
 

REC2004 

1

An Efficient Unified Approach for Reliability and Robustness in 
Engineering Design  
 
 
Zissimos P. Mourelatos 
Mechanical Engineering Department Oakland University, Rochester, MI 48309 
e-mail: mourelat@oakland.edu 
 
Jinghong Liang 
Mechanical Engineering Department Oakland University, Rochester, MI 48309 

 
 
Abstract.  Mathematical optimization plays an important role in engineering design, leading to 
greatly improved performance. Deterministic optimization however, can lead to undesired 
choices because it neglects input and model uncertainty. Reliability-based design optimization 
(RBDO) and robust design improve optimization by considering uncertainty. A design is called 
reliable if it meets all performance targets in the presence of variation/uncertainty and robust if it 
is insensitive to variation/uncertainty. Ultimately, a design should be optimal, reliable, and robust. 
Usually, some of the deterministic optimality is traded-off in order for the design to be reliable 
and/or robust. This paper describes the state-of-the-art in assessing reliability and robustness in 
engineering design and proposes a new unifying formulation. The principles of deterministic 
optimality, reliability and robustness are first defined. Subsequently, the design compromises for 
simultaneously achieving optimality, reliability and robustness are illustrated. Emphasis is given 
to a unifying probabilistic optimization formulation for both reliability-based and robust design, 
including variation of all performance measures. The robust engineering problem is investigated 
as a part of a “generalized” RBDO problem. Because conventional RBDO optimizes the mean 
performance, its objective is only a function of deterministic design variables and the means of 
the random design variables. The conventional RBDO formulation is expanded to include 
performance variation as a design criterion. This results in a multi-objective optimization problem 
even with a single performance criterion. A preference aggregation method is used to compute 
the entire Pareto frontier efficiently. Examples illustrate the concepts and demonstrate their 
applicability. 
 

1. Introduction 
 
 
Deterministic mathematical optimization has led to greatly improved performance in all areas of 
engineering design.  It can however, lead to undesired choices, if uncertainty/variation is ignored. 
In deterministic design we assume that there is no uncertainty in the design variables and/or 
modeling parameters. Therefore, there is no variability in the simulation outputs. However, there 
exists inherent input and parameter variation that results in output variation. Deterministic 
optimization typically yields optimal designs that are pushed to the limits of design constraint 
boundaries, leaving little or no room for tolerances (uncertainty) in manufacturing imperfections, 
modeling and design variables. Therefore, deterministic optimal designs that are obtained without 
taking into account uncertainty are usually unreliable. Input variation is fully accounted for in 
Reliability-Based Design Optimization (RBDO) and robust design.  

In RBDO, probability distributions describe the stochastic nature of the design variables and 
model parameters. Variations are represented by standard deviations (typically assumed to be 
constant) and a mean performance measure is optimized subject to probabilistic constraints. 
RBDO can be a powerful tool which can assist in design under uncertainty, since it provides 
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optimum designs in the presence of uncertainty in design variables/parameters and simulation 
models. For this reason, it has been extensively studied [1-8]. 

Robust designs methods are also widely used because they can improve the quality of 
products and processes [9]. Robust design minimizes performance variation without eliminating 
the sources of variation [10]. The product quality is commonly defined using a quality loss 
function [10,11]. Various methods have been proposed for estimating the product quality loss 
[12-16] using the mean and standard deviation of the response (performance measure). A review 
of existing robust optimization methods can be found in [17,18].  

It is common in product design to have multiple performance measures. A robust design 
therefore, must simultaneously minimize the variation of all performance measures using a multi-
objective optimization approach. It is however, common to use a single-objective robust design 
formulation by either minimizing a heuristic quality loss function [18,19] or form a single 
objective utilizing weighting factors in a weighted-sum approach [20]. We will show in this work 
that the weighted-sum approach may lead to inaccurate results. A detailed examination of the 
weighted-sum approach drawbacks is provided in [21]. There are only a few multi-objective 
approaches to robust design [17,22-24]. 

Reliability and robustness are attributes of design under uncertainty. It makes sense therefore, 
to combine them in a unified, multi-objective approach where the mean and variation of multiple 
performance measures are simultaneously minimized, subject to probabilistic constraints for 
design feasibility. Such an approach is proposed in this paper. The concept of a unified 
methodology for reliability and robustness is not new, as references [17,18,25] for example, 
indicate. However, major simplifications are usually made. In general, researchers use one or 
both of 1) the weighted-sum simplification for the general multi-objective problem and 2) a 
simplified representation of the probabilistic design feasibility using the worst-case scenario 
[23,17] or the moment matching formulation [26,16]. Furthermore, a first-order Taylor expansion 
is usually performed for estimating the performance variance. This linearization approach does a 
fairly good job in estimating the expected value of the nonlinear objective function. However, it 
can be quite inaccurate in estimating its higher moments as is the standard deviation [27]. 
Moreover, it is limiting in that it does not provide us with the correct probability distribution 
information of the objective function.  

In this paper, a computationally efficient unified approach to reliability and robustness is 
proposed which alleviates the described shortcomings of the available methods. A preference 
aggregation method [28-30] is used to choose the “best” solution of a multi-objective 
optimization problem based on designer preferences. The performance variation is assessed by a 
percentile difference method originally proposed in [25]. The percentiles are efficiently calculated 
using a variation of the Advanced Mean Value method [31]. The “best” design is calculated using 
an efficient single-loop probabilistic optimization method [32]. Examples illustrate the 
methodology.  
 

