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Abstract: Early in the engineering design cycle, it is difficult to quantify product reliability or 
compliance to performance targets due to insufficient data or information for modeling the 
uncertainties. Design decisions are therefore, based on fuzzy information that is vague, imprecise 
qualitative, linguistic or incomplete. The uncertain information is usually available as intervals 
with lower and upper limits. In this paper, the possibility and evidence theories are used to 
account for uncertainty in design with incomplete information. The formal theories to handle 
uncertainty are first introduced using the theoretical fundamentals of fuzzy measures. The first 
part of the paper highlights how the possibility theory can be used in design. A computationally 
efficient and accurate hybrid (global-local) optimization approach is used to calculate the 
confidence level of “fuzzy” response combining the advantages of the commonly used vertex and 
discretization methods. A possibility-based design optimization method is proposed where all 
design constraints are expressed possibilistically. It is shown that the method gives a conservative 
solution compared with all conventional reliability-based designs obtained with different 
probability distributions. Also, a general possibility-based design optimization method is 
presented which handles a combination of random and possibilistic design variables. The second 
part of the paper describes a design optimization method using evidence theory. The method can 
be used when limited and often conflicting, information is available from “expert” opinions. A 
computationally efficient design optimization formulation is presented, which can handle a 
mixture of epistemic and random uncertainties. It quickly identifies the vicinity of the optimal 
point and the active constraints by moving a hyper-ellipse in the original design space, using a 
reliability-based design optimization (RBDO) algorithm. Subsequently, a derivative-free 
optimizer calculates the evidence-based optimum, starting from the close-by RBDO optimum, 
considering only the identified active constraints. The computational cost is kept low by first 
moving to the vicinity of the optimum quickly and subsequently using local surrogate models of 
the active constraints only. Two numerical examples demonstrate the application of possibility 
and evidence theories in design and highlight the trade-offs among reliability-based, possibility-
based and evidence-based designs.   
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1. INTRODUCTION 
 
Engineering design under uncertainty has recently gained a lot of attention. Uncertainties are 
usually modeled using probability theory. In Reliability-Based Design Optimization (RBDO), 
variations are represented by standard deviations which are typically assumed constant, and a 
mean performance is optimized subject to probabilistic constraints (Tu, Choi and Park, 1999; 
Liang, Mourelatos and Tu, 2004; Wu, Shin, Sues and Cesare, 2001; Lee, Yang and Ruy, 2002; 
Youn, Choi and Park, 2001). In general, probability theory is very effective when sufficient data 
is available to quantify uncertainty using probability distributions. However, when sufficient data 
is not available or there is lack of information due to ignorance, the classical probability 
methodology may not be appropriate. For example, during the early stages of product 
development, quantification of the product’s reliability or compliance to performance targets is 
practically very difficult due to insufficient data for modeling the uncertainties. A similar problem 
exists when the reliability of a complex system is assessed in the presence of incomplete 
information on the variability of certain design variables, parameters, operating conditions, 
boundary conditions etc.  
 Uncertainties can be classified in two general types; aleatory (stochastic or random) and 
epistemic (subjective) (Oberkampf, Helton, and Sentz, 2001; Sentz and Ferson, 2002; Klir and 
Yuan, 1995; Klir and Filger, 1988; Yager, Fedrizzi and Kacprzyk, 1994) Aleatory or irreducible 
uncertainty is related to inherent variability and is efficiently modeled using probability theory. 
However, when data is scarce or there is lack of information, the probability theory is not useful 
because the needed probability distributions cannot be accurately constructed. In this case, 
epistemic uncertainty, which describes subjectivity, ignorance or lack of information, can be 
used. Epistemic uncertainty is also called reducible because it can be reduced with increased state 
of knowledge or collection of more data.  
 Formal theories to handle uncertainty have been proposed in the literature including evidence 
theory (or Dempster – Shafer theory) (Klir and Filger, 1988; Yager, Fedrizzi and Kacprzyk, 
1994], possibility theory [Dubois and Prade, 1988) and interval analysis (Moore, 1966). Two 
large classes of fuzzy measures, called belief and plausibility measures, respectively, characterize 
the mathematical theory of evidence. They are mutually dual in the sense that one of them can be 
uniquely determined from the other. Evidence theory uses plausibility and belief (upper and lower 
bounds of probability) to measure the likelihood of events. When the plausibility and belief 
measures are equal, the general evidence theory reduces to the classical probability theory. 
Therefore, the classical probability theory is a special case of evidence theory. 
Possibility theory handles epistemic uncertainty if there is no conflicting evidence among experts 
(Klir and Filger, 1988). It uses a special subclass of dual plausibility and belief measures, called 
possibility and necessity measures, respectively. In possibility theory, a fuzzy set approach is 
common, where membership functions characterize the input uncertainty (Zadeh, 1965). Even if a 
probability distribution is not available due to limited information, lower and upper bounds 
(intervals) on uncertain design variables are usually known. In this case, interval analysis (Moore 
1966; Muhanna and Mullen, 2001; Mullen and Muhanna, 1999) and fuzzy set theory (Zadeh, 
1965) have been extensively used to characterize and propagate input uncertainty in order to 
calculate the interval of the uncertain output. An efficient method for reliability estimation with a 
combination of random and interval variables is presented in (Penmetsa and Grandhi, 2002). 
However, it is not implemented in a design optimization framework. A few design optimization 
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studies have been also reported, where some or all of the uncertain design variables are in interval 
form (Du and Sudjianto, 2003; Rao and Cao, 2002; Gu and batill, 1998). 
 Optimization with input ranges has also been studied under the term anti-optimization 
(Elishakoff, Haftka and Fang, 1994; Lombardi and Haftka, 1998). Anti-optimization is used to 
describe the task of finding the “worst-case” scenario for a given problem. It solves a two-level 
(usually nested) optimization problem. The outer level performs the design optimization while the 
inner level performs the anti-optimization. The latter seeks the worst condition under the interval 
uncertainty (Lombardi and Haftka, 1998). A decoupled approach is suggested in (Lombardi and 
Haftka, 1998) where the design optimization alternates with the anti-optimization rather than 
nesting the two. It was mentioned that this method takes longer to converge and may not even 
converge at all if there is strong coupling between the interval design variables and the rest of the 
design variables. A “worst-case” scenario approach using interval variables has also been 
considered in multidisciplinary systems design [(Gu and Batill, 1998; Du and Chen, 2000).  
 Very recently, possibility-based design algorithms have been proposed (Mourelatos and 
Zhou, 2005; Choi, Du and Youn, 2004) where a mean performance is optimized subject to 
possibilistic constraints. It was shown that more conservative results are obtained compared with 
the probability-based RBDO. A comprehensive comparison of probability and possibility theories 
is given in (Nikolaidis, Chen, Cudney, Haftka and Rosca, 2004) for design under uncertainty. 
 Evidence theory is more general than probability and possibility theories, even though the 
methodologies of uncertainty propagation are completely different (Oberkampf and Helton, 2002; 
Bae, Grandhi and Canfield, 2004). It can be used in design under uncertainty if limited, and even 
conflicting, information is provided from experts. Furthermore, the basic axioms of evidence 
theory allow to combine aleatory (random) and epistemic uncertainty in a straightforward way 
without any assumptions (Bae, Grandhi and Canfield, 2004). Evidence theory however, has been 
barely explored in engineering design. One of the reasons may be its high computational cost due 
mainly to the discontinuous nature of uncertainty quantification. Evidence-based methods have 
been only recently used to propagate epistemic uncertainty (Bae, Grandhi and Canfield, 2004; 
Bae, Grandhi and Canfield, 2004) in large-scale engineering systems. Although a computationally 
efficient method is proposed in (Bae, Grandhi and Canfield, 2004; Bae, Grandhi and Canfield, 
2004], the design issue is not addressed. We are aware of only one study which propagates 
epistemic uncertainty using evidence theory and also performs a design optimization (Agarwal, 
Renaud, Preston and Padmanabhan, 2004). The optimum design is calculated for 
multidisciplinary systems under uncertainty using a trust region sequential approximate 
optimization method with surrogate models representing the uncertain measures as continuous 
functions. 
 In this paper, the possibility and evidence theories are used to account for uncertainty in 
design with incomplete information. The formal theories to handle uncertainty are first introduced 
using the theoretical fundamentals of fuzzy measures. The first part of the paper highlights how 
the possibility theory can be used in design. A computationally efficient and accurate hybrid 
(global-local) optimization approach is presented for calculating the confidence level of “fuzzy” 
response, combining the advantages of the commonly used vertex and discretization methods. A 
possibility-based design optimization method is subsequently described where all design 
constraints are expressed possibilistically. The method gives a conservative solution compared 
with all conventional reliability-based designs obtained with different probability distributions. 
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Also, a general possibility-based design optimization method is presented which handles a 
combination of random and possibilistic design variables. 
 In the second part of the paper, a computationally efficient design optimization method is 
proposed based on evidence theory, which can handle a mixture of epistemic and random 
uncertainties. The method can be used when limited and often conflicting, information is 
available from “expert” opinions. The algorithm quickly identifies the vicinity of the optimal 
point and the active constraints by moving a hyper-ellipse in the original design space, using an 
RBDO algorithm. Subsequently, a derivative-free optimizer calculates the evidence-based 
optimum, starting from the close-by RBDO optimum, considering only the identified active 
constraints. The computational cost is kept low by first moving to the vicinity of the optimum 
quickly and subsequently using local surrogate models of the active constraints only. 
 The paper is organized as follows. Section 2 gives an introduction to fuzzy measures. Section 
3 describes the fundamentals of possibility theory based on fuzzy measures as well as some 
numerical methods for propagating non-probabilistic uncertainty, which are essential in 
possibility-based design. A detailed formulation of Possibility-Based Design Optimization 
(PBDO) where design constraints are satisfied possibilistically, is presented in section 4. Section 
5 presents a detailed formulation of an Evidence-Based Design Optimization (EBDO) method 
and its implementation. All principles are demonstrated with examples in section 6. Results are 
compared among deterministic optimization, RBDO, PBDO and EBDO. Finally, a summary and 
conclusions are given in section 7. 
 
