
How To Take Into Account Dependence Between the Inputs: From

Interval Computations to Constraint-Related Set Computations,

with Potential Applications to Nuclear Safety, Bio- and Geosciences

Martine Ceberio1, Scott Ferson2, Vladik Kreinovich1, Sanjeev Chopra1,3, Gang Xiang1,
Adrian Murguia1,4, and Jorge Santillan1

1Department of Computer Science, University of Texas, El Paso, TX 79968, USA,
mceberio@cs.utep.edu, vladik@utep.edu, gxiang@utep.edu

2Applied Biomathematics, 100 North Country Road, Setauket, New York 11733, USA,
scott@ramas.com

3Lexmark International, Inc., 740 New Circle Road NW, Lexington, KY 40550, USA,
sachopra@gmail.com

4XIMIS, Inc., 6006 N. Mesa, Suite 709, El Paso, TX 79912, USA

Abstract. In many real-life situations, in addition to knowing the intervals xi of possible values
of each variable xi, we also know additional restrictions on the possible combinations of xi; in
this case, the set x of possible values of x = (x1, . . . , xn) is a proper subset of the original box
x1× . . .×xn. In this paper, we show how to take into account this dependence between the inputs
when computing the range of a function f(x1, . . . , xn).

Keywords: constraints, interval computations, dependence between the inputs

1. Introduction

1.1. General Problem of Data Processing under Uncertainty

In many real-life situations, there exist quantities which are difficult (or even impossible) to measure
directly: e.g., the amount of oil in an oil field, or the temperature inside a reactor. Since we cannot
measure the corresponding quantity directly, we can measure it indirectly: by measuring the values
of easier-to-measure quantities x1, . . . , xn which are related to the desired quantity y by a known
dependence y = f(x1, . . . , xn).

The resulting indirect measurement consists of the following:

− first, we measure the quantities x1, . . . , xn, and

− then, we apply the function f to the results x̃1, . . . , x̃n of these measurements.

The resulting value ỹ = f(x̃1, . . . , x̃n) is our estimate for the desired quantity y.

c© 2006 by authors. Printed in USA.

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

2 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

-

· · ·
-

-

x̃n

x̃2

x̃1

-ỹ = f(x̃1, . . . , x̃n)f

If measurements were absolutely accurate, then we would be able to get the exact values of xi,
and thus, compute the exact value of the desired quantity y. In reality, however, measurements
are never 100% accurate; hence, the result x̃i of i-th measurement is, in general, different from the
actual value xi of the corresponding quantity. In other words, we have a non-zero measurement
error ∆xi 6= 0. Hence, the result ỹ = f(x̃1, . . . , x̃n) of applying the function f to the measured
values is, in general, different from the actual (unknown) value y of the desired quantity – i.e.,
from the result y = f(x1, . . . , yn) of applying the function f to the actual (unknown) values of the
quantities xi.

A natural question is: what can we say about the error ∆y
def= ỹ − y of indirect measurement?

Comment. In some real-life situations, we also do not know the exact function f , and this uncer-
tainty in f needs to be added to the uncertainty caused by errors of direct measurements ∆xi 6= 0.
In this paper, for simplicity, we consider only the cases when we know the exact expressions for the
function f .

1.2. Probabilistic and Interval Uncertainty

The error ∆y of indirect measurement is caused by the measurement errors ∆xi of direct measure-
ments. Thus, to deduce the desired information about ∆y, we must use the known information
about ∆xi.

-

. . .

-

-

∆xn

∆x2

∆x1

-∆yf

Traditionally, in engineering and science, we assume that we know the joint probability distrib-
ution for ∆xi. Usually, it is assumed that these measurement errors are independent and normally
distributed, with 0 mean and known standard deviations; however, there are are also known ways
of handling possible dependence and non-Gaussian (non-normal) distributions.

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 3

In many real-life situations, we do know these distributions: they come from the process of
comparing the currently used measuring instruments (MI) with much more accurate “standard”
MIs used in the national or international standards centers. Specifically, we repeatedly measure
the same quantity by our MI and by the standard MI. The standard MI is, by definition, much
more accurate than our MI, i.e., |xstand

i − xi| ¿ |x̃i − xi|. Hence, the difference x̃i − xstand
i between

the results of these two measurements is very close to the actual (unknown) measurement error
∆xi = x̃i − xi. Thus, by analyzing the sample of such differences, we can infer the probability
distribution for the measurement error ∆xi.

This “calibration” of measuring instruments is indeed often performed. However, there are two
important classes of situations where this calibration is not done.

The first such class is situations from fundamental science. If we are interested in the accuracy
of a typical over-the-counter voltmeter, then it is possible to design a more accurate voltmeter
and used this more accurate MI to calibrate our MI. However, when we are trying to analyze the
accuracy of, say, measurements performed by using the newest particle super-collider, it would nice
to have a much more accurate instrument available for calibration, but the existing instrument is
the best we have. Similarly, to analyze the accuracy of measurements made by using the Hubble
telescope, it would be nice to have a much more accurate instrument floating nearby, but the Hubble
is the best we have so far.

Another class of situations is related to manufacturing. In manufacturing, in principle, it is
possible to calibrate all the sensors. However, a detailed individual calibration of each sensor often
costs orders of magnitude more than the sensors themselves. As a result, manufacturers are trying
to avoid detailed calibration of all the sensors, and use whatever information is available without
spending a lot of money.

In such cases, we do not know the probability distribution of the measurement errors ∆xi. What
do we know in such situations? For sure, the manufacturer of the measuring instrument must supply
us with an upper bound ∆i on the (absolute value of) the measurement error |∆xi|. Indeed, if such
guaranteed bound is provided, this means that the actual value xi of the measured quantity can be
as far away as possible from the measured value x̃i. For example, we measure the current as 1 A,
but the actual current current can be 1000 or 0. This is a wild guess, not a measurement. For an
instrument to be called a measuring instrument, some bound has to be provided. The manufacturer
may provide some additional information about ∆xi, but the upper bound has to be provided.

Once the upper bound ∆i on |∆xi| is provided, then, based on the measured value x̃i, we can
conclude that the actual (unknown) value xi of the i-th quantity belongs to the interval

xi ∈ [x̃i −∆i, x̃i + ∆i].

In other words, we know the values xi with interval uncertainty.
For example, if the measured current is 1.0 V and the upper bound on the measurement error

is 0.1 V, then we are guaranteed that the actual (unknown) value of the current is in the interval
[1.0− 0.1, 1.0 + 0.1] = [0.9, 1.1].

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

4 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

1.3. Interval Computations: A Problem

We have just mentioned that in many important real-life situations, we know xi with interval
uncertainty, i.e.:

− we know the ranges xi of possible values of xi, and

− we do not have any information about the probability of different values within these ranges.

In such situations, the only information that we can have about the desired quantity y = f(x1, . . . , xn)
is the range of possible values of y when xi ∈ xi. In other words, we face the following problem:

− Given:

• an algorithm y = f(x1, . . . , xn) that transforms n real numbers xi into a number y; and

• n intervals xi = [xi, xi].

− Compute: the corresponding range of y:

y = [y, y] = {f(x1, . . . , xn) |x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

-

· · ·
-

-

xn

x2

x1

-y = f(x1, . . . ,xn)f

The problem of computing this range is often called the main problem of interval computations;
see, e.g., (Jaulin et al., 2001).

It is known that even for quadratic f , the problem of computing the exact range y is difficult
to compute (in precise terms, NP-hard); see, e.g., (Kreinovich et al., 1997; Vavasis, 1991). Crudely
speaking, NP-hard means that1 it is not possible to find an efficient algorithm that would compute
the exact range for all possible problems. Since no such general algorithm is possible, to solve
practical problems, we thus need to do the following:

− find classes of problems for which efficient algorithms are possible; and

− for problems outside these classes, find efficient techniques for approximating uncertainty of y.

This is what interval computations community has been doing for several decades.

1 unless P is equal to NP, which most computer scientists do not believe

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 5

1.4. Why Not Maximum Entropy?

From the engineering practical viewpoint, a natural question is: why not use the Maximum Entropy
approach? Let us explain what this question means and how to answer it.