2. Definition of Optimality, Reliability and Robustness 
 
In deterministic design optimization an objective function is usually minimized subject to certain 
constraints which define a feasible region. A conventional deterministic optimization problem 
with inequality constraints only, is stated as  
                   ( )d

d
fmin                  (1) 

          s.t.   ( ) 0≥diG ,   ni ,...,1=                                                        

                   UL ddd ≤≤   
where kR∈d is the vector of deterministic design variables. A bold letter indicates a vector. 
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In optimization under uncertainty the task is to minimize (or maximize) an objective while 1) 
all constraints are satisfied and 2) the performance of the design is insensitive to the existing 
variation or uncertainty. Variation or stochastic uncertainty is defined as that “irreducible” 
uncertainty which, being inherent in the physical system, ought not to depend on the amount of 
available statistical data. It is usually modeled probabilistically. In this work, a design is called 
reliable if it meets all performance targets in the presence of variation/uncertainty and robust if it 
is insensitive to variation/uncertainty. Ultimately, a design should be optimal, reliable, and 
robust. Usually, some of the deterministic optimality is traded-off in order for the design to be 
reliable and/or robust. 
 A typical RBDO problem is formulated as 
                   ( )PXµd,

µ,µd,
X

fmin                 (2) 

          s.t.   ( )( )
ifii pRGP −=≥≥ 10,, PXd ,   ni ,...,1=                                              

                   UL ddd ≤≤   
                  UL

XXX µµµ ≤≤     
where mR∈X is the vector of random design variables and qR∈P is the vector of random 
design parameters. According to the used notation, an upper case letter indicates a random 
variable or a random parameter and a lower case letter indicates a realization of a random variable 
or parameter. If the target probability of failure fp is approximated using the target reliability 

index tβ  and the standard normal cumulative distribution function Φ , the actual reliability level 

for the ith deterministic constraint ( ) 0≥PX,d,iG  is 
ifi pR −=1  where  

 )()0()0)((
iii tGif FGPp β−Φ≤=≤= PX,d,                                  (3)    

and ( )
iGF  is the cumulative distribution function  of iG .  

The principles of deterministic optimality and reliability are demonstrated graphically in Fig. 
1 using a hypothetical design. The design compromises for achieving optimality and reliability 
are illustrated. For a hypothetical design with two constraints in two dimensions, the deterministic 
optimum is denoted by point A in Fig. 1. It is the constrained optimum, where the objective is 
minimized and both constraints are active. If the two design variables are random with their 
means specified by the deterministic optimum, all possible design realizations fall within a closed 
domain (indicated for simplicity by a circle centered at point A) due to the variation of the two 
design variables. In this case, a large percentage of design realizations violate at least one 
constraint or performance target, rendering design A unreliable. To achieve reliability, the circle 
around point A must be moved inside the feasible domain with its center at point B. As the circle 
moves within the feasible domain, the design simultaneously becomes more reliable and less 
optimal. The circle must be moved to accommodate the uncertainty indicated by its radius. At the 
reliable design B, the circle may be tangent to a number of performance targets which become 
“probabilistically” active. The process of moving the circle from the deterministic optimum to the 
reliability optimum is known as Reliability-Based Design Optimization. It can be implemented 
mathematically by solving Problem (2). 
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Figure 1. Geometric interpretation of deterministic and reliable designs 

 
At point B of Fig. 1, the design is at its reliability optimum where the objective function is 

optimized given that the circle around B is within the bounds of the constraints. However, it may 
not be robust. It is robust if the performance of each design realization within the circle is as close 
to constant as possible, indicating insensitivity to variation. Robustness can therefore, be achieved 
by placing the final optimum at a region, where the response is “flat” or insensitive to the design 
variables. This is illustrated in Fig. 2 for a hypothetical one-dimensional design. Assuming the 
variation/uncertainty of the design variable x is constant, the variation of the response is much 
smaller if 2xx = . It should be noted that the reliable and robust design is usually (although not 
necessarily), suboptimal to the reliable design B which is in turn suboptimal to the deterministic 
design A. This is the design trade-off among optimality, reliability and robustness.  
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Figure 2. Geometric interpretation of robust design 
  

The robust design problem is in general, expressed as 
                   ],...,,[min

21 mfff VVV=fµd,
V

X

              (4) 

s.t.  ( )( )
ifii pRGP −=≥≥ 10,, PXd ,   ni ,...,1=                                              
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                   UL ddd ≤≤   
                   UL

XXX µµµ ≤≤     
where V indicates a variation measure. For example, 

1fV is a variation measure of the first 

objective f 1 of the multi-objective Problem (4). Section 4 discusses the commonly used variation 
measures and explains what we propose in this work. 

A unifying formulation for reliability and robustness is described in Section 4. The solution 
methodology is based on a “generalized” RBDO formulation which includes robustness 
considerations. For this reason, an overview of the existing RBDO methods is given next. 
 

3. Overview of Reliability-Based Design Optimization 
 
Optimization is concerned with achieving the best outcome of a given objective while satisfying 
certain restrictions. It has been observed that the deterministic optimum design does not 
necessarily have high reliability. To ensure that the optimum design is also reliable, the 
optimization formulation must include reliability constraints. Such a formulation is commonly 
referred as Reliability-Based Design Optimization (RBDO). Problem (2) is a typical RBDO 
formulation.  