 

2. FUZZY MEASURES 
 
The evidence and possibility theories are based on the mathematical foundation of fuzzy 
measures which provide the foundation of fuzzy set theory. Before we introduce the basics of 
fuzzy measures, it is helpful to review the used notation on set representation. A universe X 
represents the entire collection of elements having the same characteristics. The individual 
elements in the universe X are denoted by x, which are usually called singletons. A set A is a 
collection of some elements of X. All possible sets of X constitute a special set called the power 
set ℘(X). 
 A fuzzy measure is defined by a function  g: ℘(X) [0,1] which assigns to each crisp 
[Ross 1995] subset of X a number in the unit interval [0,1]. The assigned number in the unit 
interval for a subset A∈

→

℘(X), denoted by g(A), represents the degree of available evidence or 
belief  that a given element of X belongs to the subset A.  
In order to qualify as a fuzzy measure, the function g must obey the following three axioms:  
 Axiom 1 (boundary conditions): g(∅ )=0 and g(X)=1. 
 Axiom 2 (monotonicity): For every A, B∈℘(X), if A⊆B, then g(A) ≤   g(B). 
 Axiom 3 (continuity): For every sequence ( iA ∈℘(X), i=1,2,…) of subsets of ℘(X), if 

either … or 1A ⊆ 2A ⊆ 1A ⊇ 2A ⊇  … (i.e., the sequence is monotonic),  then  
. )Alim(g)A(glim i

i
i

i ∞→∞→
=
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 A belief measure is a function Bel: ℘(X) which satisfies the three axioms of fuzzy 
measures and the following additional axiom [9]:  

]1,0[→

                                  Bel( )1A ∪ 2A ≥ )()()( 2121 AABelABelABel ∩−+ .                              (1) 
      The axiom (1) can be expanded for more than two sets. For ( )XA∈℘ , Bel(A) is interpreted 
as the degree of belief, based on available evidence, that a given element of X belongs to the set 
A. 
 A plausibility measure is a function 
                                                          ( ) [ ]1,0: ⇒℘ XPl                           (2) 
which satisfies the three axioms of fuzzy measures and the following additional axiom [(Klir and 
Filger, 1988) 
       ( ) ( )212121 )()( AAPlAPlAPlAAPl ∪−+≤∩                              (3)  
      Every belief measure and its dual plausibility measure can be expressed with respect to the 
non-negative function 
                                                        ( ) [ ]1,0: ⇒℘ Xm                                      (4)  
such that m( ) = 0 and ∅
                                                           ( )

( )
1=∑

℘∈ XA
Am  .                                                         (5) 

 The function m is called Basic Probability Assignment (BPA) due to the resemblance of Eq. 
(5) with a similar equation for probability distributions. The basic probability assignment m(A) is 
interpreted either as the degree of evidence supporting the claim that a specific element of X 
belongs to the set A or as the degree to which we believe that such a claim is warranted. At this 
point, it should be noted that the BPA is very different from the probability distribution function. 
Basic probability assignments are defined on sets of the power set (i.e., on A∈℘(X)), whereas 
the probability distribution functions are defined on the singletons x of the power set (i.e., on 
x∈℘ (X)). Every set  for which m(A)>0 is called a focal element of m. Focal 
elements are subsets of X on which the available evidence focuses; i.e. available evidence exists. 

( )XA∈℘

 Given a BPA m, a belief measure and a plausibility measure are uniquely determined by 
                                                           ( ) ( )∑

⊆

=
AB

BmABel                       (6) 

and 
                                                           ( ) ( )∑

≠∩

=
0AB

BmAPl .                                  (7) 

which are applicable for all .  ( )XA∈℘
 In Eq. (6), Bel(A) represents the total evidence or belief that the element belongs to A as well 
as to various subsets of A. The Pl(A) in Eq. (7) represents not only the total evidence or belief 
that the element in question belongs to set A or to any of its subsets but also the additional 
evidence or belief associated with sets that overlap with A. Therefore, 
                                                           ( ) ( )ABelAPl ≥ .                      (8) 
 Probability theory is a subset of evidence theory. When the additional axiom of belief 
measures (see Eq. (1)) is replaced with the stronger axiom 
            )()()( BBelABelBABel +=∪  where ∅=∩ BA ,                                           (9)                
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we obtain a special type of belief measures which are the classical probability measures. In this 
case, the right hand sides of Eq. (6) and (7) become equal and therefore, 
                                          ( ) ( ) ( ) ( )∑∑

∈∈

===
AxAx

xpxmAPlABel                       (10) 

for all , where p(x) is the classical probability distribution function (PDF). Note that 
the BPA m(x) is equal to p(x). Therefore with evidence theory, we can simultaneously handle a 
mixture of input parameters. Some of the inputs can be described probabilistically (random 
uncertainty) and some can be described through expert opinions (epistemic uncertainty with 
incomplete data). In the second case, the range of each input parameter will be discretized using a 
finite number of intervals. The BPA value for each interval must be equal to the PDF area within 
the interval. 