Our problems come from the fact that we do not know the exact probability distribution for
∆x = (∆x1, . . . ,∆xn). In real life, this is a frequent situation: in many practical applications, it is
very difficult to come up with the probabilities.

The traditional engineering approach recommends that we use probabilistic techniques. If we do
not know the exact probability distribution, this means that there are many different probability
distributions which are consistent with the same observations and measurements. The traditional
engineering solution to this problem is to select one of these distributions – e.g., the one with the
largest entropy; see, e.g., (Jaynes, 2003) for the detailed description of this Maximum Entropy
(MaxEnt) approach.

For example, suppose that we have only one variable x, and all we know about the actual value
of this variable is that it belongs to the interval [x, x]. Since we have no information about the
relative probability of different values from this interval, there is no reason to assume that some
values are more probable than the others. It is therefore reasonable to assume that all the values
within this interval are equally probable, i.e., in precise terms, that we have a uniform distribution
on this interval [x, x]. Not surprisingly, this is exactly what MaxEnt leads to.

In case we have several variables ∆xi and we have no information about their correlation, then
we have no reason to assume that they are positively or negatively correlated; it is thus reasonable
to assume that they are independent. For example, if all we know is that ∆xi belongs to the interval
[−∆i, ∆i], then the only information that we have about the vector ∆x = (∆x1, . . . ,∆xn) is that
it is located in the box [−∆1, ∆1]× . . .× [−∆n, ∆n]. Since we have no reason to assume that some
values from this box are more probable than the others, it seems reasonable to assume that all the
values from the box are equally probable – i.e., in precise terms, that we have a uniform distribution
on this box. One can easily see that the uniform distribution on the box means that:

− the variables ∆xi are independent, and

− each variable ∆xi is uniformly distributed in the corresponding interval.

Why should we not use this approach? Because, as we will show, this approach can sometimes
seriously underestimate the error of indirect measurement. Indeed, let us consider the simplest
possible case, when:

− the desired quantity y is simply the sum of n values x1, . . . , xn, i.e., f(x1, . . . , xn) = x1+. . .+xn,
and

− all direct measurements have the same error bound ∆1 = . . . = ∆n = ∆.

In this case, ∆y = ∆x1 + . . . + ∆xn, with ∆xi ∈ [−∆i, ∆i].
In practice, it is quite possible that all n measurement errors are caused by the same factor; in

this case, it is possible that ∆x1 = . . . = ∆xn and thus, ∆y = n ·∆x1. Since the measurement error
∆x1 can be take any values from the interval [−∆, ∆], it is possible that ∆x1 = ∆ and therefore,
it is possible that ∆y = n ·∆.

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

6 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

On the other hand, when we apply the MaxEnt approach to this situation, we thus assume
that the values ∆xi ∈ [−∆, ∆] are independent identically distributed random variables uniformly
distributed on the interval [−∆, ∆]. For the uniform distribution, the mean is 0, and the variance

is
1
3
·∆2. When we add independent random variables, their means and variances add up, so the

sum ∆y has a mean 0 and variance V =
1
3
· n ·∆2.

It is known that, due to the Central Limit Theorem (see, e.g., (Wadsworth, 1990)), for large n, the
sum ∆y of n independent identically distributed random variables is almost normally distributed.
Thus, within the MaxEnt approach, for large n, the measurement error ∆y is (almost) normally

distributed with 0 means and variance V =
1
3
· n · ∆2. It is also well known that for a normally

distributed random variable, the probability of a value which is more than, say, 6σ away from
the mean is negligibly small (≈ 10−8). Thus, from the MaxEnt approach, we conclude that with
probability ≥ 1− 10−8 (i.e., practically, with certainty), the measurement error ∆y is bounded by
6σ = 6 · √V ∼ √

n.
So, by using the MaxEnt approach, we get an error bound ∼ √

n, but in reality, due to possible
correlations, we may have ∆y ∼ n À √

n. Our conclusion is that using a single distribution – even
the most reasonable one – can be very misleading, especially if we want guaranteed results, e.g., in
high-risk application areas such as space exploration or nuclear engineering.

We therefore need to solve the original problem of interval computations.

1.5. General Approach: Interval-Type Step-by-Step Techniques

In this paper, we will modify the standard interval computation techniques. To explain the needed
modification, let us recall these techniques in detail.

As we have mentioned, the main difficulty of solving the main problem of interval computations
is that it is (provably) computationally difficult to compute the exact range y for an arbitrary
function f(x1, . . . , xn). The solution provided by interval computations is to compute an enclosure
Y for this range, i.e., a set Y for which y ⊆ Y.

Algorithms for computing an enclosure start with an observation that for arithmetic operations
f(x1, x2), we have explicit formulas for the range. When x1 ∈ x1 = [x1, x1] and x2 ∈ x2 = [x2, x2],
then:

− The range x1 + x2 for x1 + x2 is [x1 + x2, x1 + x2].

− The range x1 − x2 for x1 − x2 is [x1 − x2, x1 − x2].

− The range x1 · x2 for x1 · x2 is [y, y], where

y = min(x1 · x2, x1 · x2, x1 · x2, x1 · x2); y = max(x1 · x2, x1 · x2, x1 · x2, x1 · x2).

− The range 1/x1 for 1/x1 is [1/x1, 1/x1] (if 0 6∈ x1).

These formulas are called formulas of interval arithmetic.

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 7

The main idea behind straightforward interval computations is that within a computer, only
elementary arithmetic operations are hardware supported2. No matter how complex the function
f(x1, . . . , xn) is, the compiler parses it, i.e., represents its computation as a sequence of elementary
arithmetic operations. The main idea is that if we only know the inputs with interval uncertainty,
then we perform the same arithmetic operations in the same order, but with intervals instead of
numbers. It is known that the resulting interval is an enclosure for the desired range.

Let us consider a toy example of estimating the range of a function f(x) = (x− 2) · (x + 2) on
the interval x ∈ [1, 2]. How will the computer compute this function? It will first compute x − 2,
then x + 2, and then multiply the results. If we denote i-th intermediate computational result by
ri, then we get the following sequence of elementary arithmetic operations:

• r1 := x− 2;

• r2 := x + 2;

• r3 := r1 · r2.

If we perform the same operations, but with intervals instead of numbers, then we get the following
intervals:

• r1 := [1, 2]− [2, 2] = [−1, 0];

• r2 := [1, 2] + [2, 2] = [3, 4];

• r3 := [−1, 0] · [3, 4] = [−4, 0].

As a result, we get an interval [−4, 0].
In this toy example, f(x) = x2 − 4, so the actual range of this function on the interval [1, 2] is

easy to compute: it is equal to f(x) = [−3, 0]. We can thus see that our computed range Y = [−4, 0]
is indeed the enclosure for the actual range y = [−3, 0].

Comment. To avoid misunderstanding, we should emphasize that this is just a toy example.
There exist more efficient ways of computing an enclosure Y ⊇ y than straightforward interval
computations (see, e.g., (Jaulin et al., 2001)); however, most of these more efficient and more
sophisticated techniques are based on the main ideas of straightforward interval computations.

1.6. From “Theoretical” Interval Computations to Computer-Representable
Interval Computations: The Need for Rounding

The above formulas for interval arithmetic assumed that all rational numbers can be exactly
represented in a computer. In reality, only some binary-rational numbers can be represented. To
represent numbers like 1/3 in a computer, we must therefore round these numbers, i.e., replace
these theoretically correct numbers with nearby machine-representable ones.

To get a guaranteed enclosure, we must always:
2 Actually, only addition, subtraction, and multiplication are directly hardware supported; division a/b is usually

implemented as a · (1/b).

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

8 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

− round the lower endpoint of the interval downwards (i.e., replace it with a smaller number),
and

− round the upper endpoint of the interval upwards (i.e., replace it with a larger number).

1.7. Interval Computations: Analysis

As we have mentioned, the main problem with computing the exact range of the function under
interval uncertainty is that this computation is NP-hard, which means that in the worst case, this
computation probably require the time which is exponentially growing the size T of the expression
f – i.e., grows as 2T of faster. As a result, for reasonable size algorithms f , with T in hundreds,
the required computation time will be unrealistic – e.g., it may exceed the lifetime of the universe.

