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Abstract. The search algorithm presented allows the CDF of a dependent variable to be bounded with 
100% confidence, and allows for a guaranteed evaluation of the error involved. These reliability bounds are 
often enough to make decisions, and require a minimal number of function calls. The procedure is not 
intrusive, i.e. it can be equally applied when the function is a complex computer model (black box). The 
proposed procedure can handle input information consisting of probabilistic, interval-valued, set-valued, or 
random-set-valued information, as well as any combination thereof. The function as well as the joint pdf of 
the input variables can be of any type. 

 

1. Introduction 

Determining validated bounds for the Cumulative Distribution Function (CDF) of a function of 
random variables has attracted the attention of many scholars and a recent literature review may 
be found in [8]. Moore [24] and Moore [22] were probably the first ones to use interval analysis 
[23] to this end. 

For example, Berleant and co-workers developed Statool [4-8], a computer program for 
obtaining bounds on the distributions of sums, products, and various other functions of random 
variables where the dependency relationship of the random variables need not be specified. 
Ferson [13] developed RiskCalc with similar capabilities. Independently, Lodwick and Jamison 
[19] presented a method for estimating and validating the cumulative distribution of a function of 
random variables (independent or dependent).  

Dubois and Prade [12] firstly indicated how Random Set Theory might be used to bound the 
Cumulative Distribution Function (CDF) of a sum of two random variables. Tonon et al. [32] and 
Tonon [31] generalized this idea to a provide verified bounds to the CDF of a general function y 
= f(u) where u is a generic random vector. Random Set Theory allowed the abovementioned 
procedures developed by different authors to be put in a rigorous light. They also showed that 
their procedure can be used equally well when some components of u are described as random 
variables, some others as intervals or Cartesian products, and some others as random sets. 
Additionally, a procedure was introduced to calculate the CDF of a particular value, y*, of y; this 
procedure is meant to be used in reliability analyses and yields verified bounds on the reliability 
of a system. The motivation behind this procedure is that these bounds are often enough to make 
a decision, do not suffer from the shortcomings of Monte Carlo methods [14, 31], and often 
requires far less function calls than Monte Carlo methods. 

In this paper, the procedure to calculate the CDF of a particular value, y*, is advanced by 
introducing a searching algorithm with the aim of reducing the number of function calls. This is 
accomplished in Section 3. Before doing that and in order to establish common terminology and 
connect with [31] , Section 2 briefly restates the general procedure for calculating bounds on the  
entire CDF of y. 

Section 4 specializes the searching algorithm to reliability analyses and Section 5 presents an 
application to the reliability analysis of a beam. 

2. The entire CDF of y=f(u) must be calculated 

Let pro(u) be the joint probability mass function of a discrete vector of input parameters u = 
(u1,...,up).  Without loss of generality, it is assumed that the i-th parameter, ui, belongs to interval 
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Ii, which may be infinite or semi-infinite. Consequently, u is constrained within a p-dimensional 
box D = I1 ×,...,× Ip, where × indicates Cartesian product. The procedure proposed [31, 32] 
consists of the following three steps. 

2.1 Step 1 
Let {Aj, j = 1,...,N} be a partition of D and set  

( ) ( )
: j

j
u u A

m A pro u
∈

= ∑  (1) 

If u is not discrete but continuous, pro(u) is a joint probability density function (PDF) and 
Equation (1) becomes  

( ) ( )
j

j
A

m A pro u du= ∫  (2) 

Since this procedure is based on Random Set Theory, subsets Aj are called focal elements [31, 
32]). 

2.2 Step 2 
Calculate the image f(Aj) of each set Aj through function f. In general, this problem can be solved 
by applying twice the techniques of global optimization (e.g. [17, 28, 29, 33]). 

However, if one divides the i-th interval Ii into ni subintervals, then D is partitioned into 

1

p

i
i

N n
=

=∏  p-dimensional boxes Aj obtained as Cartesian products of p intervals (one per variable). 

As a consequence, Aj has 2p vertices, which we indicate as vk, k=1,..., 2p. In this case, each 
parameter ui varies in an interval Li=[LLi, RLi], and the methods of Interval Analysis can be used to 
efficiently calculate f(Aj). These methods are continuously improving, and the reader is referred to 
the web page (http://cs.utep.edu/interval-comp/main.html) as well as to the Journal of Reliable 
Computing for up-to-date information and references. 

If the function f is the response of a linearly elastic structure to static loads, then one can use 
the interval finite element formulation developed by Muhanna and Mullen [25, 26] to efficiently 
calculate f(Aj). Finally, if f is an eigenvalue of a linearly elastic structure one can use the 
procedure developed by Modares and Mullen [21] to efficiently calculate f(Aj). 

