], p(1)
i 〉, 〈[x(2)

i (t), x(2)
i (t)], p(2)

i 〉, . . .

that characterize the distribution of each variable xi, we know that the corresponding
distributions are independent, and we must find the DS knowledge base that describe
the variable y;

− we may also have different types of uncertainty for different variables xi: e.g., we may
have probabilistic uncertainty or x1 and interval uncertainty for x2.

It is also reasonable to consider the formulations in which the corresponding distributions
may be dependent.

There exist efficient methods for solving these problems; see, e.g., (Ferson, 2002) and
references therein (in particular, for interval uncertainty, see (Moore, 1979; Kearfott, 1996;
Kearfott and Kreinovich, 1996; Jaulin et al., 2001)). Many of these methods are based on the
fact that we know the algorithm f ; so, instead of applying this algorithm step-by-step to the
measured values x̃1, . . . , x̃n, we apply this same algorithm step-by-step to the corresponding
“uncertain numbers”: probability distributions, intervals, and/or p-boxes.

In several practical situations, however, the algorithm is given as a black box: we do not
know the sequence of steps forming this algorithm; we can only plug in different values into
this algorithm and see the results. This situation is reasonably frequent:

REC2004



5

− with commercial software, where the software’s owners try to prevent competitors from
using their algorithms, and

− with classified security-related software, where efficient security-related algorithms are
kept classified to prevent the adversary from using them.

In some practical cases, the situation is made even more difficult by the fact that the
software f(x1, . . . , xn) is so complex and requires so much time to run that it is only possible
to run it a few times. This complex black-box situation is what we will analyze in this text.

Comment. It is worth mentioning that even for a black-box function, it may be possible
to run more simulations if we do the following:

− first, we use the actual black-box function f(x1, . . . , xn) to provide an approximating
easier-to-compute model fapprox(x1, . . . , xn) ≈ f(x1, . . . , xn), and

− then, we use this approximate model to estimate the uncertainty of the results.

So, if our preliminary computations show that we need more simulations that the black-
box function can give us, it does not necessarily mean that the corresponding uncertainty
estimation method cannot be applied to our case: we may still be able to apply it to the
approximate function fapprox.

3. From Traditional Monte-Carlo Techniques
for Probabilistic Uncertainty

to Monte-Carlo-Type Techniques
for Interval Uncertainty:

What Was Previously Known

Probabilistic uncertainty: Monte-Carlo techniques. Let us first consider the case of the
probabilistic uncertainty, when we know that the values ∆xi are distributed according to
the cdf Fi(t), and that the corresponding random variables ∆xi are independent. In this
case, we are interested to know the distribution F (t) of ∆y.

In the probabilistic case, a natural idea is to use Monte-Carlo simulations. Specifically,
on each iteration k:

− for each input variable xi, we simulate the values x
(k)
i distributed according to the

known distribution Fi(t);

− then, we plug the simulated values x
(k)
i the algorithm f , and thus get the value y(k) =

f(x(1)
1 , . . . , x

(k)
n ).
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After N iterations, we get N values y(k).
Since the inputs x

(k)
i are independently distributed according to the corresponding input

distributions Fi(t), the outputs y(k) are distributed according to the desired distribution
F (t). Thus, the N values y(k) are a sample from the unknown distribution F (t). It is
therefore necessary to extract information about F (t) from this sample.

Interval uncertainty: case of linearization. Let us now consider the case of interval
uncertainty.

In the interval case, we have intervals [xi, xi] of possible values of each input xi, and we
are interested in finding the corresponding interval [y, y] of possible values of y.

It is convenient to represent each interval [xi, xi] by its midpoint xmid
i

def=
xi + xi

2
and by

its half-width ∆i
def=

xi − xi

2
, so that each such interval takes the form [xmid

i −∆i, x
mid
i +∆i].

In this representation, instead of the original variables xi that take values from xi to xi, it
is often convenient to consider auxiliary variables δxi

def= xi − xmid
i that take values from

−∆i to ∆i.
When the function f(x1, . . . , xn) is reasonable smooth and the box [x1, x1]× . . .× [xn, xn]

is reasonably small, then on this box, we can reasonably approximate the function f by its
linear terms:

f(xmid
1 + δx1, . . . , x

mid
n + δxn) ≈ ymid + δy,

where δy
def= c1 · δx1 + . . .+ cn · δxn, ymid def= f(xmid

1 , . . . , xmid
n ), and ci

def=
∂f

∂xi
. One can easily

show that when each of the variables δxi takes possible values from the interval [−∆i, ∆i],
then the largest possible value of the linear combination δy is

∆ = |c1| ·∆1 + . . . + |cn| ·∆n, (1)

and the smallest possible value of δy is −∆. Thus, in this approximation, the interval of
possible values of δy is [−∆, ∆], and the desired interval of possible values of y is [ymid −
∆, ymid + ∆].