The classical RBDO method is the so-called double-loop approach. It employs two nested 
optimization loops; the design optimization loop (outer) and the reliability assessment loop 
(inner). The latter is needed for the evaluation of each probabilistic constraint. There are two 
different methods for the reliability assessment; the Reliability Index Approach (RIA) [2] and the 
Performance Measure Approach (PMA) [6,7]. Although either approach can be used, PMA is in 
general more efficient, especially for high reliability problems [7]. Every time the design 
optimization loop calls for a constraint evaluation, a reliability assessment loop is executed which 
searches for the Most Probable Point (MPP) in the standard normal space, based on First-Order 
Reliability Methods (FORM).  

The PMA-based RBDO problem, which is practically the inverse of the RIA-based RBDO 
problem, is stated as [7] 
                   ( )PXµd,

µ,µd,
X

fmin                (5) 

          s.t.  0))((( 1 ≥−Φ= −

iii tGp FG β ,  ni ,...,1=   

                  UL ddd ≤≤   
                  UL

XXX µµµ ≤≤        
where Eq. (3) has been used to transform each probabilistic constraint to an equivalent non-
negative constraint for a performance measure pG . pG  is a function of the target reliability 

index tβ . It is calculated from the following reliability minimization problem 
                  )(min U

U
GGp =                           (6) 

            s.t  tβ=U  
where the vector U represents the random variables in the standard normal space. 

Using a percentile formulation, the general RBDO formulation of Eq. (2), can be equivalently 
stated as [6,7]  
  ( )PXµd,

µ,µd,
X

fmin                                  (7) 

   s.t.     niG R
i ,,1,0)( L=≥PX,d,                             

                        UL ddd ≤≤  ,   UL
XXX µµµ ≤≤  
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where RG is the R-percentile of the constraint )( PX,d,G . It is defined as  

  RGGP R =≥ ))(( PX,d,                                                                   (8) 

where R is the target reliability for the constraint. Note that RGP ≥≥ )0)(( PX,d,  if 0≥RG . 
Therefore, 0≥RG provides an equivalent expression of the probabilistic constraints in Eq. (2). 
After the MPP is calculated, the R-percentile is given by  
                       ( )MPPMPP

R GG PXd ,,= .                        (9) 
The RBDO Problems (5) or (7) involve nested optimization loops which may hinder on their 

computational efficiency. For this reason, two new classes of RBDO formulations have been 
recently proposed. The first class decouples the RBDO process into a sequence of a deterministic 
design optimization followed by a set of reliability assessment loops [33,34]. The series of 
deterministic and reliability loops is repeated until convergence. The second class of RBDO 
methods converts the problem into an equivalent, single-loop deterministic optimization [35,32], 
leading therefore, to significant efficiency improvements. 
 
3.1. Decoupled RBDO 
Among the decoupled RBDO methods, the Sequential Optimization and Reliability Assessment 
(SORA) [33] method is the most promising. It uses the reliability information from the previous 
cycle to shift the violated deterministic constraints in the feasible domain. This is done 
sequentially until convergence is achieved. SORA employs a sequence of decoupled deterministic 
optimization and reliability assessment loops which are performed in series. At the end of a 
deterministic design optimization, the reliability of each constraint is assessed. If the reliability of 
a particular constraint is less than the specified target, a “shifting” vector is calculated which is 
used to push the constraint boundary in the feasible domain. The “shifted” constraints are then 
used to perform a new deterministic design optimization. The series of deterministic and 
reliability assessment loops continues until convergence is achieved; i.e. the objective function is 
minimized and the target reliability of each constraint is met. At convergence the shifting distance 
is zero.  For the reliability assessment in SORA, either of the RIA or PMA approaches can be 
used. Detailed information is provided in [33]. 
  
3.2. Single-Loop RBDO 
Based on the percentile formulation of Eq. (7), a computationally efficient single-loop RBDO 
method has been recently developed [32]. The method relates the PX µµ ,  and X, P vectors using 
the KKT optimality conditions of the inner reliability loops. In that case, the constraint gradient 
and the β hyper-sphere gradient must be collinear and pointing in opposite directions at the MPP 
point [32]. This is expressed as ασµX X tβ−=  and ασµP P tβ−= . Problem (7) can be 
therefore, expressed as 
                       ),,(min

, PXµd
µµd

X

f           (10) 

                                       s.t. niG iii ,......,10),,( =≥PXd                                            
                     itiiti ii

ασµPασµX pX ββ −=−= ,           

                     ||)(||/)( iiiiiii GG P,Xd,σP,Xd,σα
PX,PX,

∇∗∇∗=  

                     ULUL
XXX µµµddd ≤≤≤≤ ,  

where PX µµ , are the mean values of vectors X and P, 
it

β is the target reliability index for the ith 

constraint, iα  is the normalized gradient of the ith constraint and σ is the standard deviation 
vector of random variables X and parameters P.  

It should be noted that the single-loop RBDO method does not search for the MPP of each 
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constraint. Instead, the MPP of each active constraint is correctly identified at the optimum. This 
dramatically improves the efficiency without compromising the accuracy. The main advantage of 
the method is the elimination of the repeated reliability loops and its excellent convergence 
properties since it is based on an equivalent deterministic optimization. Detail information on the 
single-loop method is provided in [32]. 