( )XA∈℘

 It should be noted that according to evidence theory, the Bel(A) and Pl(A) bracket the true 
probability P(A) [9],  i.e.   
                                      ( ) ( )APlAPABel ≤≤ )( .                                             (11) 
 Evidence obtained from independent sources or experts must be combined. If the BPA’s   
and  express evidence from two experts, the combined evidence m can be calculated by the 
following Dempster’s rule of combining (Sentz and Ferson, 2002) 

1m

2m

                                          ( )
( ) ( )

K

CmBm
Am ACB

−
=
∑

=∩

1

21

  for  0≠A                                           (12) 

where 
                                                  ( ) ( )∑

=∩

=
0

21
CB

CmBmK                                  (13) 

represents the conflict between the two independent experts. Dempster’s rule filters out any 
conflict, or contradiction among the provided evidence, by normalizing with the complementary 
degree of conflict. It is usually appropriate for relatively small amounts of conflict where there is 
some consistency or sufficient agreement among the opinions of the experts. Yager (Yager, 
Fedrizzi and Kacprzyk, 2004) has proposed an alternative rule of combination where all degrees 
of contradiction are attributed to total ignorance. Other rules of combining can be found in (Sentz 
and Ferson, 2002). 
 The possibility theory is a subcase of the general evidence theory. It can be used to 
characterize epistemic uncertainty, when incomplete data is available. It applies only when there 
is no conflict in the provided body of evidence. In such a case, the focal elements of the body of 
evidence are nested and the associated belief and plausibility measures are called consonant. In 
contrary, when there is conflicting evidence, the belief and plausibility measures are dissonant. A 
family of subsets of the universal set is nested if they can be ordered in such a way that each is 
contained within the next. Thus,  are nested sets. Consonant belief and 
plausibility measures are usually known as 

nAAA ⊂⊂⊂ L21

necessity measures n and possibility measures π , 
respectively. Therefore, if there is no conflicting information, n  and ( ) ( )ABelA =
( ) ( )APlA =π . The necessity and possibility are dual measures, related by 

                                                          ( ) ( )AAn π−=1 .                                                     (14)  

where A  is the complement of set A.          
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3. FUNDAMENTALS OF POSSIBILITY THEORY 
 
This section highlights the fundamentals of possibility theory as it was originally introduced in 
the context of fuzzy set theory (Zadeh, 1978). In the fuzzy set approach to possibility theory, 
focal elements are represented by a-cuts of the associated fuzzy set. Focal elements are subsets 
that are assigned nonzero degrees of evidence. The possibility theory can be used to bracket the 
true probability based on the fuzzy set approach at various confidence intervals (a-cuts). The 
advantage of this is that as the design progresses and the confidence level on the input parameter 
bounds increases, the design need not be reevaluated to obtain the new bounds of the response.  
Similarly to the probability measures, which are represented by the probability distribution 
functions, the possibility measures can be represented by the possibility distribution function 

 such that [ 1,0: ⇒Xr ]
                                                           ( ) ( )xrA

Ax∈
= maxπ .                    (15)  

 It can be shown that possibility measures are formally equivalent to fuzzy sets. In this 
equivalence, the membership grade of an element x corresponds to the plausibility of the 
singleton consisting of that x. Therefore, a consonant belief structure is equivalent to a fuzzy set 
of X. 
 A fuzzy set is an imprecisely defined set that does not have a crisp boundary. It provides 
instead, a gradual transition from “belonging” to “not belonging” to the set. A function can be 
defined such that the values assigned to the elements of the set are within a specified range and 
indicate the membership grade of these elements in the set. Larger values denote higher degrees 
of set membership. Such a function is called a membership function and the set defined by it a 
fuzzy set. 
 The membership function  by which a fuzzy set A is usually defined has the form Aμ

Aμ : X  [0, 1]  where [0, 1] denotes the interval of real numbers from 0 to 1, inclusive. Given a 
fuzzy subset A of X with membership function 

→

Aμ , Zadeh (Zadeh, 1978) defines a possibility 
distribution function r associated with A as numerically equal to Aμ , i.e. ( ) ( )xxr Aμ=  for all 

. Then, he defines the corresponding possibility measure Xx∈ π as 
                                       ( ) ( )xrA

Ax∈
= supπ   for each ( )XA ℘∈ .                   (16) 

Eq. (16) is equivalent to Eq. (15) when X is finite. In the fuzzy set approach to possibility theory, 
focal elements are represented by a-cuts of the associated fuzzy set. For the remaining of this 
discussion, we will follow the fuzzy set approach to possibility theory. 
 Eq. (11) states that the true probability is bracketed by the belief and plausibility measures. If 
we know the possibility distribution function ( )yYμ  of the response Y, then the true probability 
P(Y) can be also bracketed as  
                                             )()()( YYPYn π≤≤                                                         (17) 
where the necessity  and possibility )(Yn )(Yπ  measures are calculated from Eqs (14) and (16), 
respectively. The “extension principle” (Klir and Filger, 1988; Yager, Fedrizzi and Kacprzyk, 
1994; Ross, 1995) is used to calculate the possibility distribution function ( )yYμ  of the response. 
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3.1. FUZZIFICATION PROCESS AND EXTENSION PRINCIPLE 

The process of quantifying a fuzzy variable is known as fuzzification. If any of the input variables 
is imprecise, it is considered fuzzy and must be therefore, fuzzified in order for the uncertainty to 
be propagated using fuzzy calculus. The fuzzification is done by constructing a possibility 
distribution, or membership function, for each imprecise (fuzzy) variable. Details can be found in 
(Ross, 1995). The membership function takes values in the [0,1] interval. Here, we use convex 
normal possibility distributions to characterize the fuzzy variables. An example of a convex 
normal triangular possibility distribution is shown in Fig. 1. The point for which the possibility is 
equal to one is called normal point. The possibility distribution is convex since it is strictly 
decreasing to the left and right of the normal point. At each confidence level, or a-cut, a set  
is defined as 

aX

                                              [ ]{ }1,0,: ∈≤≤= axxxxX a
R

a
La ,                 (18a) 

which is a monotonically decreasing function of a; i.e. 
                                    for every 

2121 aa XXaa ⊂⇒> [ ]1,0, 21 ∈aa .                (18b) 
 Due to the convexity of the possibility distribution function, all sets generated at different a-
cuts are nested according to Eq. (18b). Therefore, the convexity and normality of the possibility 
distribution function satisfies the basic requirement of nested sets (no conflicting evidence) in 
possibility theory. 
 After the fuzzification of the imprecise input variables, the “extension principle” is used to 
propagate the epistemic uncertainty through the transfer function in order to calculate the fuzzy 
response. The “extension principle” calculates the possibility distribution of the fuzzy response 
from the possibility distributions of the fuzzy input variables. In particular, given the transfer 
function ( )xfy = , where the output y depends on the N independent fuzzy inputs 

{ Nxxx ,,1 L= }, the “extension principle” states that the possibility distribution Yμ  of the output 
is given by 
                                            ( )[ ] ( )( )[ ]{ }jXjy

Y xfxfy μμ minsup==                               (19) 

where “sup” denotes the suprenum operator that gives the least upper bound. The above equation 
can be interpreted as follows. For a crisp value of the output y, there may exist more than one 
combination of crisp values of input variables x  resulting in the same output.  
The possibility of each combination is given by the smallest possibility value for all fuzzy input 
variables. The possibility that ( )xfy = , is given by the maximum possibility for all these 
combinations. Note that in probability theory, the probability of an outcome is equal to the 
product of the probabilities of the constituent events. In fuzzy set theory however, the possibility 
of an outcome is equal to the minimum possibility of the constituent events. 