Interval uncertainty: sensitivity analysis. For small n, we can use the following sensitivity
analysis method – a method that is applicable not only for approximately linear functions
f(x1, . . . , xn), but also for all functions that are monotonic (increasing or decreasing) with
respect of each of its variables. Specifically, in the sensitivity analysis method:

− First, we apply f to the results x̃1, . . . , x̃n of direct measurements, resulting in the value
ỹ = f(x̃1, . . . , x̃n).

− Then, for each of n inputs xi, we modify this input to x′i 6= x̃i and, leaving other
inputs, apply f again. By comparing the values f(x̃1, . . . , x̃i, x

′
i, x̃i+1, . . . , x̃n) and ỹ =

f(x̃1, . . . , x̃n), we decide whether f in increasing or decreasing in xi.
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− Finally, we apply f two more times to get the desired bounds for y as follows: y =
f(x−1 , . . . , x−n ) and y = f(x+

1 , . . . , x+
n ), where:

• for the variables xi for which f increases with xi, we take x−i = xi and x+
i = xi,

and

• for the variables xi for which f decreases with xi, we take x−i = xi and x+
i = xi.

The main disadvantage of this method is that it requires n calls to the program f . Often,
the number n of uncertain parameters is huge – e.g., in ultrasonic testing, we record (=
measure) signal values at thousands moments of time. To use sensitivity analysis, we must
call the model n times – and if the model is complex, this leads to a lot of computation
time.

Interval case: Cauchy deviates method. One way to speed up computations is to use the
following Cauchy deviate method. This method works when the function f(x1, . . . , xn) is
reasonable smooth and the box [x1, x1]× . . .× [xn, xn] is reasonably small, so that on this
box, we can reasonably approximate the function f by its linear terms.

This method uses Cauchy distribution with a parameter ∆, i.e., a distribution described

by the following density function: ρ(x) =
∆

π · (x2 + ∆2)
. It is known that if ξ1, . . . , ξn are

independent variables distributed according to Cauchy distributions with parameters ∆i,
then, for every n real numbers c1, . . . , cn, the corresponding linear combination c1 ·ξ1 + . . .+
cn · ξn is also Cauchy distributed, with the parameter ∆ described by the formula (1).

Thus, if we for some number of iterations N , we simulate δx
(k)
i (1 ≤ k ≤ N) as

Cauchy distributed with parameter ∆i, then, in the linear approximation, the corresponding
differences

δy(k) def= f(xmid
1 + δx

(k)
1 , . . . , xmid

n + δx(k)
n )− ymid

are distributed according to the Cauchy distribution with the parameter ∆. The result-
ing values δy(1), . . . , δy(N) are therefore a sample from the Cauchy distribution with the
unknown parameter ∆. Based on this sample, we can estimate the value ∆.

Simulation can be based on the functional transformation of uniformly distributed sample
values: δx

(k)
i = ∆i · tan(π · (ri−0.5)), where ri is uniformly distributed on the interval [0, 1].

In order to estimate ∆, we can apply the Maximum Likelihood Method which leads to
the following equation:

1

1 +
(

δy(1)

∆

)2 + . . . +
1

1 +
(

δy(N)

∆

)2 =
N

2
.

The left-hand side of this equation is an increasing function that is equal to 0(< N/2) for
∆ = 0 and > N/2 for ∆ = max

∣∣∣δy(k)
∣∣∣; therefore the solution to this equation can be found

by applying a bisection method to the interval
[
0, max

∣∣∣δy(k)
∣∣∣
]
.
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How many iterations do we need for the ideal estimate. In (Trejo and Kreinovich, 2001;
Kreinovich and Ferson, 2004), we found the number of iterations N that would provide the
desired accuracy (usually, 20% accuracy in estimating ∆). The difference between the actual
value ∆ and its estimate ∆̃ is distributed, for large N , according to normal distribution,
with 0 mean and standard deviation σe = ∆ · √

2/N . Thus, e.g., to get a 20% accuracy
0.2 ·∆ with 95% certainty (corresponding to 2σe), we need N = 200 runs.

After 200 runs, we can conclude that ∆ ≤ 1.2 · ∆̃ with certainty 95%.
Thus, the required number of calls to a model depends only on the desired accuracy ε

and not on n – so for large n, these methods are much faster.

4. Applications: Brief Overview

We have applied the Cauchy deviate techniques to the following engineering examples:

− Environmental and power engineering: safety analysis of complex systems (Kreinovich
and Ferson, 2004). In this example, x1, . . . , xn are the parameters of the system that
are only known with interval uncertainty such as the thickness of the wall of the drum
that contains radioactive waste. The program f(x1, . . . , xn) (usually given as a black
box) describes how the desired parameters such as the radioactivity level at different
places depend on xi.

− Civil engineering: building safety. This example is similar to the models considered in
(Muhanna and Mullen, 2001; Muhanna and Mullen, 2001a) and references therein. In
this example, x1, . . . , xn are the loads on a structure for each of which we only know
the tolerance intervals, and the elastic parameters of this structure which are only
known with interval uncertainty. The program f(x1, . . . , xn) (often commercial and
thus, given as a black box) is a finite-element model that describes how the stresses in
the corresponding structure (e.g., building) depend on xi.