A modified version of the single-loop probabilistic optimization of Problem (10) is used in 
this work for the proposed unified reliability and robust design formulation.   
 

4. A Unified Formulation for reliability and Robustness 
 
A computationally efficient unified method to reliability and robustness, based on a multi-
objective optimization problem, is presented in this section. The method addresses all 
shortcomings of the existing methods as described in the introduction section. The preference 
aggregation method of Section 4.1 is used to choose the “best” solution of the multi-objective 
optimization problem based on designer preferences. The performance variation is assessed by a 
percentile difference method originally proposed in [25]. The percentiles are efficiently calculated 
using a variation of the Advanced Mean Value method as described in Section 4.2. The “best” 
design is calculated using the single-loop probabilistic optimization method of Section 3.2. 

A multi-objective formulation for reliability and robustness is proposed by combining the 
RBDO and robust design formulations of Problems (2) and (4), respectively. The variation 
measure 

ifV  of objective (performance) if  is expressed by the spread of its PDF, which is simply 

the percentile difference 12 R
i

R
if ffR

i
−=∆  where 1R

if  and 2R
if are a low and high percentile 

of if , respectively. For example, the 5th and 95th percentiles can be used. There are several 
advantages of using the percentile difference instead of the standard deviation in assessing 
variability in robust design. The percentile is related to the probability at the tail areas of the 
distribution and therefore, it provides more information than the standard deviation. It considers 
for example, the skewness of the distribution while the standard deviation only captures the 
dispersion around the mean value. Also, with the percentile formulation, we can easily know the 
confidence level of the design robustness, which is simply equal to 12 RR − .  

Using the percentile difference as a variation measure, the unified reliability and robustness 
formulation is stated by the following multi-objective optimization problem  
                   ( )PXµd,

µ,µd,
X

fmin              (11) 

                   ],...,,[min
21 mfff RRR ∆∆∆=fµd,

∆R
X

  

  s.t.  ( )( )
ifi pGP −≥≥ 10,, PXd ,   ni ,...,1=                                                        

                   UL ddd ≤≤   
                   UL

XXX µµµ ≤≤     
where 12 RR

f ffR −=∆ . The first objective minimizes a mean performance and the remaining 
objectives minimize the distribution spread of all performance measures. The trade-off between 
all objectives can play an important role in the selection of the best design. It is common to 
perform this trade-off using a weighted-sum approach which usually leads to undesired results. 

A multi-objective design problem generally has a set of possible “best” solutions, known as 
the Pareto set or Pareto frontier. The Pareto set contains all feasible points for which there is no 
other point which performs better on all objectives. To decide which of all the Pareto points is the 
best design, the objectives must be traded off against each other. 
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Some researchers have proposed to use compromise programming (CP) [17,22,23] to address 
the trade-off mentioned above. The basic idea in CP is to identify the entire Pareto frontier, and 
allow the user to choose among the Pareto points. CP commences with the identification of an 
ideal solution (utopia point), where each attribute under consideration simultaneously achieves its 
optimum value. As the ideal point is unachievable in general, the designer seeks a solution which 
is as close as possible to the ideal point. The closest feasible point to the utopia point for a given 
weight set is guaranteed to belong to the set of Pareto points. By varying the weighting factors, 
the full set of Pareto points can be obtained [17]. In contrast, a weighted-sum (WS) method used 
for the same purpose may fail to locate all Pareto points. It has been shown [36] that for every 
Pareto point of a convex multi-objective optimization problem there exists a (nonzero) weight 
vector w > 0 such that this Pareto point is an optimal solution of the Weighted-sum Problem 
(WSP). However, not every Pareto solution of a general (nonconvex) problem can be found by 
solving the corresponding WSP. Also, it has been concluded from numerical experiments [17] 
that even for convex multi-objective optimization problems, an evenly distributed set of weights 
fails to produce an even distribution of points from all parts of the Pareto set if a weighted-sum 
aggregation is used. Details on compromise programming in engineering design can be found in 
[17]. 
 
4.1. Preference Aggregation Method 

An alternative to compromise programming is preference aggregation. A family of 
aggregation functions for modeling all possible trade-offs in engineering design has been 
presented in [28-30]. Methods using these aggregation functions to aggregate preferences of 
designers on performance measures are called preference aggregation methods. In this work, a 
preference aggregation method is used to address the robust design of Problem (11). It has been 
mentioned that the weighted-sum methods have serious drawbacks for optimization [17,21] 
because they are usually unable to reach some Pareto solutions. The recovery of the entire Pareto 
frontier may be computationally intractable and even if it is available, it may be beyond the 
capacity of the human designer to choose the best point from the Pareto set.  The preference 
aggregation method surmounts these difficulties. This is the main reason we use preference 
aggregation methods instead of compromise programming in this work. 

