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Abstract. Horowitz’s quantitative feedback theory (QFT) (Horowitz, 1993) approach to robust control
has been gaining popularity in the control literature for design of robust feedback systems. A central
problem in QFT consists of proving the existence (or non-existence) of a QFT controller solution to a
given design problem. In this paper, we propose a novel method based on interval analysis (Moore, 1979)
to computationally verify the existence (or non-existence) of a controller solution, for a specified controller
structure and an initial domain of controller parameter values. A feature of our proposed method is that it
is a constructive existence method, i.e., if a solution of the specified structure exists for the given parameter
domain, then all controller solutions lying in the domain are generated with our method. Essentially, the
proposed method uses successive partitioning of the parameter domain and controller feasibility tests. We
demonstrate the proposed method through a benchmark example.
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1. Introduction

A versatile and practical engineering approach to the robust control problem is based on
quantitative feedback theory (QFT) of Horowitz (Horowitz, 1991; Horowitz, 1993). The
design is quantitative in the sense that the feedback is directly related to the amount of
uncertainty and external disturbance. QFT has evolved with techniques to deal with single-
input single-output (SISO) as well as multi-input multi-output (MIMO) cases, for linear and
nonlinear, lumped and distributed parameter, time varying and time invariant systems. The
QFT technique has been successfully applied to several practical problems with large plant
uncertainty.

Consider a linear time invariant plant with parametric uncertainty given by P (s, λ),
where

λ = (λ1, . . . , λl)
T ∈ Rl

is a plant parameter vector, which varies over a box λ =
[
λ, λ

]
consisting of two real column

vectors λ and λ of length l with λ ≤ λ. This gives rise to the parametric plant family or set

P ≡{P (s, λ) : λ ∈ λ }
with the nominal plant P (s, λ0) corresponding to an arbitrary nominal λ0 ∈ λ.
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Figure 1. The two degree-of-freedom structure used in QFT

To achieve various specifications (specs), generally, the plant P (s, λ) is embedded in the
two degree-of-freedom feedback structure of QFT formulation as shown in Fig. 1, where G (.)
and F (.) are transfer functions for the controller and prefilter, respectively. The controller
G (s, x) can be represented in the gain-pole-zero form as

G(s, x) =
kG

nz∏
i=1

(s + z̃i)
n′z∏
i=1

(
s2 + 2ζiυis + υ2

i

)

np∏
k=1

(s + pk)
n′p∏

k=1

(
s2 + 2ξkϑks + ϑ2

k

) (1)

where the controller parameter vector x is

x = ( kG, z̃1, . . . , z̃nz , ζ1, . . . , ζn′z , υ1, . . . , υn′z
, (2)

p1, . . . , pnp , ξ1, . . . , ξn′p , ϑ1, . . . , ϑn′p)

The open loop transmission function is defined as

L(s, x, λ) = G(s, x)P (s, λ)

and the nominal open loop transmission function as

L0(s, x) = G(s, x)P (s, λ0)

The magnitude and angle functions of L0(s, x) are defined as

L0 mag (ω, x) = |L0(s = jω, x)| ; L0 ang (ω, x) = ∠L0(s = jω, x) (3)

Typically, following specifications are to be met for all P (s, λ) ∈ P and ω ∈ [0, ω′].

− Robust stability margin spec:
∣∣∣∣

L(jω, x, λ)
1 + L(jω, x, λ)

∣∣∣∣ ≤ ws (4)
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− Robust tracking performance spec:

|TL(jω)| ≤
∣∣∣∣F (jω)

L(jω, x, λ)
1 + L(jω, x, λ)

∣∣∣∣ ≤ |TU (jω)| (5)

− Robust input disturbance rejection performance spec:
∣∣∣∣

G(jω, x)
1 + L(jω, x, λ))

∣∣∣∣ ≤ wdi (ω)

− Robust output disturbance rejection performance spec:
∣∣∣∣

1
1 + L(jω, x, λ)

∣∣∣∣ ≤ wdo (ω)

The QFT design procedure begins with the generation of the plant template, which is
nothing but the value set of plant at a design frequency ω, given as