From this viewpoint, a natural question to ask is: how long will computations take for the
above straightforward computations techniques of computing the enclosure for the exact range. In
straightforward interval computations, each original elementary arithmetic operation is replaced
with one operation of interval arithmetic. Each interval arithmetic operation consists of several
arithmetic operations with numbers: addition of two intervals means two additions of numbers,
etc. The largest number of operation with numbers per single interval arithmetic operation is for
interval multiplication, which requires 4 multiplications of numbers. Thus, when we move from
the original computations to interval computations, we replace each arithmetic operation with ≤ 4
operations. As a result, the computation time for the straightforward computations is ≤ 4 · T , i.e.,
it is O(T), where T is the number of operations in (i.e., in effect, the running time of) the original
algorithm.

As a result of straightforward interval computations, we compute the enclosure Y ⊇ y, often
with excess width. As we have seen on the toy example, the main reason why there is an excessive
width is that:

− there is a relation between intermediate results, and

− in straightforward interval computations, we ignore this relation.

For example, in the above toy example, the intervals ranges for r1 and r2 were exact. However,
when we multiplied the corresponding intervals r1 and r2, we used the general formulas for interval
multiplication, formulas that implicitly assume that all pairs (r1, r2) from the corresponding box
r1× r2 are possible. Thus, we ignored the fact that the values r1 and r2 are actually related – since
they are both functions of the same variable x – and so, not all pairs (r1, r2) are possible.

In addition to algorithms for computing an enclosure, there also exist algorithms for computing
the exact range; e.g., algorithms based on Tarski’s ideas can be applicable for arbitrary algebraic
functions f ; see, e.g., (Kreinovich et al., 1997) and references therein. These algorithms, however,
require exponential time ∼ 2T (or even higher) and are, thus, not applicable for large T .

1.8. Interval Computations: The First Problem

Summarizing the above discussion, we conclude that we have, in effect, two classes of algorithms
for solving the main problem of interval computations:

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 9

− fast and efficient O(T) algorithms – which often have large excess width;

− slow and inefficient (often non-feasible) algorithms – with no excess width.

In practice, we are often not satisfied with the excess width of a faster algorithm, but we do not have
enough time to apply the algorithm for computing the exact range. To take care of such situations,
it is desirable to develop a sequence of feasible algorithms with:

− longer and longer computation time and

− smaller and smaller excess width.

The development of such a sequence is one of the objectives of this paper.

2. Formulation of the Main Problem

2.1. Interval Computations: Limitations

In traditional interval computations:

− we know the intervals xi of possible values of different parameters xi, and

− we assume that an arbitrary combination of these values is possible.

In geometric terms, this assumption means that the set of possible combinations x = (x1, . . . , xn)
is a box x = x1 × . . .× xn.

In many real-life situations, in addition to knowing the intervals xi of possible values of each
variable xi, we also know additional restrictions on the possible combinations of xi. In this case,
the set x of possible values of x is a (proper) subset of the original box. For example, in addition to
knowing the bounds on x1 and x2, we may also know that the difference between x1 and x2 cannot
exceed a certain amount. Informally speaking, the parameters xi are no longer independent – in
the sense that the set of possible values of xi may depend on the values of other parameters.

In such situations, it is desirable to be able to compute the range of possible values of f(x1, . . . , xn)
for all combinations (x1, . . . , xn) which satisfy the given restrictions. Computing this range is the
main objective of this paper.

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

10 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

Comment. In interval computations, we start with independent inputs; as we follow computations,
we get dependent intermediate results: e.g., for x1 − x2

1, the values of x1 and x2 = x2
1 are strongly

dependent in the sense that only values (x1, x
2
1) are possible within the box x1 × x2.

− In interval computations, there are many techniques for handling similar dependence between
the intermediate computational results.

− In this paper, we extend these techniques to handle a different type of dependence – dependence
between the inputs.

Before we start describing the corresponding ideas and algorithms, let us first give two examples
of such restrictions.

2.2. Example from Geosciences

Our civilization greatly depends on the things we extract from the Earth, such as fossil fuels (oil,
coal, natural gas), minerals, and water. Our need for these commodities is constantly growing, and
because of this growth, they are being exhausted. Even under the best conservation policies, there
is (and there will be) a constant need to find new sources of minerals, fuels, and water.

The only sure-proof way to guarantee that there are resources such as minerals at a certain
location is to actually drill a borehole and analyze the materials extracted. However, exploration
for natural resources using indirect means began in earnest during the first half of the 20th century.
The result was the discovery of many large relatively easy to locate resources such as the oil in the
Middle East.

However, nowadays, most easy-to-access mineral resources have already been discovered. For
example, new oil fields are mainly discovered either at large depths, or under water, or in very
remote areas – in short, in the areas where drilling is very expensive. It is therefore desirable to
predict the presence of resources as accurately as possible before we invest in drilling.

From previous exploration experiences, we usually have a good idea of what type of structures
are symptomatic for a particular region. For example, oil and gas tend to concentrate near the top
of natural underground domal structures. So, to be able to distinguish between more promising and
less promising locations, it is desirable to determine the structure of the Earth at these locations.
To be more precise, we want to know the structure at different depths z at different locations (x, y).

Another vitally important application where the knowledge of the Earth structure is crucial is
the assessment of earth hazards. Earthquakes can be very destructive, so it is important to be able
to estimate the probability of an earthquake, where one is most likely to occur, and what will be
the magnitude of the expected earthquake. Geophysicists have shown that earthquakes result from
accumulation of mechanical stress; so if we know the detailed structure of the corresponding Earth
locations, we can get a good idea of the corresponding stresses and faults present and the potential
for occurrence of an earthquake. From this viewpoint, it is also very important to determine the
structure of the Earth.

In general, to determine the Earth structure, we can use different measurement results that
can be obtained without actually drilling the boreholes: e.g., gravity and magnetic measurements,
analyzing the travel-times and paths of seismic ways as they propagate through the earth, etc.

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 11

The relation between the Earth structure and the related measurable quantities is usually known.
So, when we know the exact structure at a given Earth location, we can predict, with reasonable
accuracy, the corresponding values of the measured quantities – we can predict the local value of
the gravity field, the time that a seismic signal needs to travel from its origin to the sensor, etc.
Such problems are usually called forward problems.

Forward problems enable us, given a model of the Earth, to predict the values of different
signals. What we need in the above geophysical applications is the opposite: given the measured
values of different signals, we need to reconstruct the structure of the Earth at the location where
the measurements have been made. Such problems are therefore called inverse problems.

Some measurements – like gravity and magnetic measurements – describe the overall effect of
a large area. These measurements can help us determine the average mass density in the area, or
the average concentration of magnetic materials in the area, but they often do not determine the
detailed structure of this area. This detailed structure can be determined only from measurements
which are narrowly focused on small sub-areas of interest.

The most important of these measurements are usually seismic measurements. Seismic measure-
ments involve the recording of vibrations caused by distant earthquakes, explosions, or mechanical
devices. For example, these records are what seismographic stations all over the world still use to
detect earthquakes. However, the signal coming from an earthquake carries not only information
about the earthquake itself, it also carries the information about the materials along the path from
an earthquake to the station: e.g., by measuring the travel-time of a seismic wave, checking how fast
the signal came, we can determine the velocity of sound v in these materials. Usually, the velocity
of sound increases with increasing density, so, by knowing the velocity of sound at different 3-D
points, we will be able to determine the density of materials at different locations and different
depths.

The main problem with the analysis of earthquake data (i.e., passive seismic data) is that
earthquakes are rare events, and they mainly occur in a few seismically active belts. Thus, we have
a very uneven distribution of sources and receivers that results in a “fuzzy” image of earth structure
in many areas.

To get a better understanding of the Earth structure, we must therefore rely on active seismic
data – in other words, we must make artificial explosions, place sensors around them, and measure
how the resulting seismic waves propagate. The most important information about the seismic wave
is the travel-time ti, i.e., the time that it takes for the wave to travel from its source to the sensor.
to determine the geophysical structure of a region, we measure seismic travel times and reconstruct
velocities at different depths from these data. The problem of reconstructing this structure is called
the seismic inverse problem. There are several algorithms for solving this inverse problem; see, e.g.,
(Hole, 1992; Parker, 1994; Zelt et al., 1998).

