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Abstract. The application of a general-purpose self-verified parametric iteration for bounding
the response of mechanical systems involving rational dependencies between interval parameters is
investigated. Based on the availability of self-validated parametric linear solver, a general framework
of computer-assisted proof of global and local monotonicity properties is presented. By the discussed
methodology and software tools some frame structures with uncertainties in cross-sectional proper-
ties, applied loadings, material properties, geometry and connections are analyzed. The results are
compared to literature data produced by other methods and a comparison of different measures of
overestimation is done.

Keywords: self-verified methods, structural frames, parameter-dependent interval linear systems

1. Introduction

Uncertainty quantification is an emerging discipline which is nowadays well recognized by STAM and
structural engineering community. One of the research directions in this field utilizes intervals for
representing the uncertain quantities and interval-based methods for reliable bounding the model
response under variations in the uncertain parameters.

Many mechanical problems, e.g. linear static problems, modelled by finite element method,
can be described by systems of linear equations involving uncertain model parameters. When the
uncertain parameters are introduced by bounded intervals, the problem can be transformed into
an interval linear system which should be solved appropriately to bound the mechanical system
response. This approach is usually called Interval Finite Element Method. Overview of recent
developments in the area of uncertainty treatment using interval finite element methods and their
applications in structural engineering mechanics can be found in (Muhanna et al., 2004), (Muhanna
et al., 2005). Although known for a decade, a self-validated parametric iteration method (Rump,
1994) is not adopted (even for a comparison purpose) and has single mechanical applications
(Dessombz et al., 2001), (Popova et al., 2003). Instead, a construction method, called Element-
By-Element approach (Mullen and Muhanna, 1999), is developed which introduces extra variables
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and equations in order to eliminate the dependencies between interval parameters. The penalty and
Lagrange multiplier methods are used to impose the necessary constraints for compatibility and
equilibrium (Muhanna and Mullen, 2001), (Muhanna et al., 2005). Non-parametric interval fixed-
point iteration is modified and used to solve the model parametric interval linear system. During this
transformation of the original parametric system, self-verifying properties of the interval iteration
are lost or delayed to the final phase of solving non-parametric interval linear system. Recently,
accounting for the structure of input data in systems related to truss structures, by splitting the
iteration into two parts, Neumaier and Pownuk (2005) achieved an advance in self-verified methods
applied to truss structures. Assuming a particular structure of the dependencies their method
removes the restriction of most self-validating methods for linear systems to have a strongly regular
maftrix.

Depending on what model is adopted and which model parameters are considered to be uncertain
or how they are involved into the interval linear system to be solved, the latter can be classified into
two types: parametric linear systems involving affine-linear dependencies between the parameters
and parametric linear systems involving arbitrary nonlinear dependencies between the interval
parameters. So far mainly problems involving affine-linear dependencies have been solved. In this
work we come back to the parametric fixed-point iteration, initially introduced by S. Rump (1994),
and first time apply it for bounding the response of structural engineering systems involving
nonlinear dependencies between the model parameters. In (Popova, 2005) the inclusion method
is combined with a simple interval arithmetic technique providing inner and outer bounds for the
range of monotone rational functions. The arithmetic on proper and improper intervals (Gardenes
et al., 2001) is considered as an intermediate computational tool for eliminating the dependency
problem in range computation and for obtaining inner estimations by outwardly rounded interval
arithmetic. This methodology is implemented into a number of supporting software tools with result
verification, developed in the environment of Mathematica, (Popova, 2005).

Combinatorial approach and the monotonicity approach have been favored by many authors in
solving linear elastic problems involving particular uncertain parameters (Rao and Berke, 1997),
(Ganzerli and Pantelides, 1999), (McWilliam, 2000), (Pownuk, 2000). A rigorous application of
these approaches requires validation of their assumptions which are not generally valid. In Section
2.2 of this paper we present a general framework of computer-aided proof of global and local
monotonicity properties of parametric solutions provided that a self-verified solver of parametric
linear systems is available.

A recent work (Corliss et al., 2004), see also (Corliss and Foley, 2005), identified typical pa-
rameter uncertainties in finite element models of structural steel frames with partially constrained
connections and by applying a sequence of interval-based methods the response of a simple one-bay
steel frame to variations in cross-sectional properties, loading, material properties, and connections
is bounded. Taking occasion of the appeal at the end of the presentation (Corliss and Foley, 2005)
for other reliable methods solving parameter-dependent linear systems, in Section 3.1 this work we
expand the structural analysis performed in (Corliss et al., 2004) by application of the self-verified
parametric iteration, a rigorous hybrid monotonicity approach, and interval subdivision technique
to the same problem and to a larger structural steel frame. The goal is to increase the awareness
of the engineering community about the variety of interval-based methods with result verification
that can be used in the analysis of mechanical structures involving uncertain parameters.
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The paper is organized in two parts. Section 2 briefly describes the methodological and software
tools that are used in the second part. Section 3 contains the analysis of of structural frames.

2. Methodology and Software Tools

In this section we give a brief summary of the numerical methods and software tools that will be
used in solving linear elastic mechanical problems with uncertainties in all the model parameters.
The methods have general purpose and do not assume any particular structure of the input data.
Consider linear algebraic system

Ap) -z = b(p), (1a)
where A(p) is an n x n matrix, b(p) is an n-dimensional vector and p = (p1,...,p)" is a k-
dimensional parameter vector. The elements of A(p) and b(p) are, in general, nonlinear functions
of the parameters

aij(p) = ai(p1,...,pk)s (1b)
bi(p) = bi(p1,--.,0k), ,7=1,...,n. (Lc)

The parameters are considered to be unknown or uncertain and varying within prescribed intervals

p € [pl=(pl---[ps]) " (1d)

When the parameters vary within a box [p] € IR* the set of solutions, called parametric solution
set is

5P = £ (A(p).b(p), [p]) = {a € R" | A(p) -2 = b(p) for some p € [p]}. (2)

In general, a solution set has very complicated structure, and does not need even to be convex.
The parametric solution set >? is bounded if A(p) is nonsingular for every p € [p]. For a nonempty
bounded set ¥ C R"™, define interval hull O : PR™ — TR" by

O := [inf¥, supX] = N{[z] € IR" | £ C [z]}.