REC 2006 - Zissimos P. Mourelatos and Jun Zhou 



Non-Probabilistic Design Optimization with Insufficient Data using Possibility and Evidence Theories 

If the outcome can be reached in many ways, then the outcome probability, in probability theory, 
is given by the sum of the probabilities of all the ways. In fuzzy theory, the possibility of the 
outcome is given by the maximum possibility of all the possibilities (Ross, 1995). 
 The direct (“brute force”) solution of Eq. (19) is practically intractable except for simple 
cases involving one or two fuzzy variables. The computational effort increases exponentially with 
increasing number of fuzzy input variables. For this reason, approximate numerical techniques 
have been proposed, among which the discretization method (Akpan, Rushton and Koko, 2002) 
and the vertex method (Penmetsa and Grandhi, 2002) are the most popular ones. 
 In the discretization method, the domain of each fuzzy variable Nii ≤≤1;  is discretized 
with  discrete values at each a-cut. Then the output y is evaluated at all possible combinations 

for each a-cut. Subsequently, Eq. (19) is used to calculate the possibility distribution of the 

output. The range of the output is defined by the minimum and maximum response from all 
combinations. Although this method can be very accurate, the associated computational cost is 
practically prohibitive. 

iM

∏
=

N

i
iM

1

 In the vertex method, all the binary combinations of only the extreme values of the fuzzy 
variables at an a-cut are fed into the deterministic transfer function. The bounds of the fuzzy 
response are then obtained at the a-cut, by choosing the maximum and minimum responses. The 
procedure is repeated for all a-cuts of interest. The method has the potential to give accurate 

bounds of the response based on the bounded input. However, when the transfer function exhibits 
minima or maxima within the domain defined by the extreme values of the input variables, the 
vertex method is inaccurate. This is due to the fact that the function is evaluated only at the binary 
combinations of the input variable bounds. For a problem with N fuzzy input variables, the 
required number of function evaluations for the vertex method is , where A is the number 
of a-cuts.  

NA 2*
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Figure 1. Triangular possibility distribution for a fuzzy variable. 

 In general, the vertex method is computationally more efficient compared with the 
discretization method. However, the required computational effort grows exponentially with the 
number of input fuzzy variables (Ross, 1995). For this reason, most of the reported applications 
are restricted to very few fuzzy variables (Mullen and Muhanna, 1999; Chen and Rao, 1997; Rao 
and Sawyer, 1995).  
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 A hybrid (global-local) optimization method has been reported in (Mourelatos and Zhou, 
2005], which ensures computational efficiency without loss of accuracy. An optimization 
algorithm is used to calculate the minimum and maximum values of the response at each a-cut. 
Because the global minimum and maximum values of the response are needed, a derivative free, 
global optimizer called DIRECT (DIvisions of RECTangles), is used in order to avoid being 
trapped at a local optimum and obtain therefore, an inaccurate solution. DIRECT is a 
modification of the standard Lipschitzian approach that eliminates the need to specify a Lipschitz 
constant (Jones, Perttunen and Stuckman, 1993). Although global optimizers may get close to the 
global optimum quickly, it takes them longer to achieve a high degree of accuracy because they 
usually have a slow rate of convergence. This suggests that the best performance can be obtained 
by combining DIRECT with a gradient-based local optimizer in a hybrid approach. In this work, 
DIRECT is first used, followed by a local optimizer based on Sequential Quadratic Programming 
(SQP). DIRECT provides a converged global optimum based on “loose” convergence criteria. 
Subsequently, the DIRECT solution is used as starting point for SQP, which identifies the 
optimum accurately and efficiently.  
 
3.2. A MATHEMATICAL EXAMPLE 

The following two-variable, six-hump camel function (Wang, 2003) is used  

                       ( ) ,44
3
11.24, 4

2
2
221

6
1

4
1

2
121 xxxxxxxxxy +−++−=     [ ]2,22,1 −∈x . 

 
 
to illustrate the accuracy and efficiency of the hybrid optimization method of the previous section 
and compare it with the vertex and discretization methods. For demonstration reasons, the 

following simple triangular membership functions are used for the two input variables  and                                    1x 2x

 

 
Figure 2. Contour plot for mathematical example. 
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                                               ( ) 2,1
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i

i

i
i

iX i
μ . 

 
 
 
Fig. 2 shows the contour plot of the six hump camel function. The H’s indicate all extreme points. 
Points H2 and H5 with coordinates (0.0898, -0.7127) and (-0.0898, 0.7127) respectively, are two 
global optima with an equal function value of ymin= -1.0316. The calculated membership 

functions of the response y using the vertex, discretization and hybrid optimization methods are 
plotted in Fig. 3. Ten a-cuts are used for all three methods. For the discretization method, the 
range of each input fuzzy variable, at each a-cut, is equally split in 15 divisions. It is known that 
if the input membership functions are convex normal, the response membership function must 
also be convex normal. The justification is that when the input uncertainty increases (low a-cut 
values), the uncertainty of the response must remain the same or increase. As shown in Fig. 3, the 
response membership function obtained by the vertex method is not convex and therefore, it is 
wrong.  
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Figure 3. Response membership function for mathematical example. 

 As explained in section 3.1, the discretization method evaluates the function not only at the 
upper and lower limits of the input variables at each alpha cut but also between the bounds. Thus, 
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it can capture the extreme points that might be present in between the upper and lower bounds. At 
each alpha cut, all combinations are obtained and the minimum and maximum response values 
are calculated in order to get the response membership function. It is clear that the response 
becomes more accurate as the number of divisions per alpha cut increases. As shown in Fig. 3, 
the response membership function calculated with the discretization method, is convex and 

normal. The uncertainty decreases as the level of confidence increases (increasing a-cut values). 
The major disadvantage of this method is that as the number of design variables increases and the 
number of divisions per a-cut also increases, the method becomes computationally very 
expensive. In this example, the number of a-cuts is 10 and the number of divisions per a-cut is 
15. Therefore, the number of function evaluations is 10*(15+1)2=2560. The response membership 
function of the six hump camel function is also calculated using the proposed hybrid optimization 
method. The result is identical with that obtained with the discretization method (see Fig. 3).  

