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Abstract. In order to ensure the safety of a structure, one must provide for adequate strength of 
structural elements.  In addition, one must prevent large unstable deformations such as buckling. 
In most analyses of buckling, structural properties and applied loads are considered certain. This 
approach ignores the fact that imperfections and unknown changes in properties, albeit small, are 
required for onset of buckling.   In this paper, we extend the interval finite element methods 
developed by the authors to solve for the possible values of loads that will result in a structural 
stability failure. The analysis requires that interval axial element forces in each frame element in 
a structure be calculated. These values are calculated from a linear system of interval equations 
resulting from the static structural analysis. Using the calculated axial loads, a subsequent 
interval eigenvalue problem is solved for the buckling loads. For both solutions of the linear 
system of equations and the eigenvalue problem, the unique properties of the finite element 
methods result in sharp solutions. Several structural problems are presented as exemplars. The 
sharpness of the solution is demonstrated by comparing to combinatorial solutions.    
 
 
 

1. Introduction 
 
 
In order to ensure the safety of a structure, one must provide for adequate strength of structural 
elements. In addition, one must prevent large unstable deformations known as buckling. In 
determining adequate strength as well as adequate stability, the finite element method has 
become the standard of practice for predicting a structure’s behavior.  
In current practice, uncertainty in system parameters is not considered during the analysis.  
Uncertainty is accounted for in a design by a combination of load amplification and strength 
reduction factor.   
 Such factors are based on probabilistic models of historic data. Thus, consideration of the 
impact of changing uncertainty on a design has been removed from current analysis tools.    
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In order to mitigate this problem, the authors among others (REF IFEM) have developed an 
interval based finite element method (IFEM).  IFEM allows a structural analyst to calculate the 
impact of uncertainty in parameters on the structure’s predicted behavior.    To our knowledge, 
IFEM has only been applied to analysis addressing the strength criterion.  In this paper, we 
extend IFEM to linear stability analysis of structures.  
 
The method presented in this paper requires that interval internal element axial forces in each 
element in a structure be calculated. These values are calculated from a linear system of interval 
equations resulting from the static structural analysis.  Using the calculated internal forces, a 
subsequent interval eigenvalue problem is formulated.  The solution of the interval eigenvalue 
problem is then used to calculate the bounds on the critical buckling load.  For both the solution 
of the linear system of equations and the eigenvalue problem, the unique properties of the finite 
element method are employed to achieve sharp results.   
 
In the following, a brief review of IFEM for calculation of internal element forces is presented.  
Section 3 describes the formulation of the interval linear stability problem.  In section 4, a 
method for calculation of exact bounds on the resulting eigenvalue problem is then given.  An 
example problem is presented in section 5. Observations and conclusions are given in section 6. 
 
 

2. Review of Static Interval Finite Element Methods 
 
 
The linear stability analysis of structures requires the element forces to be determined as the first 
step in the analysis.   For problems with interval values for the stiffness or loads, one needs an 
interval solution to the underlying statics problem. For the solution of interval finite element 
(IFEM) problems, Muhanna and Mullen (2001) introduced an Element-by-Element interval finite 
element formulation, in which a guaranteed enclosure for the solution of interval linear systems 
of equations was achieved. This method accounts for the parametric representation of element 
properties and a very sharp enclosure for the solution set due to loading, material and geometric 
uncertainty in solid mechanics problems. Element matrices were formulated based on the physics, 
and Lagrange multiplier or penalty methods were applied to impose the necessary constraints for 
compatibility and equilibrium.    
 
For example, a two-element finite element construct is shown in figure (1).  In this example, (E) 
is Young’s modulus, (A) the cross-sectional area, and (L) the length of each element.  Subscripts 
here indicate element number.  Nodal loads are denoted by (P), and nodal displacements are 
denoted by (u).   
 
