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Abstract: In this paper we study the reliability of calculations of the structural reliability. It 
compares the exact reliability expression within the Bernoulli-Euler column theory with its 
counterpart obtained via the finite difference expression in the buckling context.  
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1. Introduction 
 
The recent decade is characterized in intensive increase of application of probabilistic methods in 
engineering (Elishakoff et al, 2001; Arbocz at al, 1995, Chryssanthoupoulos,1998). The matter of 
the accuracy of the probabilistic design of structures, therefore, becomes of paramount 
importance. In probabilistic design the main quantity of interest is the structural reliability. Since 
its calculation involves the numerical calculation the natural question arises on the reliability of 
the reliability calculation. The paper by Elishakoff (1999) was apparently the first one to address 
this issue in the structural analysis context. Here we extend Ref. Elishakoff (2001)  for the 
buckling of structures. In particular, we deal with the reliability of finite difference method’s 
application to structural reliability evaluation. 

There are several studies that deal with the finite difference evaluation of the buckling 
phenomenon in deterministic setting. Namely, the papers by Falk (1956), Salvadori (1949), Wifi 
et al (1989) ought be mentioned. Seide (1975) was able, in his seminal paper, to evaluate the 
analytical expression for the buckling load, when the column is subdivided by N segments. The 
Seide’s formula is a central one in this investigation to study the reliability of the reliability 
evaluation.   
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2. Recapitulation of Seide’s Solution 
 
The differential equation that governs the buckling of a column of  uniform stiffness subjected at 
the end by a compressive load P, reads: 
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where EI is the bending stiffness of the column, x is the axial coordinate, w is the transversal 
displacement and P is the axial load. 

To solve complicated problems, the ordinary differential equations are usually replaced by a 
set of equivalent algebraic equations that are easier to solve than the differential one. One of such 
methods, known as finite-difference technique, is based on the fact that a derivative of a function 
at a point can be approximated by an algebraic expression consisting of the value of the function 
at that point and at several nearby points. Here, to study the reliability of reliability calculations, 
we investigate the case of an uniform column that possesses the exact solution, so a direct 
comparison is possible with the exact solution. We first recapitulate the solution derived by Seide 
(1995). 

  In particular, using first order central difference method, under the condition of uniform 
nodal points spacing and for any nodal point i the Eq(1) takes the following expression 
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where h is the length of each segment given by the ratio between the length of the bar L and the 
total number N of segments. 

To solve the difference equation (2) with constant coefficients we can express the solution in 
the following form:  

 
                                                                                                                                  (3) i
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The introduction of the expression (3) into Eq. (2) leads to the resulting equation in λ: 
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Eq.4 has the following solutions: 
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The consideration that 
 

                                             
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
22222

2
11

2 EI
Ph

EI
Ph

EI
Ph                                            (6) 

 
allows to rewrite the solutions λ3,4 in Eq.(5) in a different way: 
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Thus the general solution for wi takes the form: 
 

                                                ϑϑ iAiAiAAwi sincos 4321 +++=                                       (8) 
 
in which A1, A2, A3   and A4 are arbitrary constants of integration and 
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Determination of the four constants of integration is obtained using the four boundary 

conditions, two at each end of the column. For a simply supported  column  at both edges we 
have: 

 
                                              w0= =0 ;     wNw -1= -w1 ;     = 1+Nw 1−− Nw                              

(10) 
                                

For a clamped columns at both ends the boundary conditions become: 
 

                                                 w0= =0 ;     wNw -1= w1 ;      =                                 (11) 1+Nw 1−Nw
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Let us concentrate on the case of a simply supported column. Introduction of the expression 
of displacement given by Eq.(8) into the boundary conditions (10) yields: 
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Since the system of equations (12) is homogeneous, the determinant of the coefficients of A1, A2, 
A3  and A4 must vanish. The condition to satisfy is the following: 
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Eq.(13) implies: 
 

                                                                 0sin =ϑN                                                             (14) 
 
which has the solutions 

                                                               
                                                       πϑ kN =        k=1,2,3,…                                                (15) 

 
From Eq.(9) we can evaluate the expression for ϑcos  as follows: 
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Using of  trigonometric relations  we obtain 
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in which k should be set equal to unity for the smallest critical load. Keeping in mind that h is the 
length of each of the N segments and it is the ratio between the length L of the column and the 
total numbers of segments N, the critical load for a simply supported column at both ends is 
expressed as follows: 
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When N tends to infinity we obtain the well-known solution for critical load of a simply 

supported column. The expression (18) belongs to Seide (1975). 
 
 

3. Probabilistic Analysis of  Seide’s Result 
 
Next step is to consider the case in which the  elastic modulus of the column can be treated as a 
continuous random variable with probability distribution function with , assuming 
that the other parameters are deterministic quantities. 