P (ω) = {P (s = jω, λ) : λ ∈ λ}

This is followed by the QFT bound generation step. At each design frequency ωi, the plant
template P(ωi) is used to translate the given performance and stability specs into regions
in the Nichols chart where the nominal loop transmission L0(jωi, x) is allowed to lie. The
composition of all such bounds at ωi is referred to as the bound on L0(jωi, x) at ωi and is
denoted as B (L0 ang(jωi, x), ωi) or simply as B(ωi). For example, the bounds at various
ωi are plotted in Fig. 4 along with the so-called universal high frequency bound (UHFB)
valid for all ω ≥ ωh, where ωh is some sufficiently “high” frequency. At any given ωi, the
magnitude of the bound generally varies with the phase L0 ang(jωi, x); while some bounds
are single-valued upper or lower bounds, the others are multiple-valued.

The objective of the QFT procedure is to synthesize G(s, x) that satisfies the bounds
B(ωi) at all the design frequencies, and then synthesize a prefilter F (s) which places the
allowable variation in magnitude of the closed loop system, inside the respective tracking
bounds. The details of the QFT design procedure can be found in (Horowitz, 1993).

A central problem in QFT consists of proving the existence of a controller solution
to a given design problem. Any arbitrary design specs cannot be achieved by a specified
controller transfer function structure, particularly for the plants with uncertainty. In certain
cases, e.g., for non-minimum phase plants with uncertainty, one can analytically verify the
non-existence of controller solution, as demonstrated by Horowitz (Horowitz, 1993). But
this argument cannot be generalised, and a great deal of expertise would be required for
commenting on the existence of the controller solution. This motivates us to propose a
method to computationally verify the existence of a controller solution. In this paper, we
propose a novel method based on interval analysis (Moore, 1979) to computationally verify
the existence (or non-existence) of a controller solution, for a specified controller structure
and an initial domain of controller parameter values.
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2. Existence Verification

We propose an algorithm to computationally verify the existence of a controller solution
for an uncertain plant transfer function, given certain performance and stability specs. The
proposed existence verification method is constructive in its approach, i.e., if a solution of
the specified structure exists for the given parameter domain, then all controller solutions
lying in the domain are generated with the method.

Using the QFT formulation, the given specs are converted to the constraints satisfac-
tion problem. The set of bounds B(ωi) as described in section 1, gives rise to the set of
constraints in the existence verification problem. The tracking and disturbance bounds at
design frequency ωi are to be respected, leading to the following type of constraints:

− single-valued upper bound :

hi (x) = |B (L0 ang(jωi, x), ωi)| − L0 mag(jωi, x) ≤ 0 (6)

− single-valued lower bound :

hi (x) = L0 mag(jωi, x)− |B (L0 ang(jωi, x), ωi)| ≤ 0 (7)

To ensure the nominal closed loop stability of the system, the nominal loop transmission is
forced to lie on the right side of the respective stability bounds. Thus, the multiple valued
stability bounds give rise to additional constraints of following type:

hs
i (x) = ∠B(L0 mag(jωi, x), ωi)− L0 ang(jωi, x) ≤ 0, (8)

for L0 mag(jωi, x) ∈ [min |B(ωi)| ,max |B(ωi)|]
With these bounds, the constraint satisfaction problem can be given as

find all x ∈ x (9)
such that H(x) ≤ 0

where, H (x) = {hi(x), hs
i (x)} is the set of bound constraints in (6,7) and (8), and x is

the bound constrained controller parameter domain. The parameter domain is either user
specified, or is constructed based on the given structure of the controller transfer function.
To verify if the given constraints can be satisfied with a pre-specified controller structure,
we suggest the following procedure to construct the controller parameter domain:

− The upper bound for the interval values of the corner frequency of the poles and zeros
of the controller is set to 10aωh, where, for instance, a ≈ 1 or 2. This sets the cutoff
frequency for the poles and zeros to a few decades beyond the high frequency ωh. The
upper bound for the interval value of the high frequency gain of the controller can be
set to a large value. To avoid the internal stability problem and the RHP pole/zero
cancellation of the design, the lower bound for the interval values of the corner frequency
of poles and zeros is set to zero.
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Finding the solution over a bounded domain is as good as testing the feasibility of infinite
combinations of controller parameter values. The most efficient and reliable techniques to
do this are based on the rigorous search using interval analysis. Hence, we next present
an algorithm based on interval analysis to solve this constraints satisfaction problem for
existence verification of controller solution.