2.3 Step 3 
Calculate the upper, Fy,upp, and lower, Fy,low, bounds on the cumulative distribution function (CDF) 
of y, Fy, as follows:  

( ) ( ) ( ), ,y low y y uppF y F y F y≤ ≤  (3.a) 

where 

( ) ( )
( )( )

,
: infj j

y upp j
A y f A

F y m A
≥

= ∑  (3.b) 

( ) ( )
( )( )

,
: supj j

y low j
A y f A

F y m A
≥

= ∑  (3.c) 

The proposed procedure allows for an explicit evaluation of the error involved in the calculation 
of the whole cumulative distribution function, i.e.: 
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Errmax = ( ) ( )( )yFyF lowyuppyy ,,max −  (4) 

or the error at a particular value y*: 

Err(y*) = ( ) ( )** ,, yFyF lowyuppy −  (5) 

3. Only the CDF of a particular value y* must be calculated 

Consider the case in which the cumulative probability of only a particular element of Y, say y*, is 
of interest, as is the case in reliability analyses (see Section 4). In this case, it is advisable to start 
off with a coarse partition of D into subsets Ai. Let: 

( ){ }*sup:1 yAfAS ii <= , (6.a) 

( ){ }*inf:2 yAfAS ii >=  (6.b) 

( ) ( ){ }iii AfyAfAS sup*inf:3 <<=  (6.c) 

U
kii SAA
ik AC

∈

=
:

 (6.d) 
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Figure 1. The image of focal elements A3, A6, A7, and A10 straddle y*. 

 
 

Of course, U
3

1=

=
k

kCD . 

To illustrate the procedure, consider a two-dimensional case (p = 2), the extension to larger 
dimensions being straightforward. It is assumed that the curve f(u1, u2) = y* intersect the 
boundary of D at two points (as is the case in most reliability analyses). Figure 1 illustrates an 
example, in which: 

{ }95211 ,,, AAAAS =   

{ }1211842 ,,, AAAAS =   
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{ }107633 ,,, AAAAS =   

As can be seen in Figure 1, elements in S3 are those (and only those) focal elements 
intersected by the contour curve f(u1, u2) = y*.  

The procedure for bracketing Fy(y*) can be summarized as follows: 
1) Determine the focal elements in S3 as explained in Section 3.1 below. 
2) Determine C1 as explained in Section 3.2 below. 
3) Calculate the bounds on the CDF of y* as: 

( ) ( ) ( ) ( ) ( )∑∑
∈
∈∈

=≤≤=

3

11

'**'* ,,

SA
SA

juppyy
SA

jlowy

j

jj

AmyFyFAmyF  (7) 

where ( )jAm'  is given in Eqs. (1) or (2). It is to be noted that the weights ( )jAm'  do not 
have to be calculated for each focal element of partition D, but only for the focal 
elements in S1 and S3. Because the cumulative probability of y* is in most cases small, the 
focal elements in S1 and S3 are less numerous than the focal elements in S2. If the bounds 
in Eq. (7) are too large, the procedure in Section 3.3 below is followed. 

3.1 Determining C3 
The determination of C3 may be carried out in two parts: 

1) Find a focal element belonging to S3 along the boundary of D. 
2) Find the remaining focal elements belonging to S3. 
 
Since region C1 is in most cases smaller than region C2, it is more efficient to start searching 

from the corner(s) belonging to C1. Therefore, part one can be articulated into the following 
sequence: 
1.1) WHILE f(P) > y*, calculate function f(P) at the corners P of D. Let P* = P. 
1.2) Consider the local numbering of points along the boundary and of focal elements as in 

Figure 2. Let j* be the smallest j such that:  
f(u0, j) > y*.  

IF such j* does not exist, THEN GOTO point 1.3.  
Calculate the image of A1, j* to check if it belongs to S3. 
IF A1, j*  belongs to S3:  

THEN calculate the image of A1,j for j < j* until A1, j ∈ S1.  
ELSE A1, j*-1 belongs to S3, and calculate the image of A1, j for j < j*-1 until A1, j ∈ 
S1. 

GOTO point 2.1. 
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Figure 2. Local numbering of focal elements  

and points on the boundary of D. 
 

1.3) If such j* does not exist, then let i* be the smallest i such that: f(ui, 0) > y*.  
Calculate the image of Ai*,1 to check if it belongs to S3. 
IF Ai*,1 belongs to S3:  

THEN calculate the image of Ai,1 for i < i* until Ai,1 ∈ S1.  
ELSE Ai*-1,1 belongs to S3, and calculate the image of Ai,1 for i < i*-1 until Ai,1 ∈ 
S1. 