Since it is quite expensive to obtain P or [ >?, the solution of interest is seeking an interval vector
[y] € IR™ such that [y] 2 OXP D ¥P, and the goal is [y] to be as narrow as possible.

Below we use the following notations. R™, R"*" denote the set of real vectors with n components
and the set of real n x m matrices, respectively. By normal (proper) interval we mean a real compact
interval [a] = [a",aT] :={a € R|a” <a<a'} By IR" IR"™ we denote interval n-vectors and
interval n x m matrices. The end-point functionals (-), ()", the mid-point function mid(-), where
mid([a—,a"]) := (e +a™)/2, and the diameter (width) function w(-), where w([a ,a™]) :=at —a ",
are applied to interval vectors and matrices componentwise. The absolute value of a matrix A = (a;;)
is denoted by |A| = (|ay;|); for [a] € IR, |[a]| := max{|a| | a € [a]}. For two matrices of the same
size matrix (vector) inequalities A < B and the interval subset relations [A] C [B] are understood
componentwise. A < B if A < B and A # B, analogously [A] C [B] if [4] C [B] and [A] # [B].
The above matrix notations apply to vectors, considered as one-column matrices, as well. p(A) is
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the spectral radius of a matrix A, I denotes the identity matrix. For interval quantities [A],[B],
operations between them are always interval operations. The result is the smallest interval quantity
containing the corresponding result when using power set operations. For example,

[A] € IR™", [b] € IR™ : [A]-[b] :=N{[c] €IR" |Vae[A,¥beH] : a-be [}

We assume the reader is familiar with conventional interval arithmetic, cf. (Moore, 1979), (Neu-
maier, 1990).

2.1. INCLUSION THEOREMS

The inclusion theorems for the solution set of a parametric linear system given here present a direct
consequence from the inclusion theory for nonparametric problems developed by S. Rump and
discussed in many works, cf. (Rump, 1986; Rump, 1990; Rump, 1994). The basic idea of combining
the Krawczyk-operator and the existence test by Moore was further elaborated by S. Rump (1986)
who proposed several improvements leading to inclusion theorems for the solution of nonparametric
interval linear systems [A] -z = [b]. Computing verified inclusions for the solution set of an interval
linear system with data dependencies was first considered by C. Jansson (1991). He treated systems
with symmetric and skew-symmetric matrices, as well as dependencies in the right hand side, by
modifying the general nonparametric inclusion theorem to account for the dependencies in the
system. In (Rump, 1994, Theorem 4.8) S. Rump gives a straightforward generalization to affine-
linear dependencies in the matrix and the right hand side. The affine-linear dependencies between
the parameters in A(p),b(p) allow an explicit representation of the ranges of the residual vector
z(p) == R - (b(p) — A(p) - #) and the iteration matrix C(p) := I — R - A(p) by interval expressions,
as it is stated by the following theorem.

Theorem 2.1. Consider parametric linear system (la) where A(p), b(p) are defined by

azg +Zpu a;; 7 bz = +Zp1/ a nj=1,...,n

Let R € R™" [y] € IR", Z € R" be given and define [z] € IR", [C] € IR"*" by
k

[2] == R- (00 — AOz) + Z[pu](R' b)) — R- AW . 3),
v=1
k
(O] == 1= R-A® — Y [p,J(R- AV)),
v=1
where A0 := (a%))), AR = (al(f)) € R, p0) .= (bgo)), bR = (bgk)) e R™
Define [v] € IR" by means of the following Einzelschrittverfahren
1<i<n : [vj] :={[z] +[C] " [u]}i, U= (V1y ey Vi 15 Yisoons Yn) |-
f [v] S [y], then R and every matrix A(p),p € [p] are regular, and for every p € [p] the unique
solutlon z = A"1(p)b(p) of (1a) satisfies 7 € T + [v].
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The above theorem generalizes Theorem 4.8 from (Rump, 1994) by requiring computation of the
range of C(p) instead of using an interval extension C([p]), cf. (Popova, 2004c). Although a sharp
enclosure of the iteration matrix is used also by other authors (Dessombz et al., 2001; Muhanna
et al., 2005), the necessity of this improvement is not well justified therein. The generalization of
Theorem 4.8 from (Rump, 1994) is proven theoretically and demonstrated by several numerical
examples in (Popova, 2004b; Popova, 2004c¢). Indeed, for a class of so-called column-dependent
parametric matrices (Popova, 2004b), the following relation holds

[Cp]:==T{C(p) [pelpl} C C(lp]) = [C],

which implies |[Cp]| < |[C]|. If in addition, |[Cp]| + |[C]| is irreducible, from the theory of nonneg-
ative matrices it follows that o(|[Cp]|) < o(|[C]|). Thus the range enclosure of C(p) will provide
convergence of the iteration method for o(|[Cp]|) < 1, while a worse enclosure (e.g. C([p])) may
not for some column-dependent parametric matrices and some interval domains for the parameters.
Examples demonstrating the expanded scope of application of the generalized Theorem 2.1 can be
found in (Popova, 2004b; Popova, 2004c; Popova and Kramer, 2003).

In case of arbitrary nonlinear dependencies between the parameters of a linear system we can
give only a general formulation of the inclusion theorem, as bellow.

Theorem 2.2. Consider parametric linear system defined by (la-1d). Let R € R"*" [y] € IR",
Z € R" be given and define [z] € IR", [C] € IR " by

[2] == D{R (b(p) — A(p)Z) | p € [P]},
[C] == D{I = R- A(p) | p € [p]}-

Define [v] € IR" by means of the following Einzelschrittverfahren
1<i<n : [v] :=={[z] +[C] - [u]}i, U= (V15 ey Uiy Yis oo Yn) |-

If [v] G [y], then R and every matrix A(p) with p € [p] are regular, and for every p € [p] the

unique solution 7 = A~!(p)b(p) of (la-1d) satisfies z € & + [v].