In principle, we can determine the paths from the source to each sensor. The travel-time ti along
i-th path can then be determined as the sum of travel-times in different cells j through which
this path passes: ti =

∑
j

`ijvj , where `ij denotes the length of the part of i-th path within cell j.

This formula can be somewhat simplified if we replace the velocities vj by their inverses sj
def=

1
vj

,

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

12 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

called slownesses. In terms of slownesses, the formula for the travel-time takes the simpler form
ti =

∑
j

`ij · sj .

For each cell j, a geophysicist usually provides us with the smallest and largest possible value of
slowness for this cell. In other words, for each cell j, the expert provides us with an interval [sj , sj]
that is guaranteed to contain the actual (unknown) value of slowness sj . Based on these estimates,
we can find the range [ti, ti] of possible values of ti, where ti =

∑
j

`ij · sj and ti =
∑
j

`ij · sj . If

the measured travel time t̃i is outside this interval, this means that the observed travel-times are
inconsistent with the intervals [sj , sj]. This information should be reported back to the experts, so
that the experts will be able to adjust their bounds for sj in such a way that the new bounds will
be consistent with the observations; see, e.g., (Averill et al., 2005).

The above bounds ti and ti were obtained under the assumption that the only information that
we have about the slownesses sj is that each slowness lies in the corresponding interval. In reality, in
addition to bounds on slownesses sj at different points, we also know that slowness cannot change
too fast between the neighboring points. To be more precise, the experts usually provide us with a
value ∆ such that |sj − sk| ≤ ∆ for all neighboring pairs (j, k):

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

It is therefore necessary to find the range of a linear function ti =
∑
j

`ij · sj under such constraints.

2.3. Example from Safety-Critical Engineering

In engineering of safety-critical systems, e.g., in nuclear engineering, it is vitally important to
provide safety, i.e., to guarantee that certain quantities y like temperature, pressure, radiation
level, do not exceed the required thresholds y0. The value of each such quantity y depends on
several parameters x1, . . . , xn, all of which may somewhat deviate from their nominal values. These
parameters may include parameters of the design (such as the exact thickness of the protective
layer) or external parameters such as the outdoors temperature.

We usually know the dependence y = f(x1, . . . , xn) of the desired quantity y on these parameters.
So, the problem of guaranteeing safety means guaranteeing that the upper endpoint y of the range
y = [y, y] of the function f(x1, . . . , xn) over all possible combinations (x1, . . . , xn) does not exceed
y0.

We usually know the ranges xi of possible values of each of the parameters. Thus, we know that
all possible combinations (x1, . . . , xn) are within the box x1 × . . . × xn. So, in principle, we can
guarantee safety if we guarantee that f(x1, . . . , xn) ≤ y0 for all possible values from this box. In

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 13

other words, we can find the range ỹ = [y, y] of the function f(x1, . . . , xn) on the box, and make
sure that y ≤ y0.

This approach does lead to guarantee safety, but it may be too conservative. Indeed, the maxi-
mum of the function f(x1, . . . , xn) on the box x1 × . . .× xn is often attained at one its endpoints,
i.e., at one of the possible combinations of extreme values of xi. This fact is true, e.g., if the function
f(x1, . . . , xn) is monotonic in each of its variables. However, experts often claim that combinations
of extreme values are impossible. In other words, experts claim that the actual set S of possible
values of (x1, . . . , xn) is a proper subset of the original box – i.e., that there are additional constraints
which describe the relation between the parameters xi.

How can we describe such a subset? In real life, whenever we have a cluster formed by real-life
data points, this cluster has a reasonably smooth boundary. This cluster can be a disk (solid circle),
a ball (solid sphere in multi-D space), an ellipsoid, or a more complex structure, but it is practically
always smooth. The fact that it is smooth means that we can describe its border by an equation
b(x1, . . . , xn) = C for some smooth function b(x1, . . . , xn) and for some constant C. As a result, the
set S itself can be describe either by the inequality

b(x1, . . . , xn) ≤ C0 (1)

or by the inequality b(x1, . . . , xn) ≥ C0. In the second case, the inequality can be transformed into
an equivalent form b′(x1, . . . , xn) ≤ C ′, where the function b′(x1, . . . , xn) = −b(x1, . . . , xn) is also
smooth, and C ′ = −C0. So, without loss of generality, we can assume that the set S is described
by the inequality (1), for some smooth function b(x1, . . . , xn).

An arbitrary smooth function can be approximated by a polynomial, so, instead of the the
general set (1), we can consider the approximating set

a(x1, . . . , xn) ≤ C0, (2)

where a(x1, . . . , xn) is a polynomial that approximates the smooth function b(x1, . . . , xn).
The simplest possible polynomials are linear polynomials a(x1, . . . , xn) = a0+a1 ·x1+. . .+an ·xn.

However, for a linear function a(x1, . . . , xn), the set of all the vectors x for which a(x) ≤ C0 is a
half-space, i.e., a set that is not bounded in many directions, while we want a set S that is inside
the box – and hence, bounded in all directions. Thus, if we restrict ourselves to only linear terms,
we do not get a good approximation to the set (1).

To get a reasonable approximation, we must consider quadratic and higher order polynomial
approximating functions a(x1, . . . , xn). In particular, for the simplest non-linear polynomials –
quadratic polynomials – the approximating set (2) takes the following form:

a(x1, . . . , xn) = a0 +
n∑

i=1

ai · xi +
n∑

i=1

n∑

j=1

ai,j · xi · xj ≤ C. (3)

Ellipsoids indeed provide a reasonable description of the set of possible values of (x1, . . . , xn). To
get an even better description of the actual set (1), we can, in principle, use 3rd, 4th, and higher
order polynomials.

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

14 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

2.4. How This Information Is Processed Now

At present, to estimate the range of a given function over given constraints, we use problem-specific
structure of the objective function f(x1, . . . , xn) and of the corresponding constraints.

In geophysical problems, to estimate the range of a linear function ti =
∑
j

`ij · sj under linear

constraints sj ≤ sj ≤ sj and |sj − sk| ≤ ∆, we can use linear programming techniques – techniques
that were specifically designed for such linear constraint optimization.

Another idea is used to estimate the range of a given function over an ellipsoid in safety-
critical engineering; see, e.g., (Kreinovich et al., to appear). Usually, the range of each variable
xi is reasonably narrow, so we can expand the dependence f(x1, . . . , xn) in Taylor series around
nominal values, and restrict ourselves to quadratic terms in this expansion. As a result, the problem
of estimating the range of a given function f(x1, . . . ,x) over the range S turns into the problem of
estimating the range of the given quadratic function f(x1, . . . , xn) over an ellipsoid, i.e., over the
range described by quadratic constraints b(x1, . . . , xn) ≤ C0.

For this constraint optimization problem, the Lagrange multiplier technique reduces it to the
problem of unconstrained optimization of a quadratic function

F (x1, . . . , xn) = f(x1, . . . , xn) + λ · (b(x1, . . . , xn)− C0).

For this quadratic function, we can find the maximum by simply solving an easy-to-solve system

of n linear equations with n unknowns:
∂F

∂xi
= 0.

Both ideas can only be used for special objective functions and special constraints. It is therefore
desirable to develop general techniques for estimating the range of a given function under given
constraints.

3. Main Idea

3.1. Similar Situation: Statistics

In statistics, to get a complete description of a multi-dimensional probability distribution of n vari-
ables x = (x1, . . . , xn), ideally, we should take into account dependence between all the variables. It
is, however, often too computationally taxing to find all these dependencies. Therefore, in statistics,
it is often necessary to only use partial information about the n-dimensional distribution.

First, we need to find the probability distribution for each of n variables. As we have mentioned
earlier, if we have no information about the dependence between these variables, then it is reasonable
to assume that these variables are independent. This resulting probability distribution often forms
a reasonable first approximation to the actual n-dimensional distribution.

To get a more accurate description, the next reasonable step is to take into account pairwise
dependencies, i.e., dependencies between pairs of variables (xi, xj). In the traditional statistical
practice in engineering and science, this is done by estimating correlation, covariance, and/or other
characteristics of pairwise dependence.