− Petroleum and geotechnical engineering: estimating the uncertainty of the solution to
the inverse problem caused by the measurement errors (Doser et al., 1998). In this
example, x1, . . . , xn are the traveltimes of the seismic signals between the source and
the sensor (and possibly other measurement results). The program f(x1, . . . , xn) solves
the inverse problem, i.e., uses the traveltimes xi to estimate the density y at different
locations and at different depths. To be more accurate, the program reconstructs the
speed of sound at different locations and at different depths, and then uses the known
(approximate) relationship between the speed of sound and the density to reconstruct
the desired density.

In all these cases, we got reasonable estimates:

− In the environmental and civil engineering applications, we got the same results as
sensitivity analysis, but much faster.
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− In geotechnical engineering, the dependence of the accuracy on the location and depth
fits much better with the geophysicists’ understanding than the previous accuracy
results obtained under the assumption that all the measurement errors are independent
and normally distributed.

5. Limitations of the Existing Cauchy Deviate Techniques and How These
Limitations Can Be Overcome

5.1. Limitations

Cauchy deviate technique is based on the following assumptions:

− that the measurement errors are small, so we can safely linearize the problem;

− that we only have interval information about the uncertainty, and

− that we can actually call the program f 200 times.

In real-life engineering problems, these assumptions may not be satisfied. In this section,
we describe how we can modify the Cauchy deviate technique so as to overcome these
limitations.

5.2. What If We Cannot Perform Many Iterations

Problem. In many real-life engineering problems, we do not have the possibility to run the
program f 200 times. In this case, we can still use the Cauchy deviates estimates with the
available amount of N iterations, but we need to come up with new formulas that translate
the numerical estimate into the enclosure for ∆.

Case when N is large enough. In this case, the difference ∆̃−∆ is still Gaussian, we can

conclude that ∆ ≤ ∆̃ ·
(

1 + k0 ·
√

2
N

)
(where k0 = 2), with certainty 95%. (If we want,

e.g., 99.9% certainty, which corresponds to 3 sigma, then we should take k0 = 3.)
Thus, e.g., for N = 50, we conclude that ∆ ≤ 1.4 · ∆̃. This is not such a bad estimate.

Case of very small number of iterations: idea. When the number of iterations is even
smaller, then we can no longer assume that the distribution of the error ∆̃−∆ is Gaussian.
In this case, to find the bounds on ∆ with, e.g., 95% certainty, we must perform numerical
experiments.

The possibility of such experiments is caused by the fact that, as we have mentioned in
the above description of the Cauchy deviates method, the distribution of the results δy(k)

always follows the Cauchy distribution, no matter how small N is.
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So, to find out the confidence bounds on the Cauchy deviate estimates, it is sufficient to
make experiments with the Cauchy distribution. The Cauchy distribution with a parameter
∆ can be obtained by multiplying the Cauchy-distributed random variable with parameter
∆0 = 1 by the number ∆. Thus, it is sufficient to test the method on Cauchy deviates with
parameter 1.

For each N and α, we want to find k(N,α) for which ∆ ≤ k(N, α) · ∆̃ with certainty
1 − α, i.e., for which ∆̃ ≥ (1/k(N, α)) · ∆ with probability 1 − α. Since we will be using
Cauchy distribution with ∆ = 1, we must thus find k(N, α) for which ∆̃ ≥ 1/k(N, α) with
probability 1− α.

To find such value, we do the following. We pick a large number of iterations M (the
relative accuracy of our estimate of k(N, α) will be ≈ 1/

√
M). Then:

− For each m from 1 to M :

• we simulate Cauchy distribution (with parameter ∆0 = 1) N times, producing N
numbers

δy
(m)
1 = tan(π · (r(m)

1 − 0.5)), . . . , δy(m)
N = tan(π · (r(m)

N − 0.5));

• we then apply the above Maximum Likelihood Method to find ∆̃m as the solution
to the following equation:

1

1 +

(
δy

(m)
1

∆̃m

)2 + . . . +
1

1 +

(
δy

(m)
N

∆̃m

)2 =
N

2
;

we solve this equation by applying a bisection method to the interval[
0, max

i

∣∣∣δy(m)
i

∣∣∣
]
.

− After that, we sort the values ∆̃m into an increasing sequence

∆̃(1) ≤ . . . ≤ ∆̃(M).

− We take the value ∆̃(α·M) for which the probability to be greater than this number is
exactly 1− α, and estimate k(N, α) as 1/∆̃(α·M).

Simulation results. We wrote a C program that implements this algorithm. For α = 0.05,
the results of applying this program are:

− For N = 20, we get k ≈ 1.7, which fits very well with the above Gaussian-based formula
knorm ≈ 1 + 2 ·√2/20 ≈ 1.7.

− For N = 10, we get k ≈ 2.1, which is slightly higher than the Gaussian-based formula
knorm ≈ 1 + 2 ·√2/10 ≈ 1.9.
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− For N = 5, we get k ≈ 5, which is already much higher than the Gaussian-based value
knorm ≈ 1 + 2 ·√2/5 ≈ 2.3.