GOTO point 2.1. 
 
 
If the focal element(s) determined in step 1 was (were) along a boundary edge parallel to the 

x-axis, then let i =1, and the other focal elements in S3 are found using the following procedure: 
2.1) For the current i, let Ai, j* be the focal element in S3 with the largest j. Set i = i +1. Calculate 

the image of Ai, j*. 
 IF Ai, j* ∈ S3,  

THEN, calculate the image of Ai, j for j > j* until Ai, j ∈ S2;  
calculate the image of Ai, j for j < j* until Ai, j ∈ S1. 

ELSE, calculate the image of Ai, j for j < j* until Ai, j ∈ S1. 
  IF i = n2,  

THEN STOP  
ELSE GOTO point 2.1. 

 
If the curve f(u1, u2) = y* is known to be concave (resp. convex) toward P*, then Point 2.1 

simplifies as follows: 
2.1) For the current i, let Ai, j* be the focal element in S3 with the largest j. Set i = i +1. Calculate 

the image of Ai, j for j ≤ j* (resp. j ≥ j*) until Ai, j ∈ S1.  
IF i = n2,  

THEN STOP  
ELSE GOTO point 2.1. 

 
If the focal element(s) determined in step 1 was (were) along a boundary edge parallel to the 

y-axis, then let j =1, and the other focal elements in S3 are found using the following procedure: 
2.2) For the current j, let Ai*, j be the focal element in S3 with the largest i. Set j = j +1. Calculate 

the image of Ai*, j. 
 IF Ai*, j ∈ S3, 

THEN, calculate the image of Ai, j for i > i* until Ai, j ∈ S2;  
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calculate the image of Ai, j for i < i* until Ai, j ∈ S1. 
ELSE, calculate the image of Ai, j for i < i* until Ai, j ∈ S1. 

IF j = n1,  
THEN STOP 
ELSE GOTO point 2.2. 

 
If the curve f(u1, u2) = y* is known to be concave (resp. convex) toward P*, then Point 2.2 

simplifies as follows: 
2.2) For the current j, let Ai*, j be the focal element in S3 with the largest i. Set j = j +1. Calculate 

the image of Ai*, j for i ≤ i* (resp. i ≥ i*) until Ai, j ∈ S1. 
IF j = n1,  

THEN STOP 
ELSE GOTO point 2.2. 

3.2 Determining C1 
C1 completely lies on one side of the curve f(u1, u2) = y*, and consequently, of set C3. C3 will be 
on the side containing corner P*, which was determined at Point 1.1. 

3.3 Discretization refinement 
If the bounds (7) on the CDF of y* are too large, the discretization refinement is restricted to the 
focal elements in S3. In fact, focal elements belonging to S1 map to the left of y* on the real line, 
and therefore do not need to be further discretized because their contribution to Fy(y*) is already 
known. Likewise, focal elements belonging to S2 map to the right of y* on the real line, and 
therefore do not need to be further discretized because they do not contribute to Fy(y*) altogether. 

Additionally, it is useless to further discretize those focal elements in S3 whose weight 
( )jAm'  is very small as compared to the required precision on the CDF of y* (e.g. ( )jAm'  = 10-

10 if the required precision is 10-4). Therefore, the number of focal elements that need to be further 
discretized is generally very small, which leads to drastic savings in the number of function calls. 

Once the focal elements in S3 have been further discretized into sub-elements, a procedure 
similar to that described in Section 3.1 can be used for determining the sub-elements belonging to 
S3. 

4. Reliability evaluation 

Let u=(u1,...,up) be a vector of uncertain parameters that control the behavior of a given system. 
The safety of a system is quantified by the safety margin z(u), such that [1, 2, 11, 16, 20]  
• If z<0 the system is unsafe. 
• If z>0 the system is safe. 
• If z=0 the system is at a limit state condition. 

 
The probability of failure of the system is defined as 

 )0(ProPro <= zfail  (8) 

In general, a system is accepted if the probability of failure is smaller than a limit value 

 limProPro <fail  (9) 

If the input u is known through its joint probability function, then the cumulative distribution 
function Fz(z) of z can be calculated and  
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  ( )0Pro zfail F=  (10) 

For complex systems, the calculation of Fz(z) may very cumbersome, and a bracketing of the 
failure probability can be obtained using the procedures presented in Section 3, leading to Eq. (7), 
i.e.  

( ) ( ) ( )000 ,, uppzzlowz FFF ≤≤  (11) 

where 
• lowzF ,  is the lower cumulative distribution function of z; 

• uppzF ,  is the upper cumulative distribution function of z. 
 