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 15

To get an even better picture of the distribution, we can consider dependencies between triples,
etc.

As a result, we get a sequence of methods – independent variables, pairwise dependence, depen-
dence between the tripes, etc., all the way to a complete description of dependence between all n
variables. As we go from independence to taking more and more information about the dependence
into account, we get a sequence of methods which:

− require more and more time

− but at the same time lead to more and more accurate results.

3.2. Let Us Use a Similar Idea for Interval Uncertainty

How can we use a similar idea to take into account dependence between the inputs in interval
computation?

In straightforward interval computations, we consider only intervals of possible values of xi.
A natural next approximation is when we consider:

− sets xi of possible values of xi, and also

− sets xij of possible pairs (xi, xj).

Comment. This idea is similar to constrained fuzzy arithmetic developed by G. J. Klir; see, e.g.,
(Klir, 2000).

The third approximation is when we also consider possible sets of triples xijk, etc., all the way to
the situation when we completely describe the dependence between xi by describing the set x12...n

of possible values of x = (x1, x2, . . . , xn).
Of course, the more dependence we take into account, the more information we need to store

and process and thus, the more computation time the methods will take.

− For straightforward interval computations, all we need to store is intervals of possible values.

− For pairs, we need to store sets of possible values of pairs, i.e., subsets of 2-D boxes. To
describe an arbitrary such set with accuracy ε, we must know, for each of 1/ε2 sub-boxes of
size ε× ε, whether this box belongs to the desired set or not. Thus, we need to store 1/ε2 bits
of information.

− For triples, we similarly need 1/ε3 bits of information about whether each of 1/ε3 3-D boxes
of size ε× ε× ε belongs to the desired set or not.

− For quadruples, we need 1/ε4 bits, etc.

As a result, we (hope to) get a sequence of methods which:

− require more and more time

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

16 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

− but at the same time lead to more and more accurate results.

3.3. How to Implement This Idea

In straightforward interval computations:

− First, we describe the initial uncertainty by intervals.

− Then, we show how, by using interval arithmetic, we can propagate this uncertainty through
the algorithm f , so that at the end, we get an enclosure for the desired range.

− Finally, we show how to adjust operations of interval arithmetic so that all intermediate
intervals are computer-representable – and at the same time the result is still a guaranteed
enclosure.

Similarly, to implement the new idea, we must be able to achieve the following:

− First, we must describe the initial uncertainty by sets of pairs etc.

− Second, we must learn how to propagate the corresponding uncertainty through algorithms, so
that at the end, we will get a better enclosure for the desired range, an enclosure that takes
into account the dependence between the inputs.

− Finally, we must learn how to represent and process sets of pairs etc, in the computer, so that
the result will still be a guaranteed enclosure.

We have already decided on how to represent uncertainty by sets of pairs etc. In the following
subsections, we will show how we can achieve the two remaining tasks.

3.4. How to Propagate This Uncertainty

In the beginning, we know the intervals r1, . . . , rn corresponding to the input variables ri = xi, and
we know the sets rij for i, j from 1 to n.

The question: is how to propagate this information through an intermediate computation step,
a step of computing rk = ra ∗ rb for some arithmetic operation ∗ and for previous results ra and rb

(a, b < k). By the time we come to this step, we know the intervals ri and the sets rij for i, j < k.
We want to find the interval rk for xk, and the sets rik for i < k. The following is a natural way to
find these sets:

− The range rk can be naturally found as {ra ∗ rb | (ra, rb) ∈ rab}.
− The set rak is described as {(ra, ra ∗ rb) | (ra, rb) ∈ rab}.
− The set rbk is described as {(rb, ra ∗ rb) | (ra, rb) ∈ rab}.
− For i 6= a, b, the set rik is described as {(ri, ra ∗ rb) | (ri, ra) ∈ ria, (ri, rb) ∈ rib}.

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 17

Comment. From the mathematical viewpoint, a subset rij of the set of all possible pairs ri × rj

is a relation. It is therefore not surprising that processing this uncertainty is similar to processing
relations in other application areas such as relational database systems; see, e.g., (Ullman et al.,
2002). For example, a natural intermediate step in computing rik is when, given the relations ria

and rib, we form a new relation {(ra, ri, rb) | (ra, ri) ∈ rai, (ri, rb) ∈ rib}. In relational algebra, this
intermediate relation is called a join and denoted by rai 1i rib.

3.5. How to Represent Sets in a Computer

How can we represent a set of pairs or a set of triples in a computer? A natural idea is to do it in a
way cumulative probability distributions (cdf) are represented in RiskCalc package (Ferson, 2002):
by discretization.

In RiskCalc, we divide the interval [0, 1] of possible values of probability into, say, 10 subintervals
of equal width and represent cdf F (x) by 10 values x1, . . . , x10 at which F (xi) = i/10.

Similarly, to describe a set xij ⊆ xi × xj , we:

− divide the box xi × xj into, say, 10× 10 subboxes, and

− describe the set xij by listing all subboxes which contain possible pairs.

Comment. This representation of a set by the union of grid cells which intersect with this set is
well known in data mining as an upper approximation in the sense of rough set theory; see, e.g.,
(Pawlak, 1991; Polkowski, 2002).

Of course, in reality, there is no need to actually list these subboxes: to describe an arbitrary
set, it is sufficient to store 10× 10 = 100 bits of information describing whether each of the 10× 10
subboxes belongs to the list. In other words, a set can be represented as 10× 10 array of Boolean
values. Similarly, for triples, we can represent the corresponding set as a 3-D array of size 10×10×10,
etc.

Comment. The above approach is a good way to describe generic sets, but in practice, the resulting
description may be redundant.

− For example, even if we know that all the values (x1, x2) are possible, we still need 100 Boolean
values to describe this set.

− Similarly, if the set consists of all the values for which x1 = x2, then out of 100 subboxes, only
10 diagonal boxes are affected, but we still need all 100 Boolean values.

A more efficient idea is to represent sets is by using a paving – in the style of (Jaulin et al., 2001).
In this approach, we start with a 2× 2 subdivision. For each of the 2× 2 = 4 subboxes, we:

− mark this subbox as “in” if it is completely inside the desired set;

− mark this subbox as “out” if it is completely outside the desired set;

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

18 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

− otherwise, if this subbox contains both points from the desired set and point outside the desired
set, we subdivide this box into 2× 2 = 4 subboxes, and repeat the procedure.

As a result, we get a list consisting of boxes of different sizes – starting with larger ones and only
decreasing the size when necessary.

3.6. How to Propagate This Uncertainty: An Algorithm

Let us show how this representation can be propagated through an intermediate computational
step, a step of computing rk = ra ∗ rb for some arithmetic operation ∗ and for previous results ra

and rb (a, b < k). We start by dividing each original interval range into the same number C of
equal sub-intervals. By the time we come to this step, we know the intervals ri and the sets rij for
i, j < k. Each of these sets is described as a union of the subboxes.

We want to find the interval rk for xk, and the sets rik for i < k. First, we compute the range
rk:

− In our representation, the set xab consists of small 2-D boxes Xa ×Xb.

− For each small box Xa ×Xb, we use interval arithmetic to compute the range Xa ∗Xb of the
value ra ∗ rb over this box.

− Then, we take the union (interval hull) of all these ranges.

Then, we divide this range interval into C equal sub-intervls, and compute the sets rik as follows:

− We consider the sets rab, rai, and rbi.

− For each small box Ra ×Rb from rab, we:

• consider all subintervals Ri for which Ra ×Ri is in rai and Rb ×Ri is in rbi, and then

• we add (Ra ∗Rb)×Ri to the set rki.

To be more precise, since the interval Ra ∗ Rb may not have bounds exactly matching the
subdivision of the range interval rk into C parts, we may need to expand the interval Ra ∗Rb to
get within bounds of this subdivision (numerical examples are given in the following text).

Comment. How long does each computation take? For each i, we need to consider ≤ C2 small
boxes Ra×Rb, and for each such subbox, we must consider C subintervals Ri, so the computation
of each new range rik requires O(C2) ·C = O(C3) computational steps. Since C is a fixed constant,
this number does not affect the asymptotic complexity of the proposed algorithm.

We repeat these computations step by step until we get the desired estimate for the range of the
final result of the computations.