2.1. The Proposed Algorithm

The proposed algorithm uses successive partitioning of the given search domain, and the
range inclosure property of the interval arithmetic

range (f, z) ⊆ f (z)

where, f (z) is the natural interval evaluation of a function f over the box z.
In this strategy of the proposed algorithm, at each iteration the controller parameter

box z, currently under process, is split into two subboxes, and tested for its feasibility. Any
subbox which does not satisfy the constraints is discarded. The subbox which satisfy the
constraints is added to a solution list Lsol, and the remaining subbox(s) are added to a
stack list Lstack for further processing. This process is recursively carried out till the stack
list Lstack is exhausted (emptied), i.e., till the given search domain is completely processed.

The proposed algorithm essentially consists of five major components: a feasibility test,
list handling, initialization, a termination criterion, and a bisection strategy.

The Feasibility test determines if a box z of controller parameter values satisfies the
QFT bound constraints. Evaluation of the natural interval extensions of the nominal loop
transmission magnitude and angle functions on z at some ωi gives an angle-magnitude
rectangle {L0 ang(jωi, z), L0 mag(jωi, z)}, in the Nichols chart. This rectangle is called as
the L0 box at ωi. Based on the relative location of this rectangle w.r.t. the bound B(ωi),
the parameter box z is determined as feasible, infeasible, or ambiguous at ωi. The overall
feasibility of box z is decided based on its feasibility at each of the design frequencies. A
flag variable flagz represents the feasibility of box z. The details for the feasibility test are
given in sec. 2.1.1.

List handling: A stack list Lstack and a solution list Lsol is maintained to save the boxes
generated during the partitioning process. The boxes which are determined as feasible are
put into the solution list Lsol, and the ambiguous boxes, which need further processing, are
put into the stack list Lstack. Since the whole stack list Lstack is to be processed, any box
from this list can be picked up for further processing, but for convenience, the first box of
the stack list Lstack is taken up as current box y for processing in the next iteration.

Initialization (step 1 in the algorithm): The current box under process denoted as z is
set to the initial search box z0, and the feasibility test is done for z. If z is infeasible, then
by the inclusion property of interval analysis there is no feasible solution ∀z ∈ z; hence,
the algorithm exits, declaring that no feasible solution exists in the given initial search box.
Else, a stack list Lstack is initialized with the box z, and the solution list Lsol is initialized
as an empty list.
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Termination (step 2 in the algorithm): Since the objective is to find out all the solutions
of the constraints satisfaction problem, the algorithm should terminate only after the given
initial search domain is completely processed. The stack list Lstack holds the boxes (i.e.,
part of initial search domain) which are neither fully acceptable nor rejectable as controller
solutions. Thus, the algorithm can terminate when all such boxes are completely processed
or in other words when the stack list Lstack is emptied. The termination condition is given
as

Lstack = ∅ (10)

Bisection (step 4 in the algorithm): If the above termination condition is not met, i.e.,
box z is ambiguous, then z is split along the maximum width direction into two subboxes
v1 and v2.

Feasibility check for new subboxes (step 5 in the algorithm): The feasibility check
is performed on each of these two subboxes, any infeasible subbox(s) which does not satisfy
the constraints is discarded and the feasible one is added to the solution list Lsol.

The algorithm for existence verification of a controller solution based on the above
described strategy is now presented.

Inputs: Numerical bound set, the design frequency set {ωi : i = 1, · · · , n}, expressions
for natural interval extensions L0 mag (ω, z) , L0 ang (ω, z) of the nominal loop transmission
magnitude and angle functions in (3), and the initial search box z0.