In case of arbitrary nomlinear dependencies between the uncertain parameters in a system,
computing [z] and [C] in Theorem 2.2 requires sharp range enclosure for nonlinear functions. This
is a key problem in interval analysis and there exists a variety of methods and techniques devoted
to this problem. The quality of the range enclosure for z(p) := R - (b(p) — A(p) - ) will determine
the sharpness of the parametric solution set enclosure. The verification iteration based on Theorem
2.2 will be convergent if the interval matrix O{R - A(p) | p € [p]} is regular which we call strong
regularity of the parametric matrix A(p) in the domain [p], following the term initially introduced
in (Neumaier, 1990). Since the left preconditioning introduces an affine transformation on the
columns of A(p), only systems with column-dependent parametric matrices may benefit from a
sharper enclosure of C(p) =1 — R- A(p).

In (Popova, 2005) the above inclusion theorem is combined with a simple interval arithmetic tech-
nique providing inner and outer bounds for the range of monotone rational functions. The arithmetic
of generalised (proper and improper) intervals is considered as an intermediate computational tool
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for eliminating the dependency problem in range computation and for obtaining inner estimations
by outwardly rounded interval arithmetic (Gardenes et al., 2001). A detailed presentation of this
technique and the corresponding algorithm with result verification, which solves linear systems
whose input data are rational functions of interval parameters, can be found in (Popova, 2005).
This methodology, rigorously implemented in software tools presented in Section 2.4, will be used
in Section 3 for solving linear systems obtained by FE modelling of mechanical structures with
uncertainties in all the parameters determining the structure behavior.

The above theorems define how to compute an outer enclosure of the solution set of an inter-
val linear system, i.e. an interval vector which is verified to contain the exact solution set hull,
respectively the true solution set of the system. However, it is important to know the quality of
the computed enclosure, in other words: how much such an enclosure overestimates the exact hull
of the solution set. The amount of overestimation can be approximated by an inner inclusion of
the solution set hull which is a componentwise inner estimation of the solution set (Neumaier,

1987; Rump, 1990).

Definition 2.1. An interval vector [z] € IR" is called componentwise inner approximation for
some set Y € R™ if

inf 0; <z, and mj < sup oy, for every 1 <7 < n.
oEXN =)

The interval vector [z] from the above definition is an inner inclusion of the solution set hull and
should be distinguished from an inner inclusion of the solution set, that is [z] C [inf(3),sup(Z)]
but [z] £ ¥.

Basing on ideas developed in (Neumaier, 1987), a cheap method for computing rigorous inner
inclusion of the solution set hull is proposed in (Rump, 1990). The next theorem establishes how
to compute the componentwise inner estimation of the parametric solution set.

Theorem 2.3. Let A(p) - z = b(p), where A(p) € R™*™, b(p) € R, p € [p] € IR*, and R € R"*",
z € R", [y] € IR" be given. Define

[2] == O{R- (b(p) — Alp) - 7) | p € [p]},
[A] = [C]-[y], where [C]:=0{I—-R-Ap)|pelpl}

Let the solution set P = X(A(p), b(p), [p]) be defined as in (2) and assume
21+ [A] & [y

Then
[+ [2]” +[A]T, 24 [2]T +[A]7] € OXP C i +[2] +[4]

or, in coordinate notations, for all 1 = 1,...,n there exists 2,z € X with

N

T; + [zl]_ + [Ai]_
T+ [z] "+ (AT

T;

< 2+ [ZZ]_ + [AZ]+ and
gf S &+ [n]" +[A

il

A IA
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In order to have a guaranteed inner inclusion all the computations should be done in computer
arithmetic with directed roundings, cf. (Popova, 2005).

The method from Theorem 2.3 has its limits. When widening the intervals for the parameters,
respectively the interval components of the linear system, the inner inclusion becomes smaller and
smaller, and finally vanishes. The latter means that no quantitative measure for the quality of the
outer enclosure can be given. For wide parameter intervals empty inner inclusion usually means bad
outer enclosure and, when further widening the input intervals, the outer solution enclosure will
fail at a certain point. Numerical examples demonstrating this effect can be found in (Popova and
Kramer, 2003). The same result of empty inner inclusion intervals can be obtained also for very tight
parameter intervals due to the rounding errors in computing inner approximations. A necessary and
sufficient condition for non-empty inner inclusions is provided by the relation w([4;]) £ w([zi]),
where the notations are as in Theorem 2.3, [A,;] is computed with outward rounding and [z;] is
computed with inward rounding.

When somehow we have sharpen the outer solution enclosure 00 ¥P C [3] C [v] = 2+ [z]+[4A],
then the improved outer estimation [0] can replace [v] in Theorem 2.3 to get an improved inner
estimation of [0 . Numerical example demonstrating this property can be found in (Popova, 2001).

2.2. RIGOROUS MONOTONICITY APPROACH

For many mechanical systems the exact bounds of the system response can be obtained by the
so-called combinatorial approach. The combinatorial solution is computed as a convex hull of the
solutions to all point linear systems corresponding to an exhaustive combination of the bounds
of the interval parameters. Combinatorial hull is a quality of particular parametric solution sets
which is not valid in general. The combinatorial approach gives the exact solution set hull in exact
arithmetic in the special case when the parametric solution is monotone with respect to all the
parameters. If the combinatorial hull property is not proven theoretically (as by Neumaier and
Pownuk (2005)) or numerically (as below), any other non-rigorous application of combinatorial or
monotonicity approach would result in an interval box underestimating the true parametric solution
set. This is the reason by which combinatorial and monotonicity approaches are usually referred
as methods giving inner inclusion of the solution set hull (Muhanna et al., 2005; Neumaier and
Pownuk, 2005).