Table 1. Accuracy and efficiency comparison of vertex, discretization and hybrid optimization methods 
 

 Vertex Discretization Hybrid Optimization 
Lower Bound 47.73 -1.01 -1.03 

Upper Bound 55.73 55.73 55.73 

No of F.E. 4 256 140 

 Table 1 summarizes the lower and upper bound values of the response at the zero a-cut, as 
calculated by the vertex, discretization and hybrid optimization methods. The vertex method is 
very efficient but inaccurate. The hybrid optimization method however, has the same accuracy 
with the “brute force” discretization method but it is much more efficient. 
 
 

4. POSSIBILITY-BASED DESIGN OPTIMIZATION 
 
In deterministic design optimization, an objective function is minimized subject to satisfying a set 
of constraints. In Reliability-Based Design Optimization (RBDO), where all design variables are 
characterized probabilistically, an objective function is usually minimized subject to the 
probability of satisfying each constraint being greater than a specified high reliability level.  
 In this section, a methodology is presented on how to use possibility theory in design. We 
will show that the possibility-based design is conservative compared with all RBDO designs 
obtained with different probability distributions. In RBDO, some optimality is usually sacrificed 
in order to accommodate the random uncertainty. The possibility-based design sacrifices a little 
more optimality in order to accommodate the lack of probability distribution information. It 
therefore, encompasses all RDBO designs obtained with different distributions.  
 According to Eq. (11), the probability P(A) of event A is bracketed by the belief Bel(A) and 
plausibility Pl(A); i.e. ( ) ( )APlAPABel ≤≤ )( . We have also mentioned that for consonant (no 
conflicting evidence) belief structures, the plausibility measures are equal to the possibility 
measures, resulting in ( ) ( )AAPA πη ≤≤ )( , where η  and π are the necessity and possibility 
measures, respectively (see Eq. 17). This means that the possibility ( )Aπ  provides an upper 
bound to the probability P(A). From the design point of view, we can thus conclude (Klir and 
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Filger, 1988; Ross, 1995; Zadeh, 1978) that what is possible may not be probable, and what is 
impossible is also improbable. 
 Note that for an impossible event A, the possibility ( )Aπ  is zero. If we therefore, make sure 
that the possibility of violating a constraint is zero, then the probability of violating the same 
constraint will be also zero. If feasibility of a constraint g is expressed with the positive null form 

, the constraint is always satisfied if                                                  0≥g
                                                            ( ) 00 =≤gπ .                                                               (20) 

The possibility π in Eq. (20) is calculated using Eq. (16). Fig. 4 shows the membership 
function ( )gGμ  of constraint g. The possibility of set [ ]{ }1,0,: minmin ∈≤≤= ααggggA  is 

( ) απ =A  and the possibility of set [ ]{ }1,0,: maxmin ∈≤≤= ααα ggggB  is ( ) 1=Bπ . Similarly, 
the possibility of constraint violation is ( ) 10 απ =≤g .  Eq. (20) can be relaxed as 
                                                    ( ) απ ≤≤ 0g                      (21) 
where the a-cut level is small; i.e. 1<<α . Based on Fig. 4, the relation (21) is satisfied if 
                                                                                          (22) 0min ≥

αg

 )g(Gμ

1

1α

ming
α
ming Ng α

maxg maxg g
0g≤

α

 
 

Figure 4. Used notation in possibility-based design optimization 

where  is the α
ming global minimum of g at the a-cut. Eq. (22) is analogous to the R-percentile 

formulation [1] of a probabilistic constraint in RBDO. The possibilistic constraint of Eqs (21) or 
(22) becomes active if . 0max =

αg
 Based on this discussion, a possibility-based design optimization (PBDO) problem can be 
formulated as 
                                                            ( )NNf

N
p,xd,

xd,
min        
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                                                    s.t.   ( )( ) απ ≤≤ 0,, PXdig ,   ni ,...,1=                               (23) 

                                                            UL ddd ≤≤  ,     U
N

L xxx ≤≤

where is the vector of deterministic design variables, kR∈d mR∈X is the vector of possibilistic 
design variables, qR∈P is the vector of possibilistic design parameters and  and  are the 
normal point vectors for the possibilistic design variables and parameters, respectively. 
According to the used notation, a bold letter indicates a vector, an upper case letter indicates a 
possibilistic variable or parameter and a lower case letter indicates a deterministic variable or a 
realization of a possibilistic variable or parameter. Feasibility of the i

Nx Np

th deterministic constraint is 
expressed with the positive null form .  0≥ig
 The possibilistic design variables are represented with convex normal possibility distributions 
(membership functions). Note that they may not be necessarily triangular. The superscript N 
denotes the normal point of each distribution where the membership function value is equal to 
one. Subscripts L and U denote lower and upper bounds, respectively. In PBDO, we will assume 
that the membership functions of the possibilistic design variables have a constant shape and that 
their normal points are design variables moving within predetermined bounds. This is analogous 
to RBDO where the PDF of each random design variable stays constant while its mean value is a 
design variable. 
 Based on Eq. (22), the PBDO formulation (23) is equivalent to 
                                                             ( )NNf

N
p,xd,

xd,
min        

                                                    s.t.     0
min
≥α

ig ni ,...,1=                                            (24) 

                                                             UL ddd ≤≤  , . U
N

L xxx ≤≤
 The PBDO formulation (23) or (24) is a double-loop optimization problem where an 
optimization is performed (inner loop) when the design optimization (outer loop) calls for a 
possibilistic constraint evaluation. It should be noted that the PBDO optimum at a=1 coincides 
with the deterministic optimum. 
 
4.1. PBDO WITH A COMBINATION OF RANDOM AND POSSIBILISTIC VARIABLES 

Reliability-based design optimization (RBDO) provides optimum designs in the presence of only 
random (or aleatory) uncertainty (Tu, Choi and Park, 1999; Liang, Mourelatos and Tu, 2004; Wu, 
Shin, Sues and Cesare, 2001).  A typical RBDO problem is formulated as (Liang, Mourelatos and 
Tu, 2004] 
                                                        ( )ZYμd,

μ,μd,
Y

fmin         

                                               s.t.    ( )( )
ifii pRgP −=≥≥ 10,, ZYd ,   ni ,...,1=                  (25) 

                                                         ,     UL ddd ≤≤ UL
Y YY μμμ ≤≤

where lR∈Y is the vector of random design variables and rR∈Z is the vector of random design 
parameters. 
 For a variety of practical applications however, there may not be enough information to 
characterize all design variables and parameters probabilistically. A subset of them can be 
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therefore, characterized possibilistically using membership functions. A possibility-based design 
optimization problem with a combination of random and possibilistic (or fuzzy) variables can be 
formulated as   
                                                ( )NNf

Y
N

p,xμμd, ZY
μxd,

,,min
,

                   (26)  

                                         s.t.    , 0
min
≥α

ig ni ,...,1=                             

                                                   ,   UL ddd ≤≤ UL
YYY μμμ ≤≤

                                                      U
N

L xxx ≤≤

                                        with   , 0)(min
min

≥−=
ii tig ββα

X
ni ,...,1= ,  

                                                   ,  αα
UL

xxx ≤≤ αα
UL

ppp ≤≤
                                        and     U

U
min=β        

                                          s.t.   ( ) 0=UG  
where tβ is the target reliability index. Note that  and  are the lower and upper limits of X 
at an a-cut. 

α
L

x α
U

x

 Problem (26) represents a triple-loop optimization sequence. The design optimization of the 
outer loop calls a series of possibilistic constraints in the middle loop. Each possibilistic 
constraint is in general, a global optimization problem. Finally, each possibilistic constraint is a 
function of the corresponding reliability index β which represents the third loop of the 
optimization sequence. For computational purposes, two out of the three nested loops can be 
easily combined. 
 