Preference aggregation is a formal approach for reconciling multiple conflicting criteria in 
design [28,29].  Preference functions or preferences are defined for each criterion and the various 
functions are aggregated into a single overall preference function by means of aggregation 
operators.  Preference functions take values on [0,1], where a preference of 0 indicates a criterion 
is unacceptable, while a preference of 1 denotes complete satisfaction. A set of properties was 
offered in [28] that seem intuitively reasonable for combining preferences in engineering design, 
indicating that decisions can have different trade-offs.  The set includes the annihilation, 
idempotency, monotonicity, commutativity and continuity properties which are mathematically 
described as 
               ( ) ( )[ ] ( ) ( )[ ] 0,0,,,,,0 211221 == wwhhwhwh                            (annihilation)   (12) 
               ( ) ( )[ ] 12111 ,,, hwhwhh =                                                        (idempotency) (13) 

               ( ) ( )[ ] ( ) ( )[ ]2
*
2112211 ,,,,,, whwhhwhwhh ≤   if  *

22 hh ≤             (monotonicity) (14) 
               ( ) ( )[ ] ( ) ( )[ ]11222211 ,,,,,, whwhhwhwhh =                               (commutativity) (15) 
               ( ) ( )[ ] ( ) ( )[ ]221

*
12211 ,,,lim,,,

1
*
1

whwhhwhwhh
hh →

= .                       (continuity)      (16) 

where ( )11,wh  and ( )22 ,wh  are the individual preference functions to be aggregated and their 
corresponding importance weights and h is the aggregate preference function.  

The aggregation properties distinguish between compensating trade-offs, where high 
performance on one criterion can make up for lower performance on another, and non-
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compensating trade-offs, in which the lowest performances should be raised first.  It was shown 
[29] that the level of compensation can vary continuously, and that there is a family of 
aggregation operators sh  that satisfies the original set of properties for design (Eqs 12-16) and 
can capture all possible trade-offs. For a two-attribute design problem, sh  is given by 

            ( ) ( )[ ]
sss

s

ww
hwhwwhwhh

1

21

2211
2211 ,,, 








+
+

= .  (17) 

The parameter s  can be interpreted as a measure of the level of compensation, or trade-off. 
Higher values of s  indicate a greater willingness to allow high preference for one criterion to 
compensate for lower values of another. It is shown [29] that if 0→s , the aggregation of the 
two preferences provides maximum compensation. In this case, Eq. (17) reduces to the following 
geometric product of the two preferences 1h , 2h  

             [ ] 2121
1

21
wwwws

prod
s hhhh +== . (18) 

To the contrary, if  −∞→s  the aggregation of the two preferences provides no compensation at 
all and Eq. (17) reduces to   
            ( )21,min hhhs = . (19) 
When the parameters s  and w  (or equivalently, weight ratio 12 / ww ) are correctly chosen, the 

“best” design can be located by maximizing sh .  
The weighted sum is a special case with s =1. It has been shown [29] that for any Pareto 

optimal point in a given set, there is always a choice of a weight ratio and a level of compensation 
s that selects that point as the most preferred. It has been also shown that for any fixed s, there are 
Pareto sets in which some Pareto points can never be selected by any choice of weights. In 
particular, the weighted-sum approach (s =1) may not be able to select all Pareto points. In order 
to avoid this arbitrary and meaningless use of weights, a rigorous, provable procedure of 
“indifference points” has been developed for calculating the proper trade-off parameters [30]. 
 
4.2. Percentile Calculation using the Advanced Mean Value Method 
The percentiles 1Rf  and 2Rf of a performance measure f (see Eq. 11) can be in general 
calculated using two reliability calculations for estimating the two Most Probable Points 
corresponding to 1R  and 2R . In this work, a computationally more efficient method is used based 
on the Advanced Mean Value (AMV) method [31]. 

The AMV method has been originally proposed as a computationally efficient method for 
generating the cumulative distribution function (CDF) of performance f. It uses a simple 
correction to compensate for errors introduced from a Taylor series truncation. The performance 
( )Xf  is first linearized around the mean design point. A limit state function is then defined as 

                                ( ) ( ) 0ffg −= XX  (20) 
where 0f  is a particular value of the performance function. Based on the CDF definition, we 
have the following first-order relation 
                                 ( ) ( ) ( )β−Φ=≤=≤ 00 gPffP , (21) 
where Φ  is the standard normal cumulative distribution function and β  is the reliability index. 
 For the calculation of the R-percentile Rf , the reliability index β  is calculated from 
( ) R=−Φ β  if %50≥R  and ( ) R−=−Φ 1β  if %50≤R .   

Using the linear approximation of ( )Xg  at the mean value point Xµ , the MPP is given by 
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( )
( )

( )
( )XX

X
X

XX

X
X µσ

µσ
µσ

µσU
f

f
g

g
∇
∇

−=
∇
∇

−= ββ* . (22) 

in the standard normal space, if the random variables X are normally distributed with 
( )XX σµX ,~ N . In the original X space, the MPP coordinates are 

                                  XX µσUX += ** . (23) 
For non-normal random variables, a non-linear transformation is needed. 

The AMV method “corrects” the relation of Eq. (21) as 
                                  ( )( ) ( )β−Φ=≤ *XffP  (24) 
by replacing the 0f  value at which the reliability index β  is calculated by ( )*Xf . Based on Eq. 

(24), the R-percentile is equal to ( )*Xf . 
The described R-percentile calculation using the AMV method requires only one extra 

function evaluation (i.e. ( )*Xf ). The gradient of ( )Xf  at the mean design point Xµ  (see Eq. 
22) is usually known, if a gradient-based optimization method is used for solving the robust 
optimization problem. 
 

5. Examples 
 

5.1. A Mathematical Example 
A simple mathematical example is first used to demonstrate the proposed methodology for 
reliability and robustness, using preference aggregation methods to handle the trade-off between 
reliability and robustness. The following mathematical problem, first appeared in [17], is used  

      ( ) ( ) ( ) ( ) 10534min 2
2

4
1

3
1 +−+−+−= xxxf x

x
 

      s.t. ( ) 045.621 ≤+−−= xxG x  
                  2,1,101 =≤≤ ixi . 