The conventional finite element formulation results in a global stiffness matrix as given in Eq. (1) 

 
 
 

 
 

 
 
 
 

Figure (1) :  Two connected linear truss elements. 
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When the parameters E, A, or L are interval quantities, the resulting interval matrix allows for 
independent interval values for elements of this matrix which is not physically possible. The 
element-by-element method generates a global stiffness matrix in the form shown in Eq. (2).   
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where χi  is the interval multiplier of the ith finite element obtained due to uncertainty in Ei, Ai, 
and li.  Such a form (i.e.DS) allows for factoring out the interval multiplier, resulting with an 
exact inverse for (DS). 
 
To ensure compatibility (unique displacements for all elements connecting to a node), one adds 
constraint conditions in the form of Eq. (3). The resulting system of linear interval equations 
becomes Eq. (3) and (4) 
 
Equation (1) can be introduced in the following equivalent form: 
 

 0~ =UC  (3) 
 

 PCKU T =+ λ~  (4) 

 If we express K ( n × n)  in the form  SD~ and substitute in equation (4): 
 

 λTCPUSD ~~ −=  (5) 
 
where D (n × n) is interval diagonal matrix, where its diagonal entries are the positive interval 
multipliers associated with each element, and  n is the multiplication of  degrees of freedom per 
element and the number of elements in the structure.  S~ (n × n) is a deterministic singular matrix 
(fixed point matrix).  If we multiply equation (3) by TCD ~  and add the result to equation (5), we 
get: 
 

                                      )~()~~~( λTT CPUCCUSD −=+                                                   (6) 
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or: 
 )~()~~( λTCPUQUSD −=+   

 )~()~~( λTCPUQSD −=+   

 )~(~ λTCPURD −=  (7) 
 
where )~(R is a deterministic positive definite matrix, and the displacement vector  U  can be 
obtained from equation (7) in the following form: 
 

 )~(~ 11 λTCPDRU −= −−  (8) 
 
where ( 11~ −− DR ) is an exact inverse of the interval matrix )~( RD .  Equation (8) can be presented 
in the form: 
 

 δ  ~ 1MRU −=  (9) 
 
Matrix (M) has the dimensions (n × number of elements), and its derivation has been discussed in 
the previous works of the authors (Mullen and Muhanna 1999, Muhanna and Mullen 1999).  The 
vector δ is an interval vector that has the dimension of (number of elements × 1) and its elements 
are the diagonal entries of 1−D with the difference that every interval value associated with an 
element is occurring only once.   
    If the interval vector λ  can be determined exactly, the solution of Eq. (8) will represent an 
exact hull for the solution set of the general interval FE equilibrium equation.    
 
More details on optimal implementation of the above concepts for static finite element solutions 
is presented in another paper in this proceedings.  (Muhanna, Mullen and Zhang 2004). 
 
 
 

3. Problem Definition 
 
 

Deterministic Buckling Analysis: 
As discussed in the previous section, the buckling analysis using the linear finite element method 
is carried out in two main steps. First, a parametric static analysis is performed using an arbitrary 
ordinate of applied load.  
 

 }{}]{[ PuKe =  (10) 
 

The solution output includes the internal axial forces in terms of the load ordinate. Using these 
results, the geometric stiffness of the structure is developed which represents the pre-compression 
load’s effects on the total stiffness of the structure (McGuire, Gallagher and Ziemian 2000).       
 
Second, a generalized eigenvalue problem is performed between the elastic and geometric 
stiffness matrices of the structure in order to find the critical buckling loads in terms of the 
geometric and material characteristics of the structure. 
 

 }0{}]){[]([ =− uKgKe λ  (11) 
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Buckling Analysis for Structures with Bounded Uncertainty: 
For structures with bounded uncertainty present in the stiffness characteristics, the buckling 
analysis procedure requires the modifications on the following: First, the representation of 
stiffness characteristics must consider the presence of uncertainty using interval numbers. Second, 
the static analysis must be performed using the obtained interval stiffness matrix; hence, the 
calculated element axial forces are interval values. Third, using the obtained element interval 
axial forces, the interval geometric stiffness matrix can be established. Fourth, the interval 
eigenvalue problem must be solved in order to obtain the bounds on the critical buckling loads. 
 