5. EVIDENCE-BASED DESIGN OPTIMIZATION (EBDO) 
 
In this section, a methodology is presented on how to use evidence theory in design. We will 
show that the evidence theory-based design is more conservative compared with all RBDO 
designs obtained with different probability distributions and less conservative compared with the 
PBDO design.  
 If feasibility of a constraint g is expressed with the non-negative null form , we have 
shown that 

0≥g
( ) ( )0)0(0 ≥≤≥≤≥ gPlgPgBel  where ( )0≥gP  is the probability of constraint 

satisfaction. Therefore,  
                 ( ) fpgP ≤< 0  is satisfied if ( ) fpgPl ≤< 0                               (27) 

where  is the probability of failure which is usually a small prescribed value. The above 
statement is equivalent to 

fp

                 is satisfied if ( ) RgP ≥≥ 0 ( ) RgBel ≥≥ 0                  (28) 
where  is the corresponding reliability level. fpR −=1
 Hence, an evidence theory-based design optimization (EBDO) problem can be therefore, 
formulated as 
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                                                            ( )NNf
N

p,xd,
xd,

min       

                               s.t.   ( )( )
ifi pgPl ≤< 0,, PXd , ni ,...,1=                         (29) 

                                                             ,     UL ddd ≤≤ N
U

NN
L xxx ≤≤

where  mR∈X  and qR∈P  are the vectors of uncertain design variables and parameters. The 
superscript “N” indicates nominal value of uncertain variables or parameters. The uncertainty is 
provided by expert opinions. 
 It should be noted that the plausibility measure is used instead of the equivalent belief 
measure, in Problem (29). The reason is that at the optimum, the failure domain for each active 
constraint is usually much smaller than the safe domain over the frame of discernment (FD) 
(domain of all focal elements with nonzero combined BPA; see next section). As a result, the 
computation of the plausibility of failure is much more efficient than the computation of the 
belief of safe region.  
 
5.1. ASSESSING BEL AND PL WITH DEMPSTER-SHAFER THEORY

Evidence theory can quantify epistemic uncertainty, even when the experts provide conflicting 
evidence. This section shows how to propagate epistemic uncertainty through a given model 
(transfer function) which is necessary in calculating the plausibility of constraint violation in 
Problem (29). The uncertainty propagation will be illustrated using the following simple transfer 
function 
                                                               ( )bafy ,=                                 (30) 
where are two independent input parameters and y is the output. The combined 
BPA’s for both a and b are obtained from Dempster’s rule of combining of Eq. (12) if multiple 
experts have provided evidence for either a or b. With combined information for each input 
parameter, we define a vector 

BbAa ∈∈ ,

[ ]cjci bac ,= , needed to calculate the output y as 

                                        [ ]{ }BbAabacBAC cjcicjci ∈∈==×= ,,,                               (31) 
where subscript c stands for “combined” and i,j  indicate focal elements.  

Taking advantage of assumed parameter independency, the BPA for c is 
                                                      ( ) ( ) ( )cjciijc bmamhm =                                  (32) 
 

a

b

B P A

a

b

a

b

B P A
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Figure 5. Representative BPA structure for two parameters a and b. 
 
where  [ ]cjciij bah ,=  and ,  denote intervals such that cia cjb ciaa∈  and . Eq. (32) can 
be used to calculate the combined BPA structure for the entire domain C. For every 

cjbb∈

( ) Cccba ∈∈, , needed to evaluate the output y, the combined BPA  is used. A 
representative combined BPA structure is shown in Fig. 5. 

cm

 The Cartesian product C of Eq. (31) is also called frame of discernment (FD) in the literature. 
It consists of all focal elements (rectangles in Fig. 5 with nonzero combined BPA) and can be 
viewed as the finite sample space in probability theory. 
If a domain F is defined as  
                                    ( ) ( ) [ ]{ }CbaccbaybafggF cc ⊂=∈>−== ,,,,0,: 0      (33) 
where  is a specified value. According to evidence theory,  0y
                                                         ( ) ( )FPlpFBel f ≤≤ .                               (34) 

where  is the true probability. ( 0>= gPp f )
 The Bel (F) and Pl (F) are calculated using Eqs (6) and (7) where set A is equal to set F of 
Eq. (33) and B is a rectangular domain (focal element) such that  for Eq. (6) and 

 for Eq. (7).  means that the focal element must be entirely within the domain 
g>0 and  means that the focal element must be entirely or partially within the domain 
g>0 (see Fig. 6). In order to identify if a focal element B satisfies  or , the 
following minimum and maximum values of g must be calculated  

AB ⊆
0≠∩ AB AB ⊆

0≠∩ AB
AB ⊆ 0≠∩ AB

          [ ] ( ) ( )[ ]xx
xx

gggg max,min, maxmin =                    (35) 

for where UL xxx ≤≤ ( )UL xx ,  defines the focal element domain. For monotonic functions, the 
vertex method [34] can be used to calculate the minimum and maximum values in Eq. (35) by 
simply identifying the minimum and maximum values among all vertices of the focal element 
domain. If for a focal element,  and  are both positive, the focal element will contribute 
to the calculation of belief and plausibility. On the other hand, if  and  are both 
negative, the focal element will not contribute to the calculation of belief or plausibility. If 
however,  is negative and  is positive, the focal element will not contribute to the belief 
but it will contribute to the plausibility calculation. This is shown schematically in Fig. 6. 

ming maxg

ming maxg

ming maxg

 

ming

maxg
0g>

0g<
0g=

ming

maxg
0g>

0g< 0g=

ming

maxg0g>

0g<

0g=

 
 
 
 
 
 
 

Figure 6. Schematic illustration of focal element contribution to belief and plausibility measures. 
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 In summary the following tasks are performed in order to calculate the belief and plausibility 
of the failure region: 
 
1) For each input parameter, combine the evidence from the experts by combining the individual 
BPA’s from each expert using Dempster’s rule of combining (Eq. (12)). 
2) Construct the BPA structure for the m-dimensional frame of discernment, where m is the 
number of input parameters. Assuming independent input parameters, Eq. (32) is used. 
3) Identify the failure region space (set F of Eq. (33)). 
4) Use Eqs (6) and (7) to calculate the belief and plausibility measures of the failure region. The 
failure region must be identified only within the frame of discernment. The true probability of 
failure is bracketed according to Eq. (34). 
 