Assuming that only the variation of the objective is important, the reliable/robust problem 
is formulated as,  

      f
xµ

min  

      ( )X
xµ fR∆min  

s.t. RGP ≥≥ )0)(( X   
                 ( ) RP ≥≤≤ 101 X .                                     

The two design variables are assumed normally distributed with ( ) 2,1,4.0,~ =iNX
ixi µ . The 

percentile difference is calculated as 12 RR
f ffR −=∆  with %952 =R  and %51 =R . Two 

separate single-objective optimization problems are first solved in order to establish the utopia 
point. Each problem is composed of one of the two objectives and all constraints. The first 
problem is the conventional RBDO problem. It minimizes f subject to the probabilistic 
constraints. Its solution yields an optimum objective of 4745.5* =fµ  at the design vector 

[ ]9471.5,2.2=*
xµ . The superscript * indicates optimal value. The second problem 

minimizes fR∆ . It is a single-objective, purely robust optimization problem. Its solution yields an 
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optimum objective value and design vector of 8982.2* =∆ fR  and [ ]5332.5,4668.3=*
xµ , 

respectively. 
Because we have two objectives, all optimal solutions belong to a Pareto set. For the 

calculation of the Pareto set, the two objectives are aggregated using the preference aggregation 
method of Section 4.1. Two preference functions 1h  and 2h  are first defined for f and fR∆ , 

respectively. Fig. 3 shows 1h , which has the following linear form 

                   ( )








<

≤
−
−

=

ff

ff
ff

ff

f

if

if
h

µµ

µµ
µµ
µµ

µ
*

*
**

*

1

30

3
3
3

. 

Note that for all feasible designs, the mean objective value fµ  is always greater or equal to *
fµ . 

A “cut-off” value of *3 ff µµ =  is used, assuming that if *3 ff µµ >  the design is unacceptable. 

Therefore, 11 =h  if *
ff µµ =  and 01 =h if *3 ff µµ > . The preference function 2h  for the second 

objective fR∆ is defined in a similar manner. The assumed “cut-off” value is equal to 
*8 ff RR ∆=∆ . 

 
 

Figure 3. Preference function 1h  for the mathematical example 
 
The two objectives are aggregated using 

           
sss

ww
hwhwh

1

21

2211








+
+

= ; 121 =+ ww , 10 1 ≤≤ w . 

The overall preference h is maximized by solving the following probabilistic optimization 
problem  

      h
xµ

max               (25) 

s.t. RGP ≥≥ )0)(( x   

                 ( ) 2,1,101 =≥≤≤ iRxP i , 

using the single-loop RBDO algorithm of Section 3.2.                                    

0

1

*
fµ *3 fµ fµ

1h

0

1

*
fµ *3 fµ fµ

1h



 

REC2004 

12 

The results are summarized in Fig. 4 and Table 1. For illustration purposes, we have assumed 
1−=s . Fig. 4 shows the trade-off between */ ff µµ  and */ ff RR ∆∆ . Note that the Pareto set 

does not cover the entire range between the reliable and robust optima. For 48.01 ≥w  (see Table 
1), the overall design is dominated by the reliable design. Note that all designs are well spaced 
along the Pareto set.  
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Figure 4. Pareto set for the mathematical example, using the preference aggregation method 

  
Table 1 shows the exact values for some points on the Pareto set and the corresponding values of 
the optimal point [ ]

21 xxx µµµ = , overall preference function h and the value of constraint G for 

10 1 ≤≤ w . As indicated by its zero value, constraint G  is always active. 
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Table 1. Pareto set details for the mathematical example, using the preference aggregation 
method 

a: Robust design; b: Reliable design 
 

For comparison purposes, the same problem is solved using the weighted-sum approach. The 
following probabilistic optimization problem is solved instead of Problem (25) 

      










∆
∆

+= *2*1min
f

f

f

f

R
R

wwf
µ
µ

xµ
       

 s.t. RGP ≥≥ )0)(( x   

                 ( ) 2,1,101 =≥≤≤ iRxP i . 

The results are summarized in Fig. 5 and Table 2. As shown in Fig. 5, the weighted-sum approach 
fails to identify a large portion of the Pareto set. It only identifies a small region around the robust 
optimum extreme. 