5.3. p-Boxes and Dempster-Shafer Knowledge Bases:
An Idea

Formulation of the problem. In the previous sections, we described and analyzed different
methods for estimating uncertainty in the cases when we have probabilistic or interval
uncertainty in the inputs. What if the uncertainty in each input xi is characterized, e.g., by
the Dempster-Shafer knowledge bases?

Why this problem is difficult. One reason why this problem is difficult is that it is not even
clear how we can represent the DS knowledge base corresponding to the output.

Indeed, a DS knowledge base for each input variable xi means that we may have different
intervals [x(k)

i , x
(k)
i ], with different probabilities p

(k)
i . For each combination of intervals,

[x(k1)
1 , x

(k1)
1 ], . . . , [x(kn)

n , x
(kn)
n ], we can use the known techniques to find the correspond-

ing interval [y(k1,...,kn), y(k1,...,kn)] for the output. Since we know the probability p
(ki)
i of

each interval [x(ki)
i , x

(ki)
i ], and we assume that these probabilities are independent, we can

compute the probability p(k1,...,kn) of the corresponding output interval as the product
p(k1,...,kn) = p

(k1)
1 · . . . · p(kn)

n .
At first glance, this may sound like a reasonable solution to our problem, but in reality,

this solution is not practical at all: even in the simplest case, when for each variable, we
have two possible intervals, for n = 50 inputs, we will have an astronomical number of
250 ≈ 1015 output intervals [y(k1,...,kn), y(k1,...,kn)].

Thus, although the resulting uncertainty is still a DS uncertainty, we can no longer
represent it as we represented the uncertainty for each input: by listing all the intervals and
the corresponding probabilities.

Thus, not only it is not clear how to compute the resulting uncertainty, it is not even
clear what exactly we want to compute.

Can we use the fact that DS uncertainty is a generalization of interval uncertainty? Our
idea comes from the fact that the Dempster-Shafer uncertainty is a generalization of interval
uncertainty, a generalization in which, for each inputs xi, instead of a single interval [xi, xi],
we have several possible intervals [x(k)

i , x
(k)
i ], with different probabilities p

(k)
i . For the interval

uncertainty, in a realistic case when the black-box function is linearizable, we can use the
Cauchy deviates method to estimate the interval uncertainty of the output. Let us see
whether it is possible – at least, under some reasonable assumptions – to extend the Cauchy
deviates method to the more general Dempster-Shafer case.

Analysis. The fact that the black-box function is linearizable means that we have

f(x1, . . . , xn) = ỹ +
n∑

i=1
ci · (xi− x̃i), where ỹ

def= f(x̃n, . . . , x̃n) and for every i, ci denotes the
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(unknown) value of the partial derivative ∂f/∂xi of the black-box function f(x1, . . . , xn)
with respect to i-th input xi.

If we know the exact values x1, . . . , xn of all the inputs, then we can simply plug in the
values xi and get the desired value.

If for each i, we know the interval [xmid
i − ∆i, x

mid
i + ∆xi], then, in the linearized case

described above, the corresponding range of y can be described by the interval [ymid −
∆, ymid + ∆], where:

ymid = ỹ +
n∑

i=1

ci · (ymid
i − ỹi); (2)

∆ =
n∑

i=1

|ci| ·∆i. (3)

In the Dempster-Shafer case, for each i, instead of a single pair (ymid
i , ∆i), we have different

pairs with different probabilities. Due to the formulas (2) and (3), the vector (ymid, ∆) is a
linear combination of the vectors (ymid

i ,∆i) corresponding to different inputs xi.
If one of these vectors was prevailing, then we would have a single input (or a few

dominating inputs), and there would be no need to consider the uncertainty in all n inputs.
Thus, the only case when this problem makes sense is when the contributions of all n vectors
is approximately of the same size (or at least the same order of magnitude). In this case,
the vector (ymid, ∆) is a linear combination of n independent vectors of approximately the
same size.

This situation is exactly the case covered by the Central Limit Theorem, the case when
in the limit n → ∞, we have a normal 2-D distribution and hence, for sufficient large n,
with a good approximation, we can assume that the pair (ymid,∆) is normally distributed.

Comment: strictly speaking, the distribution is almost normal but not exactly normal. From
the purely theoretical viewpoint, the distribution of the pairs (ymid,∆) cannot be exactly
normal, because:

− the interval half-width ∆ is always non-negative, while

− for every normally distributed random variable, there is a non-zero probability that
this value attains negative values.

However, in practice, every normal distribution with mean µ and standard deviation σ is
located within the interval [µ−k·σ, µ+k·σ] with practically a certainty, i.e., with probability
≈ 1:

− for k = 3, the probability to be outside the 3 sigma interval is ≈ 0.1%;

− for k = 6, the probability to be outside the 3 sigma interval is ≈ 10−6%; etc.

Thus, if µ ≥ k · σ, then, for all practical purposes, the half-width ∆ is indeed always
non-negative.