Output: List of feasible controller parameters or a message ”No feasible solution exists
in the given initial search domain”.

BEGIN Algorithm

1. Checking the feasibility of initial search box.

a) Set the current box to the initial search box, i.e., set z = z0.

b) Call Feasibility Subroutine to determine if the current box z is completely infeasible,
completely feasible, or an ambiguous case. The feasibility test returns a value for
the variable flagz.

c) Initialization

i) IF flagz = infeasible THEN print the message “No feasible solution exists in
the given initial search domain”, and Exit the algorithm.

ii) ELSE IF flagz = feasible THEN print the message “The complete initial search
domain is a feasible set of solution”, and Exit the algorithm.

iii) ELSE initialize the stack list Lstack ⇐ {z} and initialize the solution Lsol ⇐ {}.
END IF

2. Choose the first box from the stack list Lstack as current box z, and delete its entry
from the stack list Lstack.

3. Split the current box z in the maximum width direction to get two new subboxes v1

and v2, such that z = v1 ⋃
v2 .
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4. Call Feasibility Subroutine to determine the feasibility of each new subbox, and get the
value of flagv1 and flagv2 .

5. DO for i = 1, 2,

a) IF flagvi = infeasible, THEN discard the subbox vi

b) ELSE IF flagvi = feasible, THEN add the subbox vi to the solution list Lsol

c) ELSE add vi to the stack list Lstack.
END IF

END DO

6. IF the termination condition given in (10) holds, THEN

a) IF Lsol = ∅, THEN print the message “No feasible solution exists in the given
initial search domain” and Exit the algorithm.

b) ELSE IF Lsol 6= ∅, THEN print the message “The feasible solutions are:” Lsol,
and Exit the algorithm.
END IF

END IF

7. Go to step 6.

END Algorithm

2.1.1. Feasibility Subroutine
This subroutine finds the feasibility of the controller parameter box z, and returns the value
of flagz, which represents its feasibility.

Inputs: Numerical bound set, the design frequency set {ωi : i = 1, · · · , n}, expressions
for natural interval extensions L0 mag (ω, z) , L0 ang (ω, z) of the nominal loop transmission
magnitude and angle functions in (3), and the parameter box z.

Output: Value of flagz.
BEGIN Subroutine

1. At every design frequencies ωi, i = 1, · · · , n, do the following:

a) Evaluate L0 mag (ωi, z) and L0 ang (ωi, z).

b) For single valued upper bounds: Over the phase interval
L0 ang (ωi, z), find out the maximum and minimum magnitude value of the bound
B(ωi), and denote it as Bmax

mag(ωi, z) and Bmin
mag(ωi, z), respectively (Fig. 2 explains

this notation).

c) For multiple valued stability bounds:

REC2004



8

L
0
 box 

B(ω
i
) 

L
0_mag

(jω
i
,z)   

L
0_ang

(jω
i
z)   

degrees 

dB
 

B
mag
min (ω 

i
,z) 

B
mag
max (ω 

i
,z) 

Figure 2. Definitions of Bmax
mag(ωi, z) and Bmin

mag(ωi, z).

L
0
 box L

0_mag
(jω

i
,z)  

degrees B
ang
max (ω 

i
,z)B

ang
min (ω 

i
,z)

dB
 

B(ω
i
) 

L
0_ang

(jω
i
,z)   

Figure 3. Definitions of Bmax
ang (ωi, z) and Bmin

ang(ωi, z)

REC2004



9

i) IF L0 mag (jωi, z)
⋂

[min |B(ωi)| , max |B(ωi)|] 6= ∅ THEN

A) Over the magnitude interval L0 mag (ωi, z), find out the maximum and min-
imum phase value of the bound B(ωi), and denote it as Bmax

ang (ωi, z) and
Bmin

ang (ωi, z), respectively (Fig. 3 explains this notation).
END IF

2. Set the feasibility flag as follows:

a) IF for all ωi, i = 1, · · · , n,

inf{L0 mag (ωi, z)} 1 Bmax
mag(ωi, z)