I. Interval Representation of Uncertainty 
 
Interval Number: 
A real interval is a closed set of the form: 
 

 }|{],[~ ulul zzzzzzZ ≤≤ℜ∈==  (12) 
 
In this work, the symbol (~) represents an interval quantity. 
  
Interval Formulation: 
The structure’s global stiffness can be viewed as a summation of the element contributions to the 
global stiffness matrix:  
 

 ∑
=

=
n

i

T
iii LKeLKe

1

]][][[][  (13) 

 
where [ iL ] is the element Boolean connectivity matrix and ][ iK  is the element stiffness matrix 
in the global coordinate system. Considering the presence of uncertainty in the stiffness 
properties, the non-deterministic element stiffness matrix is expressed as: 

 
 ]])[,([]~[ iiii KeuleK =  (14) 

 
in which ],[ ii ul  is an interval number that pre-multiplies the deterministic element stiffness 
matrix. Therefore, the structure’s global stiffness matrix in the presence of any uncertainty is the 
linear summation of the contributions of non-deterministic interval element stiffness matrices: 
  

 ∑∑
==

==
n

i
iii

n

i

T
iiiii eKulLKeLuleK

11

]])[,([]][][])[,([]~[  (15) 

 
in which, ][ ieK  is the deterministic element stiffness contribution to the global stiffness matrix. 
 
 

II. Interval Geometric Stiffness Matrix 
 
Using the obtained interval axial forces by IFEM (Section 2), the interval geometric stiffness 
matrix can be set up. The structure geometric stiffness can be viewed as a summation of the 
element contributions to the global geometric stiffness matrix: 
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 ∑
=

=
n

i

T
iiii LgKfLKg

1

]])[ˆ)[](([][  (16) 

 
where, ( if ) is the element axial force and ]ˆ[ igK  is the force independent matrix of geometric 
stiffness. Considering the axial force as an interval quantity, the interval structure’s geometric 
stiffness matrix can be established as: 
 

  ∑∑
==

==
n

i
ii

n

i

T
iiii gKfLKgLfgK

11

])[~(]][][)[~(]~[  (17) 

 
where T

iiii LgKLgK ]][ˆ][[][ =  and  ( ]max,min[~
iii fff = ) is the element interval axial load.  

 
III. Interval Eigenvalue Problem for Buckling Analysis 
 

Hollot and Barlett (1987) studied the spectra of eigenvalues of an interval matrix family which 
are found to depend on the spectrum of its extreme sets. Dief (1991) presented a method for 
computing interval eigenvalues of an interval matrix based on an assumption of invariance 
properties of eigenvectors.  
 
The concept of interval eigenvalue problem has been used in structures with interval uncertainty. 
Modares and Mullen (2004) have introduced a method for the solution of the interval eigenvalue 
problem which determines the exact bounds of the natural frequencies of a structure using IFEM 
formulation.  
 
In order to obtain the bounds on the critical buckling loads, a generalized interval eigenvalue 
problem must be performed between the interval elastic and interval geometric stiffness matrices 
as: 
 

 }]){[)~()(~(}){]])[,([(
11

ugKfueKul i

n

i
i

n

i
iii ∑∑

==

= λ  (18) 

 
Interval Eigenvalue Problem Definition: 
The eigenvalue problems for matrices containing interval values are known as the interval 
eigenvalue problems. If ]~[A  is an interval matrix )~( nnIRA ×∈  and ][A  is a member of the 

interval matrix )~( AA∈ , the interval eigenvalue problem is shown as:  
   

 )~(,0}]){[]([ AAuIA ∈=− λ    (19) 
 
 
The solution of interest to the real interval eigenvalue problem is defined as an inclusive set of 
real values )~(λ  such that for any member of the interval matrix, the solution to its eigenvalue 
problem is a member of the solution set shown as: 
 

 }0}]){[]([:~|],[~{ =−∈∀=∈ uIAAAul λλλλλ  (20) 
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which is the enclosure of all possible solutions. A sharp enclosure is defined as the solution with 
the smallest radius as: 
 

 }0}]){[]([:~|],[~{ =−∈∀=∈∃ uIAAAul λλλλλ  (21) 
 

  
4. Solution for Interval Eigenvalue Problem 

 
 

The following concepts must be considered in order to bound the non-deterministic interval 
eigenvalue problem, Eq.(18). 