REC2004



13

Resulting idea. It is therefore reasonable to conclude that for large n, the uncertainty in
y can be characterized as follows: we have different intervals [ymid −∆, ymid + ∆], and the
probability of an interval is described by a 2-D normal distribution on the (ymid, ∆) plane.

To describe a 2-D normal distribution, it is sufficient to know 5 parameters: the means and
standard deviations of both variables and the covariance (that describes their dependence).

Discussion: are we abandoning the idea of non-parametric estimates? At first glance, it
may seem like we are abandoning our approach: we started with the idea of having non-
parametric estimates, and we ended up with a 5-parametric family.

However, realistically, to exactly describe a generic distribution, we must use infinitely
many parameters. In reality, we only have finitely many runs of the black-box function f
with reasonable accuracy, and based on their results, we can only estimate finitely many
parameters anyway.

Even in the ideal case of Monte-Carlo tests, we need N experiments to get a value of
each parameter with an accuracy of 1/

√
N . Thus, to get a reasonably low accuracy of 30%

(everything worse makes it order-of-magnitude qualitative estimate), we need ≈ 10 runs.
With 50 runs, we can therefore determine the values of no more than 5 parameters

anyway. The above 5-parametric family is reasonable, its justification is very similar to the
justification of the Gaussian distribution – the main workhorse of statistics – so why not
use it?

How can we determine the parameters of this model? If we simply take the midpoints
x

(k)mid
i of the corresponding intervals in our simulations, then the resulting value y(k) are

normally distributed, with the distribution corresponding to ymid. We can therefore estimate
the mean and standard deviation of ymid as simply the sample mean and the sample variance
of the values y(1), y(2), . . .

For ∆, from the formula (3), we conclude that

E[∆] =
n∑

i=1

|ci| · E[∆i] (4)

and

σ[∆] =

√√√√
n∑

i=1

|ci|2 · σ2[∆i]. (5)

Due to the formula (4), we can use the Cauchy deviates technique to estimate E[∆] if for
each input xi, we use the average half-width

E[∆i] = p
(1)
i ·∆(1)

i + p
(1)
i ·∆(1)

i + . . .

of the corresponding interval.
Due to the fact that |ci|2 = c2

i , the formula (5) means that we can compute σ[∆] by using
the standard Monte-Carlo simulation technique: namely, we simulate δxi to be normally
distributed with 0 mean and standard deviation σ[∆i], then the resulting value of δy =
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∑

ci · δxi is also normally distributed, with the standard deviation equal to (5). We can
thus estimate (5) as a sample variance of the corresponding simulated values δy(k).

We thus know how to estimate 4 of 5 parameters that describe the desired uncertainty.
The only remaining problem is how to estimate the covariance between ymid and ∆. For
this, we propose the following idea.

The non-zero covariance means, in particular, that the conditional average E[∆ | ymid ≤
E[ymid]] of ∆ over the cases when ymid is smaller than its average E[ymid] is different from
the conditional average E[∆ | ymid ≥ E[ymid]] of ∆ over the cases when ymid is larger than
its average E[ymid]. From the difference between these two conditional averages, we can
determine the desired value of the covariance.

To compute the conditional averages, we can use the Cauchy deviates idea. Namely,
at each simulation, for each variable xi, we select one of the intervals [x(k)

i , x
(k)
i ] with the

corresponding probability p
(k)
i , and we apply the black box function f to the centers of

the corresponding intervals, to get the result ymid. We then apply the Cauchy techniques
with the corresponding intervals and get the value distributed according to the Cauchy
distribution with the width corresponding to selected intervals for xi.

The main difference between what we propose to do here and the previously described
Cauchy deviates methods is the following:

− in the previously described Cauchy deviates method, we combine all the results of
Cauchy simulation into a single sample, and we then compute the parameter ∆ based
on this sample;

− in the proposed methods, we separate the results of Cauchy simulation into two different
samples:

• a sample containing all the cases in which ymid ≤ E[ymid], and
• a sample containing all the cases in which ymid ≥ E[ymid].

In the previous described approach, in all simulations, we had the same interval width,
so the results of the simulation belong to the same Cauchy distribution. In the new method,
we have different widths with different probabilities, so the resulting distribution is a
combination of different Cauchy distributions, with different probabilities.

For each sample, we can safely assume that the distribution of the width ∆ is a Gaussian
distribution, with mean µ and standard deviation σ. Thus, our sample corresponds to the
combination in which the Cauchy distribution with parameter ∆ occurs with the Gaussian

probability density
1√

2 · π · σ · exp

(
−(∆− µ)2

2σ2

)
. Cauchy-distributed random variable ξ

with the parameter ∆ can be described by its characteristic function E[exp(i · ωξ)] =
exp(−|ω| ·∆). Thus, the above-described probabilistic combination of Cauchy distributions
can be described by the corresponding probabilistic combination of these characteristic
functions:

E[exp(i · ω · ξ)] =
∫ 1√

2 · π · σ · exp
(
−∆− µ

2σ2

)
· exp(−|ω| ·∆)d∆. (6)
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By separating the full square in the integrated expression, one can show that this integral
is equal to:

exp
(

1
2
· σ2 · ω2 − µ · |ω|

)
. (7)

We can estimate the characteristic function by its sample value

E[exp(i · ω · ξ)] ≈ 1
N
·

N∑

k=1

cos(ω · y(k))

(Since the expression (7) is real, it makes sense to only consider the real part of exp(i ·ω ·ξ),
i.e., cos(ω · ξ).)