1w  2w  */ ff µµ  */ ff RR ∆∆  
1xµ  

2xµ  h  G  
0.00a 1.00 1.8300 1.0399 3.4775 4.6695 0.9943 0.0000 
0.10 0.90 1.7833 1.1190 3.3635 4.9443 0.9260 -0.1608 
0.20 0.80 1.7673 1.1447 3.3036 4.9353 0.8761 -0.0918 
0.30 0.70 1.7233 1.2747 3.1721 4.9785 0.8343 -0.0036 
0.40 0.60 1.6199 1.6758 2.9455 5.2015 0.8040 0.0000 
0.41 0.59 1.6006 1.7530 2.9104 5.2367 0.8019 0.0000 
0.42 0.58 1.4993 2.1312 2.7498 5.3973 0.7990 0.0000 
0.43 0.57 1.4907 2.1606 2.7377 5.4094 0.7980 0.0000 
0.44 0.56 1.4819 2.1903 2.7254 5.4216 0.7972 0.0000 
0.45 0.55 1.4730 2.2201 2.7131 5.4340 0.7965 0.0000 
0.46 0.54 1.4638 2.2501 2.7007 5.4463 0.7960 0.0000 
0.47 0.53 1.4545 2.2802 2.6882 5.4588 0.7956 0.0000 
0.48 0.52 1.0000 3.1923 2.2000 5.9471 0.8083 0.0000 
0.49 0.51 1.0000 3.1923 2.2000 5.9471 0.8113 0.0000 
0.50 0.50 1.0000 3.1923 2.2000 5.9471 0.8143 0.0000 
0.60 0.40 1.0000 3.1923 2.2000 5.9471 0.8457 0.0000 
0.70 0.30 1.0000 3.1923 2.2000 5.9471 0.8797 0.0000 
0.80 0.20 1.0000 3.1923 2.2000 5.9471 0.9164 0.0000 
0.90 0.10 1.0000 3.1923 2.2000 5.9471 0.9564 0.0000 

1.00b 0.00 1.0000 3.1923 2.2000 5.9471 1.0000 0.0000 
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Figure 5. Pareto set for the mathematical example, using the weighted-sum method 

 
Table 2. Pareto set details for the mathematical example, using the weighted-sum method 

a: Robust design; b: Reliable design 
 
5.2. A Cantilever Beam Example 
In this example, a cantilever beam in vertical and lateral bending [37] is used (see Fig. 6). The 
beam is loaded at its tip by the vertical and lateral loads Y and Z, respectively. Its length L is 
equal to 100 in. The width w and thickness t of the cross-section are random design variables. The 

1w  2w  */ ff µµ  */ ff RR ∆∆  
1xµ  

2xµ  f  G  
0.00a 1.00 1.8600 1.0000 3.4666 5.5359 1.0000 0.8554 
0.10 0.90 1.8566 1.0002 3.4637 5.5213 1.0858 0.8379 
0.20 0.80 1.8284 1.0403 3.4727 4.6744 1.1979 0.0000 
0.30 0.70 1.8263 1.0410 3.4669 4.6802 1.2766 0.0000 
0.40 0.60 1.8224 1.0433 3.4555 4.6916 1.3549 0.0000 
0.41 0.59 1.8226 1.0431 3.4561 4.6909 1.3627 0.0000 
0.42 0.58 1.8215 1.0440 3.4528 4.6943 1.3705 0.0000 
0.43 0.57 1.8218 1.0437 3.4538 4.6933 1.3783 0.0000 
0.44 0.56 1.8211 1.0442 3.4517 4.6954 1.3861 0.0000 
0.45 0.55 1.8212 1.0441 3.4521 4.6950 1.3938 0.0000 
0.46 0.54 1.0026 3.1901 2.2025 5.9446 2.1838 0.0000 
0.47 0.53 1.0000 3.1923 2.2000 5.9471 2.1619 0.0000 
0.48 0.52 1.0000 3.1923 2.2000 5.9471 2.1400 0.0000 
0.49 0.51 1.0000 3.1923 2.2000 5.9471 2.1181 0.0000 
0.50 0.50 1.0000 3.1923 2.2000 5.9471 2.0962 0.0000 
0.60 0.40 1.0000 3.1923 2.2000 5.9471 1.8769 0.0000 
0.70 0.30 1.0000 3.1923 2.2000 5.9471 1.6577 0.0000 
0.80 0.20 1.0000 3.1923 2.2000 5.9471 1.4385 0.0000 
0.90 0.10 1.0000 3.1923 2.2000 5.9471 1.2192 0.0000 

1.00b 0.00 1.0000 3.1923 2.2000 5.9471 1.0000 0.0000 
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objective is to minimize the weight of the beam. This is equivalent to minimizing tw∗ , assuming 
that the material density and the beam length are constant. 
 

 
  
 

 
 

Figure 6. Cantilever beam under vertical and lateral bending. 
 

One non-linear failure mode is used representing yielding at the fixed end of the cantilever. 
The RBDO problem is formulated as,  

twµ
f

tw

µµ
µ

∗=
,

min  

 s.t. RGP ≥≥ )0)(( 1 X   
                   5,0 ≤µµ≤ tw                                      

where the limit state )*600*600(),,,,( 221 Z
tw

Y
wt

ytwYZyG +−=   represents the failure mode. 

The random design variables w and t are normally distributed with 225.0== tw σσ  . Y, Z, y 
and E are normally distributed random parameters with Y~ N (1000, 100) lb, Z~ N (500,100) lb, 
y~ N (40000, 2000) psi and E~ N )10*45.1,10*29( 66 psi; y is the random yield strength, Z and 
Y are mutually independent random loads in the vertical and lateral directions respectively, and E 
is the Young modulus. A reliability index 3=β  is used. 

For the reliable/robust problem one more objective is added representing the variation of the 
beam tip displacement. The formulation is as follows,  

      twµ
f

tw

µµ
µ

∗=
,

min  

      ( )ZYEtwR
tw

,,,,min
, δµµ
∆  

s.t. RGP ≥≥ )0)(( 1 X   
                   5,0 ≤≤ tw µµ                                      

where the tip displacement δ  is given by 2
2

2
2

3

)()(4),,,,(
w
Z

t
Y

Ewt
LZYEtw +=δ  . 