 
The classical linear eigenpair problem for a symmetric matrix is: 
  

  xAx λ=  (22) 
 
with the solution of real eigenvalues ( nλλλ ≤≤≤ ...21 ) and corresponding eigenvectors 
( nxxx ,...,, 21 ). This equation can be transformed into a ratio of quadratics known as the Rayleigh 
quotient: 
 

  
xx

AxxxR T

T

=)(  (23) 

 
The Rayleigh quotient for a symmetric matrix is bounded between the smallest and the largest 
eigenvalues (Bellman 1960 and Strang 1976). 
 

  nT

T

xx
AxxxR λλ ≤=≤ )(1  (24) 

 
Thus, the first eigenvalue ( 1λ ) can be obtained by performing an unconstrained minimization on 
the scalar-valued function of Rayleigh quotient:   
 

  1)(min)(min λ==
∈∈ xx

AxxxR T

T

RxRx nn
 (25) 

  
For finding the next eigenvalues, the concept of maximin characterization can be used. This 
concept obtains the kth eigenvalue by imposing (k-1) constraints on the minimization of the 
Rayleigh quotient:  

 
  )](max[min xRk =λ  (26) 

(subject to constrains 2,1,...1),0( ≥−== kkizx i
T ) 

 
Bounding the Critical Buckling Loads: 
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Using the concepts of minimum and maximin characterizations of eigenvalues for symmetric 
matrices, the solution to the generalized interval eigenvalue problem for the critical buckling 
loads of a structure with uncertainty in the stiffness characteristics (Eq.(18)) for the first 
eigenvalue can be shown as: 

  

)
)]])[max,min([(

)]])[,([(
(min)

]~[
]~[(min~

1

1
1

xgKffx

xeKulx

xgKx
xeKx

n

i
iii

T

n

i
iii

T

RxT

T

Rx nn

∑

∑

=

=

∈∈
==λ  (27) 

for the next eigenvalues: 

)]
)]])[max,min([(

)]])[,([(
(minmax[]

]~[
]~[minmax[~

1

1

1,...,1,0.1,...,1,0.
xgKffx

xeKulx

xgKx
xeKx

n

i
iii

T

n

i
iii

T

kizxT

T

kizxk
ii ∑

∑

=

=

−==−==
==λ  (28) 

 
 
Bounding Deterministic Eigenvalue Problems for the Critical Buckling Loads: 
Since the matrices ][ ieK  and ][ igK  are non-negative definite, the terms ))(( xeKx i

T  

and ))(( xgKx i
T  are non-negative. Therefore, the upper bounds on the eigenvalues in Eqs.(18) 

and (19) are obtained by considering maximum values of interval coefficients of uncertainty for 
all elements in the elastic stiffness matrix and the lower values of axial force in the geometric 
stiffness matrix . Similarly, the lower bounds on the eigenvalues are obtained by considering 
minimum values of interval coefficients of uncertainty for all elements in the elastic stiffness 
matrix and the upper values of axial force in the geometric stiffness matrix.  

Also, it can be observed that any other element stiffness selected from the interval sets will yield 
eigenvalues between the upper and lower bounds. Using these concepts, the deterministic 
eigenvalue problems corresponding to the maximum and minimum critical buckling loads are 
obtained as:  

 

 }]{[)min()(}){])[((
1

max
1

ugKfuKu i

n

i
i

n

i
ii ∑∑

==

= λ  (29) 

 }]{[)max()(}){])[((
1

min
1

ugKfuKl i

n

i
i

n

i
ii ∑∑

==

= λ  (30) 

 
 
 
 

5. Example 
 
 

The bounds on the critical buckling load for a 2D statically indeterminate truss with interval 
uncertainty present in the modulus of elasticity of each element are determined (Figure (2)).  
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Figure (2):  The structure of 2-D truss 

 
 
The cross-sectional area A , the length for horizontal and vertical members L , the Young’s 
moduli E for all elements are EE ])01.1,99.0([~ = . 
 