Three cases can be distinguished: 
1) If ( )lim ,Pro 0z lowF< , then the system is certainly unsafe, and it is not necessary to 

further increase the fineness of the discretization of the focal elements in S3. 
2) If ( )lim ,Pro 0z uppF> , then the system is certainly safe, and it is not necessary to further 

increase the fineness of the discretization of the focal elements in S3. 
3) If ( ) ( )0Pro0 ,lim, uppzlowz FF << , then it is necessary to further increase the fineness of 

the discretization. As discussed in Section 3.3, one only needs to further discretize focal 
elements in set S3. 

 
As an alternative to the procedure proposed here, once the joint pdf of the uncertain input u has 
been discretized as described in Section 2, one can use the efficient approximation technique 
developed by Bae et al. [3] to calculate approximate reliability bounds. However, these bounds 
do not offer a guaranteed envelope because Bae’s procedure uses the Multi-Point Approximation 
method to construct a surrogate for the original safety margin using the Two-Point Adaptive Non-
linear Approximation [34] as a local approximation. 

5. Numerical example 

Consider a beam of length l = 5 m, fixed at one end, and subjected to a random concentrated load 
u1 at the free end, and to a random distributed load u2 along all its length. Let us assume u1 ∼ N(10, 
1) kN, and u2 ∼ N(1, 0.3) kN/m, with a correlation coefficient of 0.5; a similar example is 
proposed by Ang and Tang ([1], Problem 4.18). The resistant moment at the fixed end is equal to 
M = 90 kN⋅m. The safety margin of the bending resistance at the fixed end reads 

( )21 5.125 uuMz ⋅+⋅−=  (12) 

and it is a normal variate with mean equal to 27.5 kN⋅m, and standard deviation  
σ = 7.603 kN⋅m. This closed-form solution allows for a handy check of the results obtained with 
the proposed procedures because the exact probability of failure is 1.49⋅10-4. Let us assume that 
the limit probability of failure is 10-5, and that one wants to determine whether the beam is safe or 
not under the given random loads. 

Let us use the domain D and the discretization shown in Figure 3. Following the procedure 
outlined in Section 3.2 (Point 1.1), function z is evaluated at the corners of D in clockwise order 
starting from P = (-10, -1), until corner P = (30, 3) yields z(P) < 0. We set P* = (30, 3), and 
(Point 1.2) by marching along u2 = 3, we get j* = 4 (absolute coordinates: (10.5, 3)). By 
calculating the images of focal elements A1,j with j ≤ j* = 4, it is found that A1,4 and A1,3 (absolute 
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numbering A70 and A80 in Figure 3) belong to S3, whereas A1,2 (absolute numbering A90 in Figure 3) 
does not, and the search for focal elements of S3 along the boundary is finished.    
 
 

 

 
 

Figure 3. First discretization of set D=I1× I2 into focal elements for the calculation of the system reliability. 
A dot marks the points at which function f must be evaluated. A light gray hatch identifies focal elements 

belonging to set S3, whereas a dark gray hatch identifies focal elements belonging to set S1. 
 
Following Point 2.1, one gets i = 1, and (i, j*) = (1, 4). Let us set i = 1+1 =2, and calculate 

the image of A2,4; since A2,4 belongs to S2, the procedure does not calculate the images of A2,j for j 
> j* because all of these focal elements belong to S2. The procedure calculates the images of A2, j 
for j < j* until A2, j ∈ S1, which occurs for j = 1, i.e. A2,4 ∈ S2, A2,3 ∈ S3, A2,2 ∈ S3, A2,1 ∈ S1. Since i 
= 2 ≠ n2 = 10, the procedure goes back to Point 2.1 with i = 2, and so on. 

The results of the procedure are illustrated in Figure 3, in which a light gray hatch is used for 
the focal elements belonging to S3, and a dark gray hatch is used for the focal elements belonging 
to S1. Table 1 gives the weights m’(A) for the elements of S3. A total of 48 function evaluations 
were necessary to determine sets C1, C2, and C3. 