5.2. IMPLEMENTATION OF THE EBDO ALGORITHM  

A computationally efficient solution of Problem (29) is presented here. As a geometrical 
interpretation of it, we can view the design point (d,x) moving within the feasible domain so that 
the objective f is minimized (see Fig. 7). If the entire FD is in the feasible domain, the constraints 
are satisfied and are inactive. A constraint becomes active if part of the FD is in the “failure” 
region so that the plausibility of constraint violation is equal to . In general, Problem (29) 
represents movement of a hyper-cube (FD) within the feasible domain. 

fp
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Figure 7. Geometrical interpretation of the EBDO algorithm 
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 In order to save computational effort, the bulk of the FD movement, from the initial design 
point to the vicinity of the optimal point (point B of Fig. 7), can be achieved by moving a hyper-
ellipse which contains the FD. The center of the hyper-ellipse is the “approximate” design point 
and each axis is arbitrarily taken equal to three times the standard deviation of a hypothetical 
normal distribution. This assumes that each dimension of the FD hyper-cube is equal to six times 
the standard deviation of the hypothetical normal distribution. The hyper-ellipse can be easily 
moved in the design space by solving a RBDO problem. The RBDO optimum (point B of Fig. 7) 
is in the vicinity of the solution of Problem (29) (EBDO optimum). The RBDO solution also 
identifies all active constraints and their corresponding most probable points (MPP’s). The 
maximal possibility search algorithm (Choi, Du and Youn, 2004) can also be used to move the 
FD hyper-cube in the feasible domain. It should be noted that the 3-sigma axes hyper-ellipse is 
arbitrary. The size of the hyper-ellipse is not however, crucial because it is only used to calculate 
the initial point (point B of Fig. 7) of the EBDO algorithm. The latter calculates the true EBDO 
optimum accurately. From our experience, a 3 to 4-σ  size works fine. 
 At this point, we generate a local response surface of each active constraint around its MPP. 
In this work, the Cross-Validated Moving Least Squares (CVMLS) [39] method is used based on 
an Optimum Symmetric Latin Hypercube (OSLH) [40] “space-filling” sampling. 
 A derivative-free optimizer calculates the EBDO optimum. It uses as initial point the 
previously calculated RBDO optimum which is close to the EBDO optimum. Problem (29) is 
solved, considering only the identified active constraints. For the calculation of the plausibility of 
failure  of each active constraint, an algorithm presented in (Mourelatos and Zhou, 
2005) is used. It identifies all focal elements which contribute to the plausibility of failure. The 
computational effort is significantly reduced because accurate local response surfaces are used for 
the active constraints. The cost can be much higher if the optimization algorithm evaluates the 
actual active constraints instead of their efficient surrogates (response surfaces). It should be 
noted that a derivative-free optimizer is needed due to the discontinuous nature of the combined 
BPA structure. The DIRECT derivative-free, global optimizer is used (Jones, Perttunen and 
Stuckman, 1993). 

( 0<gPl )

 

6. EXAMPLES 
 
In this section, the possibility-based and evidence-based design algorithms are demonstrated with 
a cantilever beam example and a pressure vessel example. For both examples, comparisons are 
made with deterministic design and reliability-based design results. It should be noted that 
theoretically, the possibility and reliability-based results can not be compared because the 
possibility and reliability theories are based on different axioms. However for practical purposes, 
we attempt to compare them by arbitrarily using membership functions which “resemble” the 
probability density functions used in the reliability-based results. 
 
6.1. A CANTILEVER BEAM EXAMPLE 

In this example, a cantilever beam in vertical and lateral bending (Wu, Shin, Sues and Cesare, 
2001) is used (see Fig. 8). The beam is loaded at its tip by the vertical and lateral loads Y and Z, 
respectively. Its length L is equal to 100 in. The width w and thickness t of the cross-section are 
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deterministic design variables. The objective is to minimize the weight of the beam. This is 
equivalent to minimizing , assuming that the material density and the beam length are 

constant. 

twf ∗=

L=100 in w

Y

Z 
t

 
 

Figure 8. Cantilever beam under vertical and lateral bending 

 Two non-linear failure modes are used. The first failure mode is yielding at the fixed end of 
the cantilever; the other failure mode is that the tip displacement exceeds the allowable value of 

. The PBDO problem is formulated as,  "5.20 =D
                                             twf
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                         s.t.                                      2,10
min

=≥ jg
j

α

                    
2

2
2

2

3

02

221

)()(4),,,,(

)*600*600(),,,,(

w
Z

t
Y

Ewt
LDtwYZEg

Z
tw

Y
wt

ytwYZyg

+−=

+−=
                  (40) 

                                             5,0 ≤≤ tw  
where and are the limit states corresponding to the two failure modes. The design variables 
w and t are deterministic. In the RBDO study of [2], Y, Z, y and E are normally distributed 
random parameters with Y~ N (1000, 100) lb, Z~ N (500,100) lb, y~ N (40000,2000) psi and E~ 
N ( psi; y is the random yield strength, Z and Y are mutually independent 
random loads in the vertical and lateral directions respectively, and E is the Young modulus. A 
reliability index 

1g 2g

)10*45.1,10*29( 66

3=β has been used in [2] for both constraints. 
 For the PBDO case, Y, Z, y and E are possibilistic parameters described with the triangular 
membership functions ( )σσ *3,,*3 +− NNN xxx  where  is the normal point of each variable 
and 

Nx
σ  is the used standard deviation in the RBDO study. The frame of discernment defined by 

the ( )σσ *3,*3 +− NN xx  coordinates is also used in EBDO.  
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Table 2. Comparison of PBDO, EBDO and RBDO optima for the cantilever beam example 
 

 
Determ. 

Optimum 
Reliability 
Optimum Possibility Optimum Evidence Optimum 

Design Variables   α=0.1 α=0 0.1pf =  0.0013pf =

w 2.0470 2.4781 2.5298 2.5901 2.4534 2.5028 
t 3.7459 3.8421 4.1726 4.210 3.6162 3.9902 

Objective       
f(w,t) 7.6679 9.5212 10.556 10.901 8.8721 9.9868 

Constraints       

1g (x) / y  0 0 0 0 0 0.0032 

2g 0D(x) /  0 0.1436 0.15 0.168 0.00428 0.0835 
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 Table 2 compares the deterministic optimization, RBDO, PBDO and EBDO results. The 
PBDO optimum (objective function) with a=0 is higher than the RBDO optimum. Because it 
represents the worst case design, it provides an upper bound of all RBDO optima obtained with 
different distributions, as long as these distributions have similar variability ranges (e.g. different 
beta distributions defined over the same range). For a higher a-cut (a=0.1), the PBDO optimum 
reduces. It should be noted that the PBDO optimum at a=1 coincides with the deterministic 
optimum. The last two rows of Table 2 show the normalized values of the two constraints at the 

optimum. The first constraint is normalized by the mean yield strength 40000=y  and the 
second constraint is normalized by the allowable tip displacement 5.20 =D . Although both 
constraints are active at the deterministic optimum, only the first constraint is active for both the 
RBDO and PBDO optima. 

Table 3. BPA structure for y, Y, Z and E 
 

Z y (x10 ) 3

Interval BPA Interval BPA 

[200  300] 2.2% [35  37] 6.1% 
[300  400] 13.6% [37  38] 9.2% 
[400  450] 15% [38  39] 15% 
[450  500] 19.2% [39  40] 19.2% 
[500  550] 19.2% [40  41] 19.2% 
[550  600] 15% 

 

[41  42] 15% 
[600  700] 13.6%  [42  43] 9.2% 
[700  800] 2.2%  [43  45] 7.1% 

 

Y E (x10 ) 6

Interval BPA Interval BPA 
[700  800] 2.2% [26.5  27.5] 10% 
[800  900] 13.6% [27.5  28.5] 21% 
[900  1000] 34.1% [28.5  29] 13.5% 

[1000  1100] 34.1% [29  29.5] 13.5% 
[1100  1200] 13.6% [29.5  30.5] 21% 
[1200  1300] 2.4% 

 

[30.5  31.3] 21% 

 The EBDO problem formulation is the same with Problem (40) but with different constraints. 
The new constraints are ( ) fi pgPl ≤< 0 , i=1,2. The uncertain parameters P=[Y,Z,y,E] have the 
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BPA structure of Table 3. The BPA for each interval of an uncertain parameter is assumed to be 
equal to the area under the PDF used in RBDO, in order to compare the EBDO design with the 
corresponding RBDO design. This is not how the BPA is obtained in general. As it has been 
mentioned, expert opinions are used to construct the BPA structure. If however, a random 
variable or parameter is described probabilistically, equivalent BPA values within specified 
intervals are calculated as equal to the area under the PDF. In doing so, the evidence theory can 
be used to handle a mixture of probabilistic and non-probabilistic variables.  