Comment. Our main objective is to be able to take into account the prior dependence between
the inputs x1, . . . , xn. However, as a side effect of this technique, in addition to taking into account

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 19

dependence between the inputs, we also take care of the (more traditional) dependence between
individual results. For example, when we compute the range of x1 − x2

1, we first compute x2 = x2
1

and then compute x3 = x1 − x2; in our methodology, when we compute x2, we automatically
generate the set x12 of possible values of pairs (x1, x2). We will see that this set is close to the
graph of the function x2. On the next step, when we compute x3 = x1 − x2, we take into account
not only the intervals x1 and x2, but also the set x12, and thus, the resulting estimate for the range
for x3 is close to the ideal.

4. Examples

4.1. First Example: Computing the Range of x− x

Let us starts with the simplest example where straightforward interval computations lead to over-
estimation: the problem of estimating the range of the function f(x) = x − x on the interval
[0, 1].

Of course, this function is identically 0, so its actual range is the degenerate interval [0, 0]. Let us
trace what happens if we apply straightforward interval computations to this function. Parsing leads
to the following sequence of elementary arithmetic operations: r1 = x, r2 = r1, and r3 = r1 − r2.
So, if we replace each elementary arithmetic operation with the corresponding operation of interval
arithmetic, we get r1 = [0, 1], r2 = [0, 1], and thus, the final range is r3 = r1 − r2 = [0, 1]− [0, 1] =
[−1, 1] – an enclosure with excess width.

In straightforward interval computations, we have r1 = x with the exact interval range r1 = [0, 1],
we have r2 = x with the exact interval range x2 = [0, 1]. We get excess width because the variables
r1 and r2 are dependent, but we ignore this dependence. In effect, when computing the range r3,
we use formulas based on the assumption that the set of possible combinations of (r1, r2) is the
entire box r1 × r2.

In the new approach, we still have r1 = r2 = [0, 1]. However, since r2 = r1, we know that not
all pairs (r1, r2) from the box r1 × r2 are possible – the set r12 of possible values of (r1, r2) is the
diagonal r12 = {(r1, r2) | r1, r2 ∈ [0, 1], r1 = r2}.

When we compute the range r3 of r3 = r1 − r2, we only use pairs (r1, r2) from the diagonal set
r12. For each point from this diagonal set, r3 = r1 − r2 = 0. Thus, with the new techniques, we get
the exact range [0, 0] for the function f(x) = x− x.

Comment. Similarly, the new method computes the exact range for x ·x: we have r1 = x, r2 = r1,
and r3 = r1 · r2. In contrast, if we use straightforward interval computations, then for x = [−, 1],
instead of the correct range [0, 1], we get an closure [−1, 1] · [−1, 1] = [−1, 1], with excess width.

4.2. Second Example: Computing the Range of x− x2

In the example of the degenerate function f(x) = x − x, it is easy to avoid excess width without
using any new techniques. Indeed, in this example, it is sufficient to simplify the expression for the
function f(x) to 0. Many existing compilers can detect the possibility of such a simplification and
perform it.

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

20 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

There are less trivial examples of excess width, where a simplification is either impossible or at
least is not so easy to find. A simple example of such a situation is the function f(x) = x− x2 on
the interval [0, 1].

For this quadratic function, the range can be easily obtained by using the standard calculus
technique: namely, according to calculus, to find the range of a function of one variable on a given
interval, it is sufficient to find the values of this function on the endpoints and on all the stationary
points (i.e., points where the derivative f ′(x) is equal to). The smallest of these values is the lower
endpoint of the range, and the largest of these values is the upper endpoint of the range. For the
given function, the only stationary point f ′(x) = 1 − 2x = 0 is the point x = 0.5. So, to find the
range of this function, it is sufficient to find its value for x = 0 (where f(0) = 0), for x = 0.5
(where f(0.5) = 0.25), and for x = 1 (where f(1) = 0). Thus, the actual range of this function is
[min(0, 0.25, 0), max(0, 0.25, 0)] = [0, 0.25].

In straightforward interval computations:

− we have r1 = x with interval r1 = [0, 1];

− we have r2 = x2 with interval x2 = [0, 1];

− the variables r1 and r2 are dependent, but we ignore this dependence and estimate r3 as
[0, 1]− [0, 1] = [−1, 1].

In the new approach, we still have r1 = r2 = [0, 1], but, since x2 = x2
1, we now also have the set

r12 = {(x1, x2) |x1, x2 ∈ [0, 1], x2 = x2
1}. When we compute the range r3 of r3 = r1−r2, we only use

pairs (r1, r2) from this set. For each point from this diagonal set, r3 = r1− r2 = r1− r2
1. Thus, with

the new techniques, the computed range r3 is exactly the range [0, 0.25] of the original function
f(x) = x− x2 – with no excess width.

4.3. Distributivity: a · (b + c) vs. a · b + a · c

It is known that interval arithmetic is not distributive in the following sense: when we want to
compute the range of the function f(x1, x2, x3) = x1 · (x2 + x3) = x1 · x2 + x1 · x3, straightforward
interval computations sometimes lead to different enclosures depending on which of the two equal
expression we use.

This is true, e.g., when x1 ∈ x1 = [0, 1], x2 = [1, 1], and x3 = [−1,−1]. In this case, x2 + x3 = 0,
so f(x1, x2, x3) = x1 · (x2 + x3) = 0 for all possible xi. Hence, the actual range is [0, 0].

For the expression f(x1, x2, x3) = x1 · (x2 + x3), straightforward interval computations lead to
x1 ·(x2+x3) = [0, 1]·[0, 0] = [0, 0], i.e., to the exact range. However, for f(x1, x2, x3) = x1 ·x2+x1 ·x3,
we get x1 · x2 + x1 · x3 = [0, 1] · 1 + [0, 1] · (−1) = [0, 1] + [−1, 0] = [−1, 1], i.e., excess width.

The reason for this excess width is that we have the exact ranges for r1 = x1, r2 = x2, r3 = x3,
r4 = x1 · x2, and r5 = x1 · x3, but we ignore the dependence between r4 and r5 when computing
the range of the final result r6 = r4 + r5.

In the new approach, we start with the intervals r1 = x1, r2 = x2, and r3 = x3. Since we are
not assuming any dependence between the variables r1, r2, and r3, we thus assume that for these
variables, all pairs are possible, i.e., r12 = r1 × r2, r23 = r2 × r3, and r13 = r1 × r3.

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 21

When we compute r4 = r1 · r2, we also compute the ranges r14, r24, and r34, as

r14 = {(r1, r1 · r2) | r1 ∈ r1, r2 ∈ r2}, r24 = {(r2, r1 · r2) | r1 ∈ r1, r2 ∈ r2}, r34 = r3 × r4.

When we compute r5 = r1 · r3, we also compute the range r45 for pairs (r4, r5) as

{(r4, r1 · r3) | (r1, r4) ∈ r14, (r3, r4) ∈ r34}.

From our description of r14 and r34, we conclude that

r45 = {(r4, r1 · r3) | ∃r2 ∈ r2 s.t. r4 = r1 · r2, r3 ∈ r3}.

Thus,
r45 = {(r1 · r2, r1 · r3) | r1 ∈ r1, r2 ∈ r2, r3 ∈ r3}.

Based on this set, the range of possible values of r6 = r4 + r5 coincides with the set

{r1 · r2 + r1 · r3 | r1 ∈ r1, r2 ∈ r2, r3 ∈ r3},

i.e., with the exact range of the function f(x1, x2, x3) = x1 · (x2 + x3).

4.4. Toy Example with Prior Dependence

Let us consider the problem of finding the range of r1 − r2 when r1 = [0, 1], r2 = [0, 1], and
|r1 − r2| ≤ 0.1. In this case, the actual range of the difference r1 − r2 is, of course, [−0.1, 0.1].

Straightforward interval computations cannot take the prior dependence into account. Thus, the
only result we can get by using straightforward interval computations is the interval r1 − r2 =
[0, 1]− [0, 1] = [−1, 1].

In the new approach, r12 = {(r1, r2) | r1 ∈ [0, 1], r2 ∈ [0, 1], |r1 − r2| ≤ 0.1}. The range of the
function r1 − r2 over this set is exactly the desired interval [−0.1, 0.1].