)(eFE 0>e

The conventional requirement to avoid buckling phenomenon is that the critical load must be 
greater or equal than a fixed allowable value P0 

 

                                                                                                                                  (19) 0PPcr ≥
 
From the expression of Pcr given in Eq.(18) we see that if the modulus of elasticity E is a random 
variable, the  left hand side Pcr of Eq (19) also becomes a random variable. We are interested in 
the interval of possible values of E for which the Eq (19) is satisfied. From its definition the 
reliability R is the probability of the event specified in Eq (19): 
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Introducing the expression of  Pcr given in (18), the Eq.(20) can be rewritten as follows: 
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Thus 
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Given the probability density function of the random variable E, Eq.(23) becomes:    
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where the reliability of the column equals one minus the probability distribution function  of 
the modulus of elasticity at the level 

EF
( ) ( ) ( )[ ]22
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4. Probabilistic Design of the Column 
 

Once we know the expression of R we can pose the design problem of the column, under the 
consideration that the structure performs acceptably if the reliability exceeds or equals a codified 
reliability value r0  :  

 
                                                                                         ,         0rR ≥ 10 0 ≤< r                                                                                     (25) 

 
The same problem can be dealt with introduction of unreliability of the structure, defined as 

the probability of failure as follows 
 
                                                           01 pRPf ≤−=                                                            (26) 

 
where p0 is the level of unreliability which can be tolerated .When designing a structure the 
purpose is to keep the reliability as much as possible close at unity. If  the random variable E is 
characterized through its probability density function, we can express some specific design 
parameter, in particular the length of the bar L, as depending on number of elements N and on the 
value of r0. 

Since in buckling circumstances we know the exact expression for the critical load it is 
possible to also evaluate the exact reliability.  

We can, therefore, evaluate general expression for the “actual” reliability, according to 
parameters N and r0, that can be obtained substituting the parameter L deduced from approximate 
analysis in Eq.(24) into the expression of the exact value of critical load for a simply supported 
column.  
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Accuracy of FDM, in the stochastic setting, can be evaluate from the actual reliability values 
compared with the required r0. 

 
 

5. Example of the Exponentially Distributed Elasticity Modulus 
 
To give a numerical example let us consider the case of a fixed distribution for the random 
modulus of elasticity, in particular an exponential distribution expressed by:  
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Mathematical expectation and variance are respectively, aE /1][M = and Var[E]=1/a2. 

Keeping in mind Eq.(24) the approximate reliability takes the following form 
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By demanding that  Rappox equals its codified value r0 , we obtain for the designed quantity, 

namely the length L of the column the following expression : 
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The exact expression for critical load of a simply supported end is given by 22 LEIPcr π= . 

We define the exact reliability as the following expression: 
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Substitution of approximate value for the length (Eq.27) in the expression of exact reliability 

allows to evaluate the actual reliability as follows: 
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or 
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Evaluating Ractual for increasing number of N we obtain values that are always greater than r0 

or equal r0. 
In the Figures 1 the percentage errors between  Ractual  and r0 for increasing value of N and for 

r0 equal, respectively, to 0.90, 0.99, 0.999 and 0.9999 are depicted.  
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Fig. 1:Percentagewise difference between the codified and actual reliabilities 
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When the value of r0 is fixed in 0.90 (Fig.1a) the percentage error goes from 0.343.% for N=5 
(Ractual=0.903084) to 0.0864% for N=10 (Ractual=0.900778)  to 0.0385% for 
N=15(Ractual=0.900346).   
Keeping in mind the relation between reliability and probability of failure we can evaluate 
analogously the actual probability of failure for fixed values of  the tolerated one. 

 Fixing p0 equal respectively to 0.1, 0.01, 0.001 and 0.0001, the Fig.2 shows the percentage 
error between  Pf,actual  and p0 for increasing value of N. 
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Fig.2: Error in probability of failure: Modulus of elasticity random variable with Exponential Distribution 
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Fixing the number of elements at N=5, we get Pf,actual=0.0969159 for p0=0.1 (ε=3.08411%), 
Pf,actual=0.00967689 for p0=0.01 (ε=3.23112%), Pf,actual=0.000967547 for p0=0.001 (ε=3.245%) 
and Pf,actual=0.0000967533 for p0=0.0001 (ε=3.24672%). 
 

6. Conclusion 

In this paper the reliability of the reliability calculations was studied in the buckling context. The 
question that was posed here is as follows: Is actual probability of failure greater than, equal to, or 
less than the tolerable probability of failure that is pertinent to the ideal, error-free situation? 

In the example that is presented in this investigation the actual probability of failure turns out 
to be smaller than the tolerable level. This appears to be a good news for the reliability of the 
reliability calculation of the finite difference method. Whereas this conclusion cannot be extended 
to the other cases of the use of finite difference method, still it represents an interesting finding 
that was not anticipated a priori by the present investigators. 
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