In this section we briefly sketch a rigorous application of the combinatorial/monotonicity ap-
proach within a general framework for solving parametric linear systems. The rigorousness is
provided by computer-assisted numerical proofs of global and local monotonicity properties of
the parametric solution. Since an essential ingredient of this approach is a self-verified solver for
parametric linear systems, we call this approach a rigorous hybrid monotonicity approach (Popova,
2004a).

The general framework of the rigorous hybrid monotonicity approach consists of three basic
components:

1. self-verified solver for parametric linear systems;
2. computer-assisted proof of global and local monotonicity properties of a parametric solution;

3. guaranteed solution enclosure for point linear systems.
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Provided that we have a self-verified solver for parametric linear systems, we can verify the
global and local monotonicity properties of the parametric solution z(p) = A(p) ! - b(p). Below we
use the following notations. For [a] = [a~,a'] € IR, define sign([a]) = {1ifa” >0, —1ifa™ <

0,0 if a—a* < 0}. For a set of indices Z = {i1,...,i,}, the vector (z;,,...,7;, )" will be denoted
by z7 and [z7] = [z7, 3:}'] where 27 = (a;i_l,...,a:i;)T, x}' = (a:;';,,xz";)T

The global monotonicity properties are verifiable by solving k parametric linear systems in the
global domain [p] € TR*
ox 0b(p) 0A(p)
Alp)— = — - [z7], v=1,...,k, 3
P = Gt — G2 le" ®)

where [2*] D XP is an initial enclosure of the parametric solution set. Let us suppose that for fixed
1, 1 <1 <n there exist index sets

Ly ={v|sign [g;i] =1}, L_ = {v|sign [g;;] = —1}.

IfL_ULy={1,...,k}, then

[, supSf] = [{A ™ (pp,.p7 ) -b(r,.pf Vi {A 07, .7 ) - b7, 07 )}al-

Monotonicity can also be used even when some solution components are not globally monotonic
with respect to some parameters. Suppose that for some ¢, 1 < i < n, there exist index sets

ox; . B . Oz; _ _ : Oz; —
8p}_1}7 L_—{V|81gn{ap}— 1, Lg—{y|81gn[ap]—0},

v v v

Ly ={v| sign{

such that Ly # {1,...,k} and Ly # 0. Consider two new parametric linear systems

A™(pre) -y = b (pLo) (4)
AT (pre) -2 = b7 (pr,), (5)
wherein
a;;(pro) = aij(py, . PL_+PLo)s b; (pro) = bi(pp, L >Pro)
a5 (pry) = ai(pf P +PLo) b (pry) = bi(pL,PL +PL,)
for i, 5

L,...,nand pr, € [pr,]-
] ( (pLo) (pLo) [pLoD and [Z*] DY (A+(pL0)7 b+(pLo)v [pLo])' In general,

[(inf 3P, supEP] C [y U [7].

Let [y

However, we may prove some monotonicity properties of the parametric solutions to (4), (5) by
solving the corresponding parametric derivative systems in a considerably reduced interval domain

[pLo]'
ay b~ (pLo) 0A~ (pLo)

0z ot (pr,)  9A"(pr,)
+ A — 0 _ 0/ . [.*
A (pLO) Opy Opy Opy [Z ]’
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for all v € Ly, where [y*], [2*] are initial enclosures of the solution sets of (4), resp. (5), or an initial
enclosure of ¥(A(p), b(p), [p]).

This way, a computer-aided proof of global and local monotonicity properties of the parametric
solution can be performed by self-validated solving of parametric linear systems. The success of the
numerical proof depends very much on the quality of the parametric solution enclosure and on the
quality of the initial enclosure (Popova, 2004a). Some specific issues related to this approach will
be discussed in a separate work.

2.3. MEASURES OF OVERESTIMATION

The quality of a solution enclosure is measured by estimating how much an outer solution enclosure
overestimates the true parametric solution set or an inner inclusion of the solution set hull (since
the true hull is usually not known). A discussion about different methods used for obtaining inner
hull estimations can be found in (Neumaier and Pownuk, 2005). The inclusion method, presented
in Section 2.1, is equipped with an easy computable guaranteed inner estimation of the solution set
hull. In this work we shall measure the overestimation of the outer solution enclosure with respect
to a combinatorial solution and to the guaranteed inner estimation of the solution hull provided by
the method.

Provided that we have computed the exact solution set hull or some inner estimation(s) of
the hull, the amount of overestimation should be quantified. The endeavor of providing sharper
solution enclosures has resulted in utilization of different measures of overestimation. In the next
section we shall use and compare the quality quantifications provided by the following measures of
overestimation.

For two intervals [a], [b] € IR such that [a] C [b], the standard measure of overestimation that
is usually applied is the percentage by which [b] overestimates the interval [a], defined as O, :

IR x IR — R,
Oy (lal, [b]) := 100(1 — w([a])/w([b]))-

Distance-based measures of overestimation are sometimes used in the engineering literature, e.g.
(Muhanna et al., 2005). Oy : IR x IR — R x R is defined by

Oqu(la),[b]) == 100(1 —a /b, 1 —a™/b").

Since we will compare part of our results to those obtained in (Corliss et al., 2004), we will need
the measure of overestimation used therein. For [a], [b] € IR, [a] C [b] and ¢ € R, ¢ € [a], define
O : IR X IR x R — R4 by

Oc([a], [b],¢) == 100 (b~ —a™ +a* —bT) /e

Overestimation measures are applied to interval vectors componentwise.