5. Numerical Examples

Let us show that the advantages of the new approach are preserved even when we take into
consideration the need to approximate the sets.

5.1. First Example: Computing the Range of x− x

As we have mentioned, for f(x) = x − x on [0, 1], the actual range is [0, 0], but straightforward
interval computations lead to an enclosure [0, 1] − [0, 1] = [−1, 1]. In straightforward interval
computations, we have r1 = x with the exact interval range r1 = [0, 1], and we have r2 = x
with the exact interval range x2 = [0, 1]. The variables r1 and r2 are dependent, but we ignore this
dependence.

In the new approach: we have r1 = r2 = [0, 1], and we also have r12:

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

22 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

×
×

×
×

×

r1

r2

For each small box, we have [−0.2, 0.2], so the union is [−0.2, 0.2].
If we divide into more pieces, we get an interval closer to 0.

5.2. Second Example: Computing the Range of x− x2

In straightforward interval computations, we have r1 = x with the exact interval range interval
r1 = [0, 1], and we have r2 = x2 with the exact interval range x2 = [0, 1]. The variables r1 and r2

are dependent, but we ignore this dependence and estimate r3 as [0, 1]− [0, 1] = [−1, 1].
In the new approach: we have r1 = r2 = [0, 1], and we also have r12. First, we divide the range

[0, 1] into 5 equal subintervals R1. The union of the ranges R2
1 corresponding to these 5 subintervals

R1 is [0, 1], so r2 = [0, 1]. We divide this interval r2 into 5 equal sub-intervals [0, 0.2], [0.2, 0.4], etc.
We now compute the set r12 as follows:

− for R1 = [0, 0.2], we have R2
1 = [0, 0.04], so only sub-interval [0, 0.2] of the interval r2 is

affected;

− for R1 = [0.2, 0.4], we have R2
1 = [0.04, 0.16], so also only sub-interval [0, 0.2] is affected;

− for R1 = [0.4, 0.6], we have R2
1 = [0.16, 0.25], so two sub-intervals [0, 0.2] and [0.2, 0.4] are

affected, etc.

× × ×
× ×

×
× ×

×

r1

r2

For each possible pair of small boxes R1×R2, we have R1−R2 = [−0.2, 0.2], [0, 0.4], or [0.2, 0.6],
so the union of R1 −R2 is r3 = [−0.2, 0.6].

If we divide into more and more pieces, we get the enclosure which is closer and closer to the
exact range [0, 0.25].

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 23

5.3. How to Compute rik

The above example is a good case to illustrate how we compute the range r13 for r3 = r1 − r2.
Indeed, since r3 = [−0.2, 0.6], we divide this range into 5 subintervals [−0.2,−0.04], [−0.04, 0.12],
[0.12, 0.28], [0.28, 0.44], [0.44, 0.6].

− For R1 = [0, 0.2], the only possible R2 is [0, 0.2], so R1 − R2 = [−0.2, 0.2]. This covers
[−0.2,−0.04] and [−0.04, 0.12].

− For R1 = [0.2, 0.4], the only possible R2 is [0, 0.2], so R1 −R2 = [0, 0.4]. This interval covers
[−0.04, 0.12], [0.12, 0.28], and [0.28, 0.44].

− For R1 = [0.4, 0.6], we have two possible R2:

• for R2 = [0, 0.2], we have R1 − R2 = [0.2, 0.6]; this covers [0.12, 0.28], [0.28, 0.44], and
[0.44, 0.6];

• for R2 = [0.2, 0.4], we have R1 −R2 = [0, 0.4]; this covers [−0.04, 0.12], [0.12, 0.28], and
[0.28, 0.44].

− For R1 = [0.6, 0.8], we have R2
1 = [0.36, 0.64], so three possible R2: [0.2, 0.4], [0.4, 0.6], and

[0.6, 0.8], to the total of [0.2, 0.8]. Here, [0.6, 0.8]− [0.2, 0.8] = [−0.2, 0.6], so all 5 subintervals
are affected.

− Finally, for R1 = [0.8, 1.0], we have R2
1 = [0.64, 1.0], so two possible R2: [0.6, 0.8] and [0.8, 1.0],

to the total of [0.6, 1.0]. Here, [0.8, 1.0] − [0.6, 1.0] = [−0.2, 0.4], so the first 4 subintervals are
affected.

×
× ×

×
×

×
×
×
×
×

×
×
×
×
×

×
×
×
×

r1

r3

5.4. Distributivity: a · (b + c) vs. a · b + a · c
We want to estimate the range of the function f(x1, x2, x3) = x1 ·x2 +x1 ·x3 when x1 ∈ x1 = [0, 1],
x2 = [1, 1], and x3 = [−1,−1]. The actual range is [0, 0], but straightforward interval computations
lead to [0, 1] · 1 + [0, 1] · (−1) = [0, 1] + [−1, 0] = [−1, 1], i.e., to excess width. The reason is that
we have exact ranges for r4 = x1 · x2 and r5 = x1 · x3, but we ignore the dependence between r4

and r5.
Here, parsing leads to r4 = r1 · r2, r5 = r1 · r3, and r6 = r4 + r5. We start with r1 = [0, 1], r2 = 1,

and r3 = −1. In the new idea, when we get r4 = r1 · r2, we compute the ranges r14, r24, and r34;
the only non-trivial range is r14:

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

24 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

×
×

×
×

×

r1

r4

For r5 = r1 · r3, we get r5 = [−1, 0]. To compute the range r45, for each possible box R1 ×R3, we:

− consider all boxes R4 for which R4 ×R1 is possible and R4 ×R3 is possible; and

− add R4 × (R1 ·R3) to the set r45.

The result is as follows:

×
×

×
×

×
r4

r5

Hence, for r6 = r4 + r5, we get [−0.2, 0.2].
If we divide into more pieces, we get the enclosure closer to 0.

5.5. Toy Example with Prior Dependence

The problem is to find the range of r1−r2 when r1 = [0, 1], r2 = [0, 1], and |r1−r2| ≤ 0.1. Here, the
actual range is [−0.1, 0.1], but straightforward interval computations return [0, 1]− [0, 1] = [−1, 1].

In the new approach, first, we describe the constraint in terms of subboxes:

×
×

×
×
×

×
×
×

×
×
×

×
×

r1

r2

Next, we compute R1 −R2 for all possible pairs and take the union. The result is [−0.6, 0.6].
If we divide into more pieces, we get the enclosure closer to [−0.1, 0.1].

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 25

6. Discussion

When we apply straightforward interval computations to a T -step algorithm,

− we need to compute T intervals ri, i = 1, . . . , T ;

− so, it requires O(T) steps.

In the new approach:

− we need to compute T 2 sets rij , i, j = 1, . . . , T ;

− so, it requires O(T 2) steps.

Thus, the new method takes longer than straightforward interval computations, but it is still
feasible.

We have already mentioned that the range estimation problem is, in general, NP-hard (even
without any dependency between the inputs). This means that no feasible method can completely
avoid excess width. In particular, this means that our quadratic time method cannot completely
avoid excess width. So sometimes, we will need better estimates.

To get better estimates, in addition to sets of pairs, we can also consider sets of triples rijk. This
will be a T 3 time version of our approach. If the use of a full subdivision of each box ri × rj × rk

into C × C × C subboxes requires too much computation time, then, instead of using the full 3-D

approach, we can use an intermediate “2
1
2
-D” approach in which we divide each box into C×C× c

subboxes, with c ¿ C.
We can also go to quadruples with time O(T 4), etc. When we have tuples with as many elements

as the number of variables, we get the exact range. Thus, as we planned, we have a sequence of
more and more accurate feasible algorithms for estimating the range, the sequence whose algorithm
require longer and longer computation time as the accuracy improves.

Comment. Similar ideas can be applied to the case of expert systems, when we have partial
information about probabilities (Ceberio et al., 2005; Ceberio et al., to appear; Chopra, 2005).

Traditionally, expert systems use technique similar to straightforward interval computations: we
parse F and replace each computation step with corresponding probability operation. The problem
with this approach is that at each step, we ignore the dependence between the intermediate results
Fj . As a result, the resulting intervals of possible values of probability are too wide (or, if we use
numerical estimates instead of intervals, these numerical estimates can be way off).