Two objectives are simultaneously minimized subject to one probabilistic constraint. If the beam 
cross-sectional area is minimized, the beam stiffness is also minimized which usually leads to a 
large variation of the tip displacement. It is expected therefore, to have a trade-off between the 
two objectives. The percentile difference for the tip displacement is calculated as 

12 RRR δδδ −=∆  with %952 =R  and %51 =R . Similarly to the previous example, two 
separate single-objective optimization problems are first solved in order to establish the utopia 
point. The first problem (conventional RBDO) yields an optimum objective of 2884.11* =fµ  

for the design vector [ ] [ ]8369.3,9421.2, ** =tw . The second single-objective, purely robust 

optimization problem yields a solution of 1440.0* =∆ δR  for [ ] [ ]5,5, ** =tw . 

For the calculation of the Pareto set, two linear preference functions 1h  and 2h   are used, 
corresponding to the two objectives f and δR∆ . They are all defined similarly to the previous 

L=100 in w 

Y 

Z 
t
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example. Their “cut-off” values are *3 ff µµ = , *15 δδ RR ∆=∆  for 1h  and 2h , respectively. The 
two objectives are aggregated using  

sss

ww
hwhw

h
1

21

2211











+
+

= ; 121 =+ ww , 10 1 ≤≤ w  

which is maximized by solving the following probabilistic optimization problem  
       h

tw µµ ,
max  

 s.t. RGP ≥≥ )0)(( 1 X   
                   5,0 ≤≤ tw µµ , 
using the single-loop RBDO method of Section 3.2. 

The results for this example are summarized in Figure 7 and Tables 3 and 4. A 
compensation level of 1−=s  is assumed. The Pareto frontier of Fig. 7 shows the trade-
off between */ ff µµ  and */ δδ RR ∆∆ . The designs are almost equally spaced between the 
two extremes of reliable and robust designs. 
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Figure 7. Pareto set for the beam example; trade-off between */ δδ RR ∆∆  and */ ff µµ  

Table 3 shows the exact values of the Pareto points and the corresponding values of constraint 1G  
for ten equally spaced segments of the 10 1 ≤≤ w  domain. As indicated by their positive values, 
constraint 1G  is inactive for 8.00 1 ≤≤ w  and active for 19.0 w≤  . 
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Table 3. Pareto set details for the beam example 
 

1w  2w  */ ff µµ  */ δδ RR ∆∆  1G  

0.0a 1.0 2.2147 0.9999 26054.0 
0.1 0.9 1.7930 1.4881 22672.9 
0.2 0.8 1.5860 1.9506 19922.2 
0.3 0.7 1.4403 2.4413 17111.9 
0.4 0.6 1.3385 2.8985 14574.7 
0.5 0.5 1.2541 3.3780 12053.2 
0.6 0.4 1.1696 3.9830 8837.4 
0.7 0.3 1.0994 4.6126 5635.8 
0.8 0.2 1.0182 5.5360 1121.7 
0.9 0.1 1.0002 5.7771 0.0 
1.0b 0.0 0.9993 5.8376 0.0 

                     a: Robust design; b: Reliable design 
 

Table 4. Pareto set details for the beam example (Cont.) 
 

1w  2w  1h  2h  h  w  t  

0.0a 1.0 0.3927 1.0000 1.0000 5.0000 5.0000 
0.1 0.9 0.6035 0.9651 0.9106 4.1995 4.8198 
0.2 0.8 0.7070 0.9321 0.8763 3.7938 4.7189 
0.3 0.7 0.7798 0.8970 0.8583 3.6199 4.4914 
0.4 0.6 0.8307 0.8644 0.8506 3.4970 4.3207 
0.5 0.5 0.8729 0.8301 0.8510 3.3765 4.1928 
0.6 0.4 0.9152 0.7869 0.8592 3.2651 4.0437 
0.7 0.3 0.9503 0.7420 0.8765 3.1734 3.9109 
0.8 0.2 0.9909 0.6760 0.9065 3.0397 3.7810 
0.9 0.1 0.9999 0.6588 0.9507 2.9978 3.7665 
1.0b 0.0 1.0000 0.6545 1.0000 2.9319 3.8477 

            a: Robust design; b: Reliable design 
 
The constraint 1G  is always inactive except for designs close to the reliable design where it 
becomes active. Table 4 shows the values of the optimal design vector [ ]tw,  and the 
corresponding preference functions 1h and 2h and the overall aggregate preference function h for 
the points on the Pareto set. 
 

6. Summary and Conclusions 
 

A computationally efficient unified method for reliability and robustness, based on a multi-
objective optimization formulation, has been presented. The preference aggregation method is 
used to choose the “best” solution of the multi-objective optimization problem based on designer 
preferences. The proposed methodology addresses the shortcomings of the commonly used 
weighted-sum method which may fail to identify regions of the Pareto set of optimal solutions. 
Furthermore, it does not require the calculation of the entire Pareto set. It can identify the “best” 
design on the Pareto set, based on designer preferences and a rigorous, provable procedure of 
“indifference points.”  
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The performance variation is assessed by a percentile difference method. The percentiles are 
efficiently calculated using a variation of the Advanced Mean Value method which provides 
much more accurate results compared with the commonly used Taylor series expansion for 
calculating the variance of a performance measure. The “best” design (optimal, reliable and 
robust) is calculated using an efficient single-loop probabilistic optimization method. Two 
examples illustrated the benefits of the proposed method and demonstrated its applicability. 
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