So, we arrive at the following algorithm for computing µ and σ from the sample values
y(1), . . . , y(N):

− for different real values ω1, . . . , ωk > 0, compute l(ωk)
def= − ln(c(ωk)), where c(ωk)

def=
1
N
·

N∑
k=1

cos(ω · y(k));

− use the Least Squares Method to find the values µ and σ for which

µ · ωk − 1
2
σ2 · ω2

k ≈ l(ωk).

The resulting value µ is the average ∆.
Thus, when we repeat this algorithm for both samples, we get the two desired conditional

averages of ∆ – from which we can then compute the covariance.

What about p-boxes? It is known that a p-box can be described as a DS knowledge base.
Namely, a p-box [F (t), F (t)] is a generalization of a cdf function F (t). A cdf function can be
represented by an explicit formula, or it can be represented if we list, for uniformly spaced
levels p = 0, ∆p, 2 · ∆p, . . . , 1.0 (e.g., for p = 0, 0.1, 0.2, . . . , 0.9.1.0), the corresponding
quantiles, i.e., values t for which F (t) = p. In mathematical terms, quantiles are the values
of the inverse function f(p) = F−1(t) at equally spaced values p.

The variable with a probability distribution F (t) can be approximately described as
follows: we have the values f(0), f(∆p), etc., with equal probability ∆p.

Similarly, a p-box can be alternatively represented by listing, for each p, the interval
[f(p), f(p)] of the possible quantile values. Here:

− the function f(p) is an inverse function to F (t), and

− the function f(p) is an inverse function to F (t).

This description, in effect, underlies some algorithms for processing p-boxes that are
implement in RAMAS software (Ferson, 2002).
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Because of this description, we can interpret the p-box as the DS knowledge base, in
which, with equal probability ∆p, we can have intervals [f(0), f(0)], [f(∆p), f(∆p)], etc.

Thus, whatever method we have for DS knowledge bases, we can apply it to p-boxes as
well.

How can we describe the resulting p-boxes? We have just mentioned that, in principle, we
can interpret each p-box as a DS knowledge base, and apply the above DS-based method
to describe th uncertainty of the output. The result, however, is a DS knowledge base. How
can we describe the corresponding “Gaussian” DS knowledge base as a p-box?

It is known that for a DS knowledge base, i.e., for a probabilistic distribution on the set
of intervals [x, x]:

− The probability F (t) = Prob(X ≤ t) attains its largest possible value F (t) if for each
interval, we take the smallest possible value x.

− Similarly, the probability F (t) = Prob(X ≤ t) attains its smallest possible value F (t)
if for each interval, we take the largest possible value x.

Thus:

− F (t) is a probability distribution for the lower endpoints ymin −∆, and

− F (t) is a probability distribution for the upper endpoints ymin +∆ of the corresponding
intervals.

Since the 2-D distribution of the pairs (ymid, ∆) is Gaussian, the distributions of both linear
combinations ymin −∆ and ymin + ∆ are Gaussian as well.

Therefore, as a result of this procedure, we get a p-box [F (t), F (t)] for which both bounds
F (t) and F (t) correspond to Gaussian distributions.

Comment: strictly speaking, the distributions are almost normal but not exactly normal.
Let us denote the cdf of the standard Gaussian distribution, with 0 mean and standard
deviation 1 by F0(t). Then, an arbitrary Gaussian distribution, with mean µ and standard
deviation σ, can be described as F (t) = F0((t− µ)/σ). In particular, if we denote:

− the mean and the standard deviations of the Gaussian distribution F (t) by µ and σ,
and

− the mean and the standard deviations of the Gaussian distribution F (t) by µ and σ,

then we conclude that F (t) = F0((t− µ)/σ) and F (t) = F0((t− µ)/σ).
From the theoretical viewpoint, for thus defined functions F (t) and F (t), we cannot

always have F (t) ≤ F (t), because, due to monotonicity of F0(t), this would be equivalent

to
t− µ

σ
≤ t− µ

σ
for all t, i.e., to one straight line being always below the other – but this

is only possible when they are parallel.
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However, as we have mentioned while describing the similar situation with the DS knowl-
edge bases, in practice, we can have this inequality if we ignore the values t for which F0(t)
is very small – and thus, not practically possible.

Alternatively, we can assume that the inequality F (t) ≤ F (t) holds for all t – but the
distributions F (t) and F (t) are only approximately – but not exactly – normal.

What if we have different types of uncertainty for different inputs? If we have different
types of uncertainty for different inputs, we can transform them to p-boxes (Ferson, 2002)
– hence, to DS knowledge bases – and use a similar approach.