This phenomenon can be illustrated on the simple example of estimating the probability P (A∨
¬A) when P (A) = 0.5. In reality, A ∨ ¬A is always true, so this probability should be equal to 1.
In the interval-type approach, we parse the expression A∨¬A into the following sequence: F1 = A,
F2 = ¬F1, and F3 = F1∨F2. So, first we conclude that P (F1) = 0.5, then that P (F2) = 1−P (F1) =
1 − 0.5 = 0.5. However, when we compute the probability P (F1 ∨ F2), we ignore the dependence
between F1 and F2 and only use the fact that P (F1) = P (F2) = 0.5. In this case, the probability
P (F1 ∨ F2) can take any value from the interval [0.5, 1]. This interval is what the system returns –
with excess width.

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

26 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

A solution to this problem is that, similarly to the above algorithm, on each intermediate
step, besides P (Fj), we also compute P (Fj &Fi) (or P (Fj1 & . . . &Fjk

)). On each step, we use
all combinations of l such probabilities to get new estimates. As a result, we get a new technique
in which, e.g., P (A ∨ ¬A) is always estimated as 1.

The fact that similar ideas work in interval and in probabilistic cases should not be surprising,
because the set of possible values xij which described the dependence between two interval-valued
quantities is a natural analog between copulas – which describe dependence between two random
variables; see, e.g., (Nelsen, 1999).

Acknowledgements

This work was largely inspired by suggestions from Luc Jaulin, Arnold Neumaier, and Bill Walster
during the 2005 Scandinavian Workshop on Interval Computations.

This work was supported in part by NASA under cooperative agreement NCC5-209, NSF grants
EAR-0225670 and DMS-0532645, Army Research Lab grant DATM-05-02-C-0046, Star Award from
the University of Texas System, and Texas Department of Transportation grant No. 0-5453

References

Averill, M. G., K. C. Miller, G. R. Keller, V. Kreinovich, R. Araiza, and S. A. Starks, Using Expert Knowledge in
Solving the Seismic Inverse Problem. In: Proceedings of the 24nd International Conference of the North American
Fuzzy Information Processing Society NAFIPS’2005, Ann Arbor, Michigan, June 22–25, 2005, pp. 310–314.

Ceberio, M., V., Kreinovich, S. Chopra, and B. Ludäscher, Taylor Model-Type Techniques for Handling Uncertainty
in Expert Systems, with Potential Applications to Geoinformatics. In Proceedings of the 17th World Congress of
the International Association for Mathematics and Computers in Simulation IMACS’2005, Paris, France, July
11–15, 2005.

Ceberio, M., V. Kreinovich, S. Chopra, L. Longpré, B. Ludäscher, and C. Baral, Interval-Type and Affine
Arithmetic-Type Techniques for Handling Uncertainty in Expert Systems”, Journal of Computational and Applied
Mathematics (to appear).

Chopra, S. Affine Arithmetic-Type Techniques for Handling Uncertainty in Expert Systems. Master’s Thesis,
Department of Computer Science, University of Texas at El Paso, 2005.

Ferson, S. RAMAS RiskCalc: Risk Assessment with Uncertain Numbers. CRC Press, Boca Raton, Florida, 2002.
Ferson, S., L. Ginzburg, V. Kreinovich, L. Longpré, and M. Aviles, Exact Bounds on Finite Populations of Interval

Data, Reliable Computing, 11(3):207–233, 2005.
Hansen, E. Sharpness in interval computations, Reliable Computing, 3:7–29, 1997.
Hole, J. A. Nonlinear High-Resolution Three-Dimensional Seismic Travel Time Tomography. J. Geophysical Research,

97(B5):6553–6562, 1992.
Jaulin, L., M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis, with Examples in Parameter and State

Estimation, Robust Control and Robotics, Springer-Verlag, London, 2001.
Jaynes, E. T. Probability Theory: The Logic of Science. Cambridge University Press, Cambridge, Massachusetts, 2003.
Klir, G. J. Fuzzy Sets: An Overview of Fundamentals, Applications, and Personal Views. Beijing Normal University

Press, Beijing, 2000.
Kreinovich, V., J. Beck, and H. T. Nguyen, Ellipsoids and Ellipsoid-Shaped Fuzzy Sets as Natural Multi-Variate

Generalization of Intervals and Fuzzy Numbers: How to Elicit Them from Users, and How to Use Them in Data
Processing, Information Sciences (to appear).

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

How To Take Into Account Dependence Between the Inputs 27

Kreinovich, V., A. Lakeyev, J. Rohn, and P. Kahl, Computational Complexity and Feasibility of Data Processing and
Interval Computations. Kluwer, Dordrecht, 1997.

Nelsen, R. B. Introduction to Copulas. Springer Verlag, New York, 1999.
Parker, R. L. Geophysical Inverse Theory. Princeton University Press, Princeton, New Jersey, 1994.
Pawlak, Z. Rough Sets. Kluwer Academic Publishers, Dodrecht, 1991.
Polkowski, L. Rough sets. Mathematical foundations. Physica Verlag, A Springer-Verlag Co., Heidelberg, New York,

2002.
Ullman, J. D., and J. Widom, A First Course in Database Systems, Prentice Hall, Upper Saddle River, New Jersey,

2002.
Vavasis, S. A. Nonlinear Optimization: Complexity Issues. Oxford University Press, New York, 1991.
Wadsworth Jr., H. M. Handbook of Statistical Methods for Engineers and Scientists. McGraw-Hill, N.Y., 1990.
Zelt, C. A., and P. J. Barton, Three-dimensional seismic refraction tomography: A comparison of two methods applied

to data from the Faeroe Basin, J. Geophysical Research, 103(B4):7187–7210, 1998.

Appendix

A. Open Questions

When is the New Method Exact? It is known that straightforward interval computations produce
the exact range for single-use expressions (SUE), in which each variable occurs exactly once; see,
e.g., (Hansen, 1997; Jaulin et al., 2001). A natural question is: is there a similar syntactic class of
expressions for which our pair-wise method leads to the exact range?

One seemingly natural hypothesis does not work here. Namely, we have shown that our new
method leads to the exact range for expressions x − x, x − x2, and x1 · x2 + x1 · x3. In all these
expressions, each variable occurs no more than twice. It may therefore seem natural to conjecture
that the new method is exact for all such “double-use” expressions. Alas, this is not true: it is

known (see, e.g., (Ferson et al., 2005)) that computing the range of the variance V =
1
n
·

n∑

i=1

x2
i −

(
1
n
·

n∑

i=1

xi

)2

on interval data xi is NP-hard. Since variance is an example of a double-use expression,

and our algorithm is feasible, we can thus conclude that for some double-use problems, it must lead
to excess width.

If we allow prior constraints, then the problem of estimating the range become NP-hard even for
SUE expressions with linear SUE constraints. Indeed, we can take an arbitrary non-SUE algebraic
expression, replace each occurrence of each variable xi with different new variables xi1, xi2, . . . –
this will make this expression SUE, and then add SUE linear constraint xi1 = xi2, xi2 = xi3,
. . . Under these constraints, the range of the new expression is exactly the same as the range of the
original expression, and we already know that computing the range of even quadratic expressions
is NP-hard.

What Are the Possible Shapes of rij? It is easy to show that for 1-D ranges, for algebraic functions
f(x1, . . . , xn) (i.e., solutions of polynomial equations with polynomial coefficients), the endpoints

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

28 M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

of the range intervals are algebraic numbers, and that, vice versa, every interval with algebraic
endpoints is a range of an appropriate algebraic function; see, e.g. (Kreinovich et al., 1997).

It is easy to show that when we have two algebraic functions f(x1, . . . , xn) and g(x1, . . . , xn),
then the set of possible values of pairs (f, g) is semi-algebraic (i.e., is described by a finite set of
polynomial equalities and inequalities). A natural question is: can every semi-algebraic set in IR2

be thus represented? What about sets in IR3? in IRn for an arbitrary n?

REC 2006 - M. Ceberio, S. Ferson, V. Kreinovich, S. Chopra, G. Xiang, et al.