AND

{L0 mag (jωi, z)
⋂

[min |B(ωi)| , max |B(ωi)|] = ∅
OR

L0 ang (ωi, z) 1 Bmax
ang (ωi, z)}

THEN set the flagz = feasible and RETURN.

b) ELSE IF for any ωi, i = 1, · · · , n,

sup{L0 mag (ωi, z)} 0 Bmin
mag(ωi, z)

OR

{L0 mag (jωi, z)
⋂

[min |B(ωi)| , max |B(ωi)|] 6= ∅
AND

L0 ang (ωi, z) 6 Bmin
ang (ωi, z)}

THEN set the flagz = infeasible and RETURN.

c) ELSE set the flagz = ambiguous and RETURN.
END IF

END Subroutine
Thus, the feasibility subroutine returns flagz = infeasible, feasible, or ambiguous, de-

pending on whether the parameter box z is completely infeasible, completely feasible, or
an ambiguous case, respectively, w.r.t. the bound constraints.

REMARK 1. Convergence and Reliability: The convergence of the proposed algorithm
can be easily proved on the lines of interval branch and bound algorithms (Ratschek and
Rokne, 1988) and the reliability of the algorithm immediately follows from the interval
analysis techniques.

REC2004



10

−350 −300 −250 −200 −150 −100 −50 0
−25

−20

−15

−10

−5

0

5

10

15

20

25
Nichols Chart

Phase (degrees)

M
ag

ni
tu

de
 (

dB
)

B(4) 

B(45.4) 

(UHFB) ω>ω
h
=600 

Figure 4. Bounds on L0

3. Design Example

The proposed algorithm was tested on a QFT benchmark example, so that the results can
be compared with that of an existing method. The example chosen is the design of robust
controller for a non-minimum phase plant with uncertainty, given by Horowitz (Horowitz,
1993).

The uncertain plant transfer function is given as

P (s, λ) =
k(1− τs)
s(1 + βs)

: k ∈ [1, 3], β ∈ [0.3, 1], τ ∈ [0.05, 0.1]. (11)

The specs are:

− Robust stability margin spec (4): ws = 1.3032

− Tracking spec (5): |TU (j4)| = 0.5dB and |TL(j4)| = −3.5dB.

With just two design frequencies 4 and 45.4 rad/sec, using the Bode gain-phase relation-
ship, Horowitz (Horowitz, 1993) showed analytically that, for the uncertain plant transfer
(11), no controller solution exists for the above given specs.

We use the proposed algorithm to computationally verify the above finding of Horowitz,
i.e., of the non-existence of a controller of first and second order for the above specs. We
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choose the non-minimum phase plant

P0(s) =
(1− 0.05s)
s(1 + 0.3s)

as the nominal case. The stability and tracking bounds for these specs are shown in Fig.
4. These bounds B (ωi) at each design frequency ωi are generated using the QFT toolbox
(Borghesani et al., 1995). From the nature of the generated QFT templates, we find that
the UHFB frequency ωh ≈ 600 rad/sec. Based on this value of ωh, the upper bound on the
pole/zero can be fixed as 6000 rad/sec. (see sec. 2), but instead we choose an arbitrarily
large value of 104 rad/sec. Moreover, using an arbitrarily large upper bound for the gain,
the initial search box z0 is constructed as follows:

− For the first order controller, the parameter vector z = {k, z̃1, p1} is

z0 = (0, 108], (0, 104], (0, 104]

− For the second order controller, the parameter vector
z = {k, z̃1, z̃2, p1, p2} is

z0 = (0, 108], (0, 104], (0, 104], (0, 104], (0, 104]

For the aforementioned structures and the initial search domains, the proposed algorithm
terminated with the message: “No feasible solution exists in the given initial search domain”.
Thus, this finding is in agreement with the analytically found ‘non-existence’ of Horowitz
mentioned above.

4. Conclusions

An algorithm has been proposed in this paper to computationally verify the existence (or
non-existence) of a QFT controller solution, for a specified controller structure and an initial
domain of controller parameter values. The proposed algorithm has been tested successfully
on a QFT benchmark example for cross validating the results.
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