The last two columns of Table 2 show the EBDO results for  = 0.1 and 0.0013 (fp 3=β ). 
As expected, the deterministic optimum of 7.6679 is less than the RBDO optimum of 9.5212 
which in turn, is less than the EBDO optimum of 9.9868 at =0.0013 (fp 3=β ). For 1.0=fp  , 

the EBDO optimum reduces. Furthermore, the EBDO optimum of 9.9868 at =0.0013 is better 
than the worst case PBDO optimum of 10.901 (a=0). Although only the first constraint is active 
for the RBDO and PBDO optima, both constraints are active for the EBDO optima, similarly to 
the deterministic case.  

fp

 
 

6.2. A PRESSURE VESSEL EXAMPLE

This example considers the design of a thin-walled pressure vessel (Lewis and Mistree, 1997) 
which has hemispherical ends as shown in Fig. 9. The design objective is to calculate the radius 
R, mid-section length L and wall thickness t in order to maximize the volume while avoiding  
yielding  of  the  material in both the circumferential and radial directions under an internal 
pressure P. Geometric constraints are also considered. The material yield strength is Y. A safety 

factor SF = 2 is use 
 

Figure 9. Thin-walled pressure vessel. 
 
 The PBDO problem is stated as  

                                NNN
tLR

LRRf
NNN
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where,  
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Table 4. BPA structure for R, L, t, P and Y 
 

R  L  t  BPA 

[ - 6.0  - 4.5] NR NR [ - 12  - 9] NL NL [ t - 0.4  - 0.3] N Nt 0.13% 

[ - 4.5  - 3.0] NR NR [ - 9  - 6] NL NL [ t - 0.3  - 0.2] N Nt 2.15% 

[ - 3.0   ] NR NR [ - 6   ] NL NL [ -0.2   t ] Nt N 47.72% 

[ + 3.0] NR NR [  + 6] NL NL [  t +0.2] Nt N 47.72% 

[ + 3.0  + 4.5] NR NR [ + 6  + 9] NL NL [ t + 0.2  + 0.3] N Nt 2.15% 

[ + 4.5  + 6.0] NR NR [ + 9  + 12] NL NL [ t + 0.3  + 0.4] N Nt 0.13% 

                                                      
P Y BPA 

[800 850] [208000 221000] 0.13% 
[850 900] [221000 234000] 2.15% 

[900 1000] [234000 260000] 47.72% 

[1000 1100] [260000 286000] 47.72% 
[1100 1150] [286000 299000] 2.15% 
[1150 1200] [299000 312000] 0.13% 

 
 The EBDO problem formulation is the same but with 
constraints 5,...,1)0)(( =≤< jpgPl fj X . For the EBDO case, the uncertainty in design 
variables R, L, and t and design parameters P and Y are represented with the combined BPA 
structure of Table 4. To compare results with RBDO, the BPA values of R, L, t, P and Y are taken 
equal to the area under the PDF of a normal distribution for the intervals shown in Table 4. The 
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normal distributions for R, L, t, P and Y have standard deviations equal to 1.5, 3, 0.1, 50 and 
13000, respectively. The mean values for parameters P and Y are taken equal to 1000 and 
260000. The intervals for R, L, t, P and Y extend four standard deviations from each side of the 
normal point, in an attempt to use a similar variation with the RBDO study.  Finally, EBDO and 
PBDO use the same frame of discernment.   
 Table 5 compares the deterministic optimization, RBDO, PBDO and EBDO results. Similar 
conclusions with the previous example are drawn. A reliability index 0.2=β  (  = 0.0228) has 
been used in the RBDO study for all constraints. As expected, the deterministic maximum 
volume of 22400 is higher than the RBDO volume of 10791 which in turn, is higher than the 
EBDO volume of 7644. Also, the PBDO optimum of 6132 (a=0) which represents the worst case, 
is the lowest. For comparison purposes, the PBDO and EBDO results are also presented for a=0.2 
and =0.0228, respectively. It is noted that the constraint activity changes among the 
deterministic, RBDO, PBDO and EBDO optima. Only the third and fourth constraints are active 
for the deterministic case. However, the second, third and fourth constraints become active at the 
RBDO and PBDO optima. At the EBDO optimum all constraints are active except the fifth one.  

fp

fp

 

 

Table 5. Comparison of deterministic, RBDO, PBDO and EBDO optima for vessel example 
 

 
Determ. 

Optimum 
Reliability 
Optimum Possibility Optimum Evidence Optimum 

Design 
Variables 

  a=0.2 a =0 f fp =0.2 p =0.0228

NR  11.750 8.7244 7.9107 7.0107 8.333 8.1111 

NL  36.000 33.5186 30.3867 30.3867 30.407 26.1852 

Nt  0.250 0.269 0.2893 0.2893 0.347 0.3472 

 Objective       

( )NN LRf ,−
 

22400 10791 8044 6132 9053 7644 

Constraints       
g1(x) 0.8173 0.5003 0.5 0.5 0 0 
g2(x) 0.6346 0 0 0 0.0137 0 
g3(x) 0 0 0 0 0 0.0183 
g4(x) 0 0 0 0 0 0.0118 
g5(x) 0.8936 0.6891 0.4325 0.0256 0.9994 0.1038 
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7. SUMMARY AND CONCLUSIONS 
 
In this paper, the possibility and evidence theories were used to assess design reliability with 
incomplete information. The possibility theory was viewed as a variant of fuzzy set theory. The 
different types of uncertainty and formal uncertainty theories were first introduced using the 
fundamentals of fuzzy measures. Subsequently, the commonly used vertex and discretization 
methods which are used for propagating non-probabilistic uncertainty were reviewed and 
compared with a hybrid (global-local) optimization method. It was showed that the hybrid 
optimization method is very efficient and has the same accuracy with the “brute force” 
discretization method.   
 The possibility theory was also used in design. A possibility-based design optimization 
method was proposed where all design constraints are expressed possibilistically. It was shown 
that the method gives a conservative solution compared with all conventional reliability-based 
designs obtained with different probability distributions. A general possibility-based design 
optimization method was also presented which handles a combination of random and possibilistic 
design variables.  
 Furthermore, a computationally efficient design optimization method was described, which 
can handle a mixture of epistemic and random uncertainties. A mean performance is optimized 
subject to the plausibility of constraint violation being small. Uncertainty is quantified using 
“expert” opinions. Two examples demonstrated the proposed possibility-based and evidence-
based design optimization methods. It was shown that both the PBDO and EBDO designs are 
more conservative compared with the RBDO design. However, the EBDO design is usually less 
conservative compared with the PBDO design. 
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