The problem is solved using the method presented in this work. First, a static analysis on the 
structure with uncertainty is performed using IFEM, and the bounds on obtained element axial 
forces are obtained. Second, two deterministic eigenvalue problems are performed to obtain the 
bounds on the critical buckling load. 
 
For comparison, a combinatorial analysis has performed which considers lower and upper values 
of uncertainty for each element i.e. solving ( 102422 10 ==n ) deterministic problems. 
 
The static analysis results obtained by IFEM and the brute force combination solution are 
summarized in Table (1). 
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Table (1): Static Analysis of the example problem using IFEM and combination method 
  
Second, a buckling analysis is performed using the method presented in this work. Also, the 
solution to a combinatorial buckling analysis is obtained, and the results for the fundamental 
critical buckling load is summarized in Table (2). 
 
 
 
 
 
 
 

 
 
 
 
 
Table (2): Buckling of the example problem using the present method and comparison with the 
combinatorial analysis results 
 
In practice, the lowest buckling load is the only value of interest.  As such, we have compared 
only the lower bound in Table 2. The example problem shows an overestimation of the width of 
the interval results of the proposed method compared to a combinatorial solution.  The 
overestimation could be attributed to three possible sources: overestimation in the interval values 
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Bound 

 
IFEM 

 

 
Upper 
Bound 

 
IFEM 

 
Lower Bound

 
Combination

Method 

 
Upper Bound 

 
Combination 

Method 
 

1f  -0.7943 -0.7863 -0.7945 -0.7862 

2f  -0.3021 -0.2908 -0.3023 -0.2905 

3f  -0.3021 -0.2908 -0.3023 -0.2905 

4f  -0.7943 -0.7863 -0.7945 -0.7862 

5f  0.3887 0.4013 0.3882 0.4018 

6f  -0.8182 -0.8108 -0.8187 -0.8104 

7f  -0.2674 -0.2569 -0.2679 -0.2563 

8f  -0.2674 -0.2569 -0.2679 -0.2563 

9f  -0.8182 -0.8108 -0.8187 -0.8104 

10f  0.1817 0.1891 0.1812 0.1895 
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0.1080 

 
0.1081 

 
0.1093 

 
0.021 

 

 
0.010 
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of the static solution of internal forces, overestimation in the eigenvalue solution or 
overestimation from uncoupling of the element forces Eq. (10) and the critical load Eq. (11).    
The internal forces calculated by the interval method and the exact combinatorial results are 
correct in the first three digits.  The eigen solution has been proved to be sharp.  Therefore the 
uncoupling of the static solution from Eq. (10) and the stability equation (11), is the most likely 
cause of the overestimation of the width seen in the solution. This can be seen by examining a 
solution where the exact combinatorial internal forces are used in Eq. (11) to find the critical 
buckling load.  In this calculation, the critical load in (0.1081), just slightly above the results 
from the proposed method of 0.1080 (See Table 2). 
 
 

6.   Discussion 
 
 

In this paper, we have introduced a method for linear stability analysis of a structure with 
stiffness properties expressed as an interval quantity.  To our knowledge, this is the first 
treatment of interval methods for structural stability. The conventional two step method 
consisting of solving the linear static problem for internal forces and subsequent solution of an 
eigen problem for the critical buckling load has been adapted from the non-interval approach.  
The method presented provides a lower bound for the minimum buckling load. Dependency of 
the interval internal forces and interval stiffness parameters have not been included in the method; 
this is the expected cause of loss of sharpness in the interval results.  
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