The presented parametric fixed-point method provides a guaranteed inner estimation [v] of
the solution hull [h] at no additional cost. Since the computation of [v] uses the computed outer
enclosure [u] in a “symmetric 7 way, it can be expected that [v] is almost symmetric to [u] with
respect to the exact solution set hull. That is why, 3Oy ([v], [u]) & Ou([h],[u]) will be used for
measuring the quality of a solution enclosure.
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2.4. SOFTWARE TOOLS

Interval methods discussed in this paper and elsewhere are implemented in the environment of Math-
ematica (Wolfram, 1999). The Mathematica package IntervalComputations ‘LinearSystems®
contains a collection of functions which compute guaranteed inclusions for the solution set of an
interval linear system (Popova, 2004a). The particular solvers differ upon the type of the linear
system to be solved and the implemented solution method. Except for a C-XSC module solving
parametric linear systems with affine-linear dependencies (Popova and Kramer, 2003), the above
Mathematica package is the only by now public software for solving parameter-dependent interval
linear systems.

ParametricNSolve[Ap, bp, tr] is the function which solves linear systems involving affine-
linear dependencies between interval parameters. The function is based on entirely numerical
computations and therefore it is fast. The function is updated to handle sparse arrays as input
data.

ParametricSSolve[Ap, bp, tr] computes a guaranteed enclosure of the solution set to a
parametric linear system Ap.x = bp involving rational dependencies by the algorithm presented in
(Popova, 2005). The parameters and their interval values are specified by a list tr of transformation
rules'. All iterative solvers can take two optional arguments affecting the computational process,
respectively the output of the function. InnerEstimation is an option which when set to True
specifies the computing of component-wise inner approximation of the solution set in addition to
the outer enclosure. The option is set to False by default. Even set to True, the option is active
only if the Mathematica package IntervalComputations ‘GeneralisedIntervals‘ is available.
Refinement is an option which set to True implies an iterative refinement procedure applied to the
computed outer solution enclosure. The default setting is False.

Due to a previous improvement of the inclusion theory, new functions generating guaranteed
inclusions of the solutions to nonsquare over-/underdetermined (parametric) linear systems are de-
veloped. Several functions supporting the hybrid monotonicity approach and a subdivision strategy
ar also part of the package.

Approaching to parametric linear systems with rational dependencies, the integration of symbolic-
algebraic and self-validating numerical computations based on interval arithmetic is found to be a
fruitful synergism. The power of Mathematica to support rigorous exact and/or variable precision
interval computations, the functionality of a generalized interval arithmetic package and the tools
provided by the other interval packages, make a suitable environment for exploration and solving
parametric problems with interval uncertainties.

In order to provide a broad access to solvers for parametric interval linear systems a web interface
for the available Mathematica software is developed which can be found at

http://cose.math.bas.bg/webComputing/
Accessing the webComputing pages users enter or upload data, choose between different options,
and submit data to build up a sequence of results in a numeric, symbolic, graphics or combined
form. The end-users do not need to buy, install, and maintain software; they do not need to
develop user software or to learn different software applications training time being considerably
reduced. They can be certain that use the most recent version. The technical professionals and

! Mathematica transformation rules have the form name -> value.
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interval researchers can easily explore newly developed methods; compare the efficiency of different
methods and software tools; teach interval methods involving students in an active exploration by
doing. Since algebraic computations are time consuming and webMathematica applications have a
fixed time limit for using the Mathematica kernel, the nonlinear parametric web solver is suitable
only for small size problems, while large problems involving affine-linear dependencies can be solved
remotely. The parametric web solvers allow uploading data files from the client machine onto the
server. For a parametric system, 3 data files (containing the matrix, the right-hand side vector
and the rules for the parameters) are required. Present restriction to the maximum size of a data
file is 4MB. Matrix/vector data in a file presently should be specified by Mathematica lists, or as
sparse arrays (Wolfram, 1999). Future enhancement of the solvers include different data formats,
downloading the generated results on the client machine and combining/reusing the results from
different pages.

3. Numerical Examples

3.1. ONE-BAY STEEL FRAME

In this section we consider a simple one-bay structural steel frame, shown in Figure 1, that was
initially considered and analyzed by Corliss et al. (2004). In their work the authors survey typical un-
certainties for the parameters characterizing the structural behavior and apply the Muhanna-Mullen
Element-by-Element approach (Muhanna and Mullen, 2001), interval subdistributivity properties,
scaling, and constraint propagation in order to demonstrate the feasibility of interval techniques for
bounding structural responses in the presence of interval parameters. Here the analysis of Corliss
et al. is expanded by the methods presented in Section 2.

L 2;’1‘ g |
il 1
H o, E, I A o,
—> \N 7
E( E(’
/ 7 h
C C
A A
[ C
AN o= T

Figure 1. One-bay structural steel frame (after Corliss et al. (2004)).

In order to compare the results generated by the different methods, we strictly follow the struc-
ture system and the uncertainties for the parameters considered in(Corliss et al., 2004). Following
the usual practice, the authors have assembled the following linear system corresponding to the
portal structure in Figure 1.
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AbEb + 12ECIC 0 6E<;ZIC 0 0
12E I N 6E, I, 6B,
0 AcEc + 12Bp0p 0 Lb;f b L% b
6. 0 a+iEh a0
c
6,1, _ 4Eb[b 25,1,
0 % a a+ T, (6)
0 6E,1, 2Eb1b 4 4Bl
Lg Lb L
Agfb 0 0 0 0
0 12E,1, 6551, 65,1,
Ly Ly Ly
0 0 0 0 -
— Al 0 0
0 _ 12fg1b 0 d2., H
0 0 b 0 d2, 0
0 6E, 1, 0 T'2Z 0
61§§1 o2 0
0 L% b —Q 76, 0
AbEb + 12ECIC 0 6Eclc d3, 0
0 re Ag EC n 12Eblb Géblb d3, 0
73, 0
6FE 1. _6Ebfb o+ ﬂ
L2 L? Le

It is readily seen that this is a linear system involving rational dependencies between the frame
parameters. Typical nominal parameter values and the corresponding worst case uncertainties, as
proposed in (Corliss et al., 2004), are shown in Table I.