The calculated probability of failure is in the range 

( ) ( ) ( ) 6
,

42
, 1057.201049.101001.10 −−− ⋅=<⋅=<⋅= uppzzlowz FFF   
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Table 1. Focal elements in set S3. 
Focal element  

(global numbering as in Figure 3)
Weight m’(Ai) 

70 2.24 ⋅ 10-4 
79 9.66 ⋅ 10-3 
80 1.72 ⋅ 10-4 
81 6.29 ⋅ 10-15 
82 1.21 ⋅ 10-9 
83 2.14 ⋅ 10-8 
84 1.19 ⋅ 10-7 
85 1.02 ⋅ 10-7 
86 1.62 ⋅ 10-7 
87 1.13 ⋅ 10-6 
88 4.35 ⋅ 10-6 
89 2.32 ⋅ 10-5 
91 1.57 ⋅ 10-15 

 
Since ( ) ( )0Pro0 ,lim, uppzlowz FF << , it is necessary to increase the fineness of the 

discretization (Section 3.3). The weights of the focal elements in Table 1, are negligible except 
for A70, A79, A80, and A89; therefore, only the latter four focal elements are further discretized into 
5 × 5 = 25 sub-focal elements each as depicted in Figure 4. A light gray hatch is used for the focal 
elements belonging to S3, and a dark gray hatch is used for the focal elements belonging to S1.  
The calculated probability of failure is in the range 

( ) ( ) ( ) 4
,

45
, 1025.301049.101051.40 −−− ⋅=<⋅=<⋅= uppzzlowz FFF   

This range gives a guarantee that ( )lim ,Pro 0z lowF< , and therefore the beam is unsafe.  
Additional 58 function evaluations were used in the discretization refinement. It is remarkable 
that only 48 + 58 = 106 function evaluations were necessary to perform a reliability analysis with 
100% confidence, despite the very low value of the probability of failure. 
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Figure 4. Second discretization of focal elements A70,  A70,  A79,  and A89,  into sub-focal elements for the 
refinement of the calculation of the system reliability. A dot marks the points at which function f must be 
evaluated. A light gray hatch identifies sub-focal elements belonging to set S3, whereas a dark gray hatch 

identifies sub-focal elements belonging to set S1. 
 

On the other hand, the number of function evaluations necessary to achieve an error 
( ) ( ) 4

,, 108.200 −⋅=−= lowzuppz FFe  with confidence 1-δ with crude Monte Carlo is equal to [15] 

( ) 2
1,

4Cn e
e

δ
δ

=
⋅ ⋅

  

Table 2 presents the number of Monte Carlo simulations for several values of the confidence 
level. It is evident that the procedure proposed leads to substantial computational savings. For 
example, if one requires that the reliability of reliability calculations be at least equal to the 
reliability of the structure being analyzed, then one should require a confidence level of 99.999%, 
which yields some 90 million function calls.  

 
Table 2. Number of Monte Carlo simulations vs. confidence level. 

 
Confidence 
level (%) nc 

90 8,929 
95 17,857 
99 89,286 

99.9 892,857
99.99 8,928,571

99.999 89,285,710
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6. Conclusions 

The searching procedure presented allows one to bound the CDF of a dependent variable with 
100% confidence, and allows for a guaranteed evaluation of the error involved in the calculations. 
These bounds are often enough to make decisions, and require a minimal number of function calls. 
The procedure is not intrusive, i.e. it can be equally applied when the function is a complex 
computer model (black box). The proposed procedure can handle input information consisting of 
probabilistic, interval-valued, set-valued, or random-set-valued information, as well as any 
combination thereof. The function as well as the joint pdf of the input variables can be of any 
type. 

The application to a beam subjected to two random loads showed that the number of 
function calls is drastically reduced as compared to Monte Carlo methods. For example, only 106 
function calls were necessary to conclude with 100% confidence that the CDF was greater than 
the specified limit value of the probability of failure, and that the beam was unsafe. 

The drawback of the procedure presented is that it suffers from a dimensionality effect. 
However, Monte Carlo methods are not free from  dimensionality  effects. For example, Davis’ 
and Rabinowitz’s comment as follows on multiple integration by sampling when more than 12 
variables are involved ([10], page 417): “Sophisticated methods of variance reduction appear to 
exhibit a dimensional effect and are probably ruled out in this range. Some authors feel that the 
dimensional effect may even play a role in crude [sampling] methods inasmuch as it may occur in 
the constant in the asymptotic error term.” Indeed, Sloan and Wozniakowski [30] have shown that 
Monte Carlo may depend polynomially or even exponentially on the number of variables. 

Current research is focusing on improving the efficiency of the procedures presented here by 
incorporating Bayesian philosophies and procedures [9, 18, 27] into the method’s algorithm, with 
the aim of reducing the random variables in the problem to those that appreciably influence the 
output. Furthermore, adaptive techniques are being investigated in order to locally refine the 
discretization of those focal elements whose image straddles y*.  

Current applications aim at integrating the procedure presented with interval finite element 
formulations [21, 25, 26] for the efficient reliability analysis of structures. 
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