5.4. Cauchy Deviates Methods for Non-Linear Functions f(x1, . . . , xn)

Case of weak non-linearity. In some cases, we cannot reasonably approximate f by a linear
expression on the entire box, but we can divide the box into a few subboxes on each of which
f is approximately linear. For example, if the dependence of f on one of the variables xi is
strongly non-linear, then we can divide the interval [xi, xi] of possible values of this variable
into two (or more) subintervals, e.g., [xi, x

mid
i ] and [xmid

i , xi], and consider the corresponding
subboxes

[x1, x1]× . . .× [xi−1, xi−1]× [xi, x
mid
i ]× [xi+1, xi+1]× . . .× [xn, xn]

and
[x1, x1]× . . .× [xi−1, xi−1]× [xmid

i , xi]× [xi+1, xi+1]× . . .× [xn, xn].

By using the Cauchy deviates methods, we compute the range of f over each of these
subboxes, and then take the union of the resulting range intervals.

Quadratic case. Linearization technique is based on the assumption that the measurement
errors ∆xi and/or uncertainties are so small that we can safely ignore terms that are
quadratic (or of higher order) in ∆xi. If the measurement errors are larger, so that we
can no longer reasonably approximate f by a linear expression, a natural next step is to
take quadratic terms into consideration while still ignoring cubic and higher-order terms:
f(xmid

1 + δx1, . . . , x
mid
n + δxn) ≈ ymid + δy, where

δy
def=

n∑

ı=1

ci · δxi +
n∑

i=1

n∑

j=1

cij · δxi · δxj , (8)

where ci are the same as for the linearized case and cij
def=

1
2
· ∂2f

∂xi∂xj
.

In general, computing the exact bound for a quadratic function of n variables in case of
interval uncertainty is an NP-hard problem (Vavasis, 1991; Kreinovich et al., 1997). Luckily,
in many practical case, the dependence of f on xi is monotonic (see, e.g., (Lakeyev and
Kreinovich, 1995)), so we can use, e.g., the above-described sensitivity analysis technique.
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The problem with the sensitivity analysis technique, as we have mentioned, is that this
technique requires n calls to the program f , which for large n may be too long. It is therefore
desirable to modify the Cauchy deviate technique so that it can be used for quadratic
functions as well.

Analysis of the problem. We consider the case when the function f(x1, . . . , xn) is monotonic
in each variable xi.

If the function f is increasing in xi, then the derivative
∂f

∂xi
is always positive; in partic-

ular, it is positive at the central point (xmid
1 , . . . , xmid

n ), so ci > 0. In this case, the maximum
of f is attained when δxi = ∆i and xi = xi = xmid

i + ∆i.
Similarly, when the function f is decreasing in f , then ci < 0 and the maximum is

attained when δxi = −∆i and xi = xmid
i −∆i. In both cases, the largest possible value ∆+

of the difference δy is attained when for every i, we have δxi = εi ·∆i, where εi
def= sign(ci).

Substituting this expression for δxi into the above formula for δy, we conclude that

∆+ =
n∑

i=1

ci · εi ·∆i +
n∑

i=1

n∑

j=1

cij · εi · εj ·∆i ·∆j =

n∑

i=1

|ci| ·∆i +
n∑

i=1

n∑

j=1

cij · εi · εj ·∆i ·∆j . (9)

Similarly, the smallest possible value δymin of δy is attained when δxi = −εi · ∆i, hence
∆− def= |δymin| is equal to:

∆− =
n∑

i=1

|ci| ·∆i −
n∑

i=1

n∑

j=1

cij · εi · εj ·∆i ·∆j . (10)

We would like to use a Cauchy-type method to find the bounds (9) and (10). For this,
we consider, for every pairs of vectors z = (z1, . . . , zn) and t = (t1, . . . , tn), the following
auxiliary expression:

f(xmid + z + t)− f(xmid + z − t)
2

=

1
2
· f(xmid

1 + z1 + t1, . . . , x
mid
n + zn + tn)−

1
2
· f(xmid

1 + z1 − t1, . . . , x
mid
n + zn − tn). (11)

Substituting δxi = zi + ti into the formula (8), we conclude that

f(xmid + z + t) = ymid +
n∑

ı=1

ci · (zi + ti) +
n∑

i=1

n∑

j=1

cij · (zi + ti) · (zj + tj), (12)

REC2004



19

and similarly,

f(xmid + z − t) = ymid +
n∑

ı=1

ci · (zi − ti) +
n∑

i=1

n∑

j=1

cij · (zi − ti) · (zj − tj), (13)

hence
1
2
· (f(xmid + z + t)− f(xmid + z − t)) =

n∑

i=1


ci + 2 ·

n∑

j=1

cij · zj


 · ti. (14)

This expression is linear with respect to t1, . . . , tn. Therefore, we can use the existing linear
Cauchy algorithm in order to find bounds for this expression as a function of ti when
|ti| ≤ ∆i.