Initially, the system (6), where L, L. are replaced by their nominal values, is solved with
parameter uncertainties which are 1% of the values presented in the last column of Table I,

E,, E, € [28965200, 29034800], I, € [509.49, 510.51], I, € [271.728, 272.272],
A, € [10.287, 10.313], A, € [14.3856, 14.4144], « € [276195960, 278726040], (7)
H € [5283.465, 5327.535].

Applying the rigorous monotonicity approach we have found the monotonicity profile of the
system response presented in Table II which proves that the combinatorial approach gives the
exact hull in exact arithmetic. Note, that all solution components are only locally monotone with
respect to Ab. The exact hull [] of the solution set for this problem, computed in rational arithmetic
and then rounded outwardly to 10 digits accuracy, is presented in (Popova, 2005).

The parametric linear system (6) is solved by the presented general parametric fixed-point iter-
ation. The system involves eight uncertain parameters which are considered to vary independently
within tolerance intervals (7). The guaranteed outer enclosure [u] of the system response and an
inner estimation [v] of the outer enclosure, obtained in just one single execution of the parametric
solver function, are presented with 10 digits accuracy in (Popova, 2005). The quality of the obtained
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Table I. Parameters involved in the steel frame example, their
nominal values, and worst case uncertainties.

parameter nominal value uncertainty

v dul Ey, 29 %10° Ibs/in® +348 * 10*
OUune MOCWHS 994 10° Ibs/in? +348 % 10*
Second I, 510 in* +51
econd moment ;= 5oy 4 +27.2
A Ay, 10.3 in? +1.3

rea A, 144 in? +1.44
External force H  5305.5 Ibs +2203.5

Joint stiffness a  2.77461 % 10° Ib-in/rad  +1.26504 % 10°

Length L. 144in, L, 288in

Table II. One-bay steel frame example with uncertain param-
eters (7): monotonicity properties of the system response.

solution parameter

component | E, E. I I, A, A, o H
1. d2, -1 -1 -1 -1 -1, -1 -1 -1 1
2. d2y 1 -1 1 -10-1, -1 -1 1 1
3. 12, 1 1 1 1 11 1 1 -1
4. rb, 1 1 1 11 11 1 -1 -1
5. 16, 1 1 1 1 -1 -1 1 -1 -1
6. d3. -1 -1 -1 -1 11 -1 -1 1
7. d3, -1 1 -1 1 -1 -1 1 1 -1
8. 13, 1 1 1 1 -1 -1 1 1 -1

enclosure is measured by the three measures of overestimation, defined in Section 2.3, and also
compared to the quality of the solution enclosures for the same problem obtained by alternative
methods used in (Corliss et al., 2004), see Table III.

The second and third columns in Table IIT demonstrate the relation 20, ([v], [u]) & Oy ([h], [u]).
The distance-based measure O, gives two numbers with different signs corresponding to the end-
points of the intervals. As demonstrated by the results in Table ITI, this measure yields values
which are two orders of magnitude less than the overestimation measure Oy ([h], [u]). The other
overestimation measure O, ([h], [u], p) is also not comparable to O, ([h], [u]) giving values with one
order of magnitude less than the latter.
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Table III. One-bay steel frame example with uncertain parameters (7): comparison of overestimation
measures in %. O.([h], [u;]) are after (Corliss et al., 2004), ¢ = 3 — Table V, i = 2 — Table IV, i = 1 —
Table III, respectively, dash means no available data.

solution 10, O, 10204 O. O, O, O.
comp. | ([, [ul) ((hL[u]) | (L[ul) () [ul,p) | ([P, [us],p)  ((A],[u2l, i) ([R], [ua], 1)

1. d2, 0.83 0.83 -0.75, 0.38 0.011 0.29 0.40 78.02
2. d2, 0.57 0.57 -0.86, 0.20 0.011 0.004 0.13 85.38
3. 12, 4.58 4.31 3.01, -3.53 0.065 0.75 0.84 81.18
4. 75, 8.65 7.73 5.89, -6.31 0.122 1.62 1.63 85.32
5. 16, 13.54 11.99 9.81, -10.32 0.201 - - -
6. d3. 0.84 0.84 -0.76, 0.39 0.011 - - -
7. d3y 0.79 0.79 0.33, -1.21 0.015 - - -
8. r3. 3.40 3.23 2.19, -2.70 0.049 - - -

The last three columns in Table III present the quality of the solution enclosures obtained in
(Corliss et al., 2004) by the application of EBE approach (Muhanna and Mullen, 2001) to the system
(6)—(7). The application of the EBE approach was successively improved in (Corliss et al., 2004) by
applying subdistributivity property and scaling which has resulted in improved solution enclosures
measured by O.([h], [u:], i), where [h] is the solution set hull reported in (Corliss et al., 2004), and
[u;] is the corresponding solution enclosure. Comparing the best solution enclosure, obtained by
the EBE approach — O([h], [us], it), to the quality O ([h], [u], ) of the solution enclosure obtained
by the present parametric method, we see the superiority of the present method by one order of
magnitude. The results in Table I1I show also that the different components of the system response
have different sensitivity to variations in the system parameters.

It is well-known that the parametric fixed-point iteration gives sharper solution enclosures for
smaller interval tolerances. To illustrate this effect we have subdivided the ranges (7) of some
interval-valued parameters and obtain enclosure of the system response as a hull of the solution
enclosures in all sub-domains. The results obtained after the application of the subdivision approach,
reported in (Popova, 2005), show an improvement between 0.37% and 3.05% in the solution enclo-
sure obtained by subdivision of the intervals. The overestimation for the different components of
the system response is different ranging from 0.2% to 9.22%.

The presented parametric fixed-point iteration fails in solving the parametric linear system (6)
for the worst case (over 40%) parameter uncertainties given in Table I. For very large uncertainties
the parametric matrix is not strongly regular as required by the method. But we can solve the
problem by subdividing the parameter intervals. As small are the sub-domains as better will
be the solution enclosure. Inclusions (inner and outer) of the solution set hull are obtained by
subdivision of the worst-case parameter intervals (Ey, E,, I, I., Ay, A¢, o, H) T correspondingly into
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Table IV. One-bay steel frame example with worst-case parameter un-
certainties (Table I) solved by subdivision of the parameter intervals
(Ey, Ec, Iy, I, Ay, Ac,a, H) 7 correspondingly into (2,2,2,2,1,1,1,1)T equal subin-
tervals. Inner [vs] and outer [us] inclusions of the solution set hull are compared to
the combinatorial solution [h].

| d2,  d2, r2. r5. 6. d3, d3, 13,

20, ([vs], [us]) | 19.97  15.87 - - - 20.12  23.50 -
O.([h], [us]) 18.41 12.23 26.23 41.43 41.84 1856 18.77 26.70

(2,2,2,2,1,1,1,1) T equal subintervals. The quality of the obtained outer enclosure is presented in
Table IV. Although the inner estimations for the most sensitive solution components are empty
set intervals, a minimal number of subdivisions provided an outer enclosure overestimating the
combinatorial solution with 12% to 42%. These results show that even for comparatively large
parameter intervals, the presented parametric fixed-point iteration is able to enclose the solution.
Although the parametric matrix is strongly regular (which provides convergence of the method)
even for the large parameter uncertainties that are chosen, a poor accuracy of the residual vector
enclosure may be the reason for overestimating the system response.

3.2. Two-BAY TWO-STORY FRAME

As large frame examples we consider rectangular multi-story multi-bay frames. We model the
two-bay two-story steel frame with IPE 400 beams and HE 280 B columns as shown in Figure 2.

12 W,

1 2

FZ Y vV V¥V V¥ 2 Y v ¥V ¥V VY,

N o &y
Wy W, hy

@
"
d
"

_1’4 .ev Y v Vv ve. r v V¥ ve. 6 4

h]_

=

Y

Figure 2. Two-bay two-story steel frame.
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The frame is subjected to lateral static forces and vertical uniform loads. Beam-to-column
connections are considered to be semi-rigid and are modelled by single rotational spring elements.
The use of spring models is better fitted to steel frames with bolted connections, for example
beam-to column connections of extended-end-plate system. Semi-rigid steel and reinforced concrete
frames have been widely used to reduce the seismic loading. However many structures of this type
have been strongly damaged or collapsed during the Northridge earthquake, which struck Southern
California in 1994. The main reason has been found to be the increased flexibility of entire frame
being strongly influenced by P-A effect. Semi-rigid frames are in large extent sensitive to physical
properties of the beam-to-column connections and this was the main reason to direct our research
in this direction.

Structure elements are specified to be beam or column. Columns are chosen to be traditional 2D
frame elements for the elastic analysis having three degrees of freedom per node — two translations
and one rotation. Beam elements also have three degrees of freedom at each node — two translations
and one rotation. The rotational springs are added to both ends and internal rotations are elimi-
nated. Beam elements allow for application of traditional finite element procedure which requires
matrices of order 6 x 6. Basement nodes are fixed and are not able to displace. Applying conventional
methods for analysis of frame structures, cf. (Zienkiewicz, 1971), a system of 18 linear equations
is composed where the coeflicients are rational functions of the model parameters. The distributed
beam loading is transformed to the equivalent nodal forces. In this manner the parameters related
to the geometric properties are included in the global loading vector.

In contrast to the system considered in Section 3.1 the linear system describing present two-bay
two-story frame in Figure 2 has the following right-hand side vector whose components depend also
on parameters of the beams, not only on the applied loadings

f _lw b wlLbQ _’U)lLbl . ’U)QLbQ wlLbQ . ’U)QLb2
o2 ip(1 4 2Ry ) 27 12(1+ 2BBlby - q(1 4 2BRIh);
o _ walbs wo Lb3 ; 1 w3 Lb%
y T ) N sy J1s s T )
27 12(1 4 2l C2wsLbs’  12(1+ 2Htelhs )
.
o _wslby wilby wslb}  wiLb} _ wyLby wy Lb3 )
T2 27 12(1+ 2Eslba) q9(1 4 2EalhayT 2 T (] 4 2E0aTha)

The following data, taken according to the European Standard (Eurocode 3, 2003), are used in

the model.
Columns (HE 280 B)  Beams (IPE 400)

Cross-sectional area A, =0.01314 m?, Ap = 0.008446 m?

Moment of inertia I, =19270 1078 m*, I, = 23130 % 1078 m*

Modulus of elasticity E.=21%10% kN/m?, FEj, =2.1%10% kN/m?

Length L.=3m, Ly=2L. m

Rotational spring stiffness ¢ = 108 kN (8)
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Uniform vertical load w; =...=wyq =30 kN/m
Concentrated lateral forces f; = fo = 100 kN

As a first problem a system structure having 13 uncertain parameters: A., I., E., Ay, Iy, By, c,
wy, ..., w4, f1,fo was considered. The system parameters were initially taken to vary within 1%
tolerance intervals [p — p/200, p + p/200] where p is the corresponding parameter nominal value
from (8).

Table V. Solutions for displacements and rotations of two-bay two-story frame system with 13 parameters having 1%
uncertainties.

dx; (m) dyi (m) 01 (rad) dx3(m) dys (m) 03 (rad)
10%[v] [12.80, 13.20]  [.2143, -.2062] [-2.168, -2.099] [12.21, 12.60] [-.3439, -.3333] [-.2079, -.1554]
10%[u] [12.78,13.21] [-.2145,-.2060] [-2.175,-2.092] [12.20, 12.62] [.3441, -.3331] [-.2146, -.1487]
Ou([h],[u]) 4.90 3.20 9.24 4.98 2.93 11.04
Ou([h],[u]) 0.16 0.13 0.35 0.17 0.09 3.99

The parametric solver, presented in this paper, found a guaranteed outer enclosure [u] of the
system response and a corresponding inner estimation [v] of the solution set hull. The results
for displacements and rotations of selected nodes are given in Table V. The system response at
the first three nodes is most sensitive to the variations in model parameters. The bounds for the
solution are captured by sharp intervals. Applying rigorously the monotonicity approach based on
verified parametric solver, it was numerically proven that the combinatorial approach gives the
exact solution set hull. That is why, the last two rows of Table V list the percentage by which
the outer enclosures produced by the parametric solver overestimate the true bounds of the system
response. The results in Table V show that the rotations are about three times more sensitive to the
variations in model parameters than the displacements. The same behavior was observed during
the analysis of the portal structure in Section 3.1.