Let g(z) = g(z1, . . . , zn) denote the result of applying the linear Cauchy method to the
expression (14) considered as as a function of t; then,

g(z) =
n∑

i=1

∣∣∣∣∣∣
ci + 2 ·

n∑

j=1

cij · zj

∣∣∣∣∣∣
·∆i.

Since the function f is monotonic on the box, its derivative
∂f

∂xi
has the same sign at all

the points from the box. Hence, the sign of the derivative ci + 2 ·
n∑

j=1
cij · zj at the point

xmid + z = (xmid
1 + z1, . . . , x

mid
n + zn)

is the same as the sign εi of the derivative ci at the midpoint xmid = (xmid
1 , . . . , xmid

n ) of the
box. Since |E| = sign(E) · E for every expression E, we thus conclude that

∣∣∣∣∣∣
ci + 2 ·

n∑

j=1

cij · zj

∣∣∣∣∣∣
= εi ·


ci + 2 ·

n∑

j=1

cij · zj


 ,

hence

g(z) =
n∑

i=1

|ci| ·∆i + 2 ·
n∑

i=1

n∑

j=1

cij · εi ·∆i · zj . (15)

In particular, for z = 0 = (0, . . . , 0), we get g(0) =
n∑

i=1
|ci| ·∆i.

¿From (12) and (14), we conclude that

f(xmid + z)− f(xmid − z) = 2 ·
n∑

i=1

ci · zi.

We can therefore construct a new function h(z) as follows:

h(z) def=
1
2
· (g(z)− g(0) + f(xmid + z)− f(xmid − z)) =
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n∑

i=1

ci · zi +
n∑

i=1

n∑

j=1

cij · εj ·∆j · zi. (16)

This expression is linear with respect to z1, . . . , zn. Therefore, we can use the existing linear
Cauchy algorithm in order to find bounds for this expression as a function of zi when
|zi| ≤ ∆i. As a result, we get the estimate

H
def=

n∑

i=1

∣∣∣∣∣∣
ci +

n∑

j=1

cij · εj ·∆j

∣∣∣∣∣∣
·∆i.

Since the function f is monotonic on the box, its derivative
∂f

∂xi
has the same sign at all

the points from the box. Hence, the sign of the derivative ci +
n∑

j=1
cij · εj ·∆j at the point

(xmid
1 +

1
2
· ε1 ·∆1, . . . , x

mid
n +

1
2
· εn ·∆n)

is the same as the sign εi of the derivative ci at the midpoint xmid = (xmid
1 , . . . , xmid

n ) of the
box. Since |E| = sign(E) · E for every expression E, we thus conclude that

∣∣∣∣∣∣
ci +

n∑

j=1

cij · εj ·∆j

∣∣∣∣∣∣
= εi ·


ci +

n∑

j=1

cij · εj ·∆j


 ,

hence

H =
n∑

i=1

|ci| ·∆i +
n∑

i=1

n∑

j=1

cij · εi ·∆i · εj ·∆j ,

which is exactly the above expression for ∆+. The value ∆− can now be computed as
2g(0)−∆+.

We thus arrive at the following algorithm for computing ∆+ and ∆−.

Algorithm. As an auxiliary step, we first design an algorithm that, given a vector z =
(z1, . . . , xn), computes g(z). This algorithm consists of applying the linear Cauchy deviate

method to the auxiliary function t → 1
2
· (f(xmid + z + t)− f(xmid + z − t)) and the values

ti ∈ [−∆i, ∆i]. The linear Cauchy methods requires N calls to the auxiliary function (where
N depends on the desired accuracy), and each call to the auxiliary function means 2 calls
to the program f ; so, overall, we need 2N calls to f .

The algorithm itself works as follows:

− First, we apply the algorithm g(z) to the vector 0 = (0, . . . , 0), thus computing the
value g(0).

− Second, we apply the linear Cauchy deviate method to the auxiliary function h(z) =
1
2
· (g(z)− g(0) + f(xmid + z)− f(xmid − z)); the result is the desired value ∆+.
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− Finally, we compute ∆− as 2g(0)−∆+.

What is the computational complexity of this algorithm? How many calls to the program
f did we make?

− In the first stage, we made a single call to g, so this stage requires 2N calls to f .

− The second stage requires N calls to h. Each call to h means 2 calls to f and 1 call to
g; each call to g, as we have mentioned, requires 2N calls to f . Thus, overall, each call
to h requires 2 + 2N calls to f ; in total, the second stage requires N · (2 + 2N) calls
to f .

− On the final stage, there are no calls to f .

So, overall, this algorithm requires 2N + n · (2 + 2N) = 2N · (N + 2) calls to f .
For example, if we want the 20% accuracy on average, we need N = 50, so this algorithm

would require ≈ 5000 calls to f . Thus, when we have n ¿ 5000 variables, it is faster to use
the sensitivity analysis method, but when we have n À 5000 variables, this Monte-Carlo-
type method is faster.

If we want 20% accuracy with certainty 95%, then we need N = 200. In this case, the
above quadratic method requires ≈ 80000 calls to f , so this method is faster only if we have
n À 80000 variables.
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