Further, we solve the same parametric system where the element material properties are taken to
vary within 1% tolerances while the spring stiffness and all applied loadings are taken to vary within
large 10% tolerance intervals. Table VI presents the results obtained for the nodes one and three. The
first row in Table VI gives the combinatorial solution which is used for measuring the overestimation
produced by the parametric solver. Except for 03, interval bounds for the system response are
reasonable although not quite sharp. The percentage of overestimation increases with increasing
the width of the parameter intervals. The lower quality of the solution enclosures for large parameter
intervals is probably due to a poor range estimation of the residual vector in the algorithm. Proving
monotonicity properties of the system response with respect to the loadings parameters wy, . . ., wq,
f1, fo and solving corresponding parametric systems involving reduced number of parameters results
in a quite sharp solution enclosure presented in the second part of Table VI.

It should be noted that for 10% tolerance intervals of the model parameters even the combina-
torial solution is such that the interval for f3 contains zero.
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Table VI. Interval solutions for displacements and rotations of two-bay two-story frame system with 13 parame-
ters. The material properties have 1% uncertainties while the spring stiffness and the applied loadings have 10%
uncertainties.

dx; (m) dy1 (m) 01 (rad) dxs (m) dys (m) 05 (rad)
10%[h] [12.16, 13.85] [-.2308, -.1902] [-2.316, -1.956] [11.60, 13.24] [-.3604, -.3174] [-.3545, -.0100]
10%[u] [11.92, 13.89] [.2311,-.1850] [-2.333,-1.896] [11.36, 13.28] [-.3607, -.3119] [-.3724, .04663]
Ou([h],[u]) 1451 12.10 17.60 14.61 12.04 17.82
Ou([h],[u]) 219 2.65 3.59 2.25 1.73 41.05

solutions after applying the monotonicity properties w.r.t. the applied loadings

10%[u] [12.13,13.88] [-.2314,-.1896] [-2.323,-1.949] [11.56, 13.28] [-.3613, -.3165] [-.3599, -4.¢ ]
O.([h),[u])  3.99 2.75 3.89 3.99 3.83 3.05
O.([h],[u]) 0.54 0.54 0.68 0.55 0.50 5.95

As a second larger problem of this type we consider the same system structure as above but
assuming that each structure element has properties varying independently within 1% tolerance
intervals. This leads to an 18 x 18 parametric system involving 37 interval parameters. The results
for displacements and rotations of the selected nodes, listed in Table VII, are similar to those
obtained for the system involving 13 parameters having the same uncertainties.

Table VII. Solutions for displacements and rotations of two-bay two-story frame system with 37 parameters having
1% uncertainties.

dx; (m) dy1 (m) 61 (rad) dx3z(m) dys (m) 03 (rad)
[v] % 10° [12.67, 13.32]  [-.224,-.1964]  [-2.222,-2.045] [12.09, 12.73] [-.3571, -.3199]  [-.2569, -.1062]
[u] * 103 [12.62, 13.37]  [-.2249, -.1954]  [-2.237,-2.030] [12.04, 12.77] [-.3584, -.3186] [-.2716, -.0915]
10.([v],[u]) 6.05 3.44 7.28 6.16 3.19 8.18
10.([v],[4]) 0.34 0.48 0.70 0.36 0.37 8.09

While the combinatorial solution for the problem involving 37 uncertain parameters requires
solving 237 & 1.37 % 10! point linear systems (in rational arithmetic), or applying Monte Carlo
simulation usually takes 10% trials in order to assess the quality of a solution enclosure, just one
single execution of our parametric solver yields both guaranteed outer solution enclosure [u] and its
inner estimation [v], based on which 1/20,,([v], [u]) measures the quality of the obtained solution
bounds.
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4. Conclusion

The application of a self-verified parametric iteration method for bounding the response of uncertain
mechanical structures modelled by finite element method is presented. The method can solve linear
systems involving arbitrary non-linear dependencies between the uncertain input data, provided
that it is combined with good tools for range enclosure. It is demonstrated that very sharp solution
enclosures are generated for small parameter tolerances. Powerful range enclosing techniques are
necessary to provide good accuracy of the solution enclosure when the system parameters are
subjected to large uncertainties which retain the strong regularity property of the parametric
maftrix.

We have demonstrated the feasibility of the general-purpose parametric iteration method for
bounding structure responses in the presence of uncertainties in all model parameters. It was illus-
trated by the numerical examples that for small intervals the method is superior to other, although
not self-verified, methods like the EBE approach. Even for quite large parameter uncertainties, the
interval subdivision guarantee the feasibility of the method and the accuracy of the inclusions.

The most attractive feature of the discussed methodology and software tools consists in the
fact that they yield validated inclusions computed by a finite precision arithmetic. To provide
this feature a rigorous computer implementation by interval arithmetic with directed roundings
is necessary. Any self-verified parametric solver can be incorporated in a general framework for
computer-assisted proof of global and local monotonicity properties of a parametric solution. Basing
on these properties, a guaranteed and highly accurate enclosure of the solution set hull can be
computed.

Contrary to other approaches for modelling uncertain mechanical systems that apply special
techniques at the level of constructing the linear system to be solved in order to reduce the
dependencies, the present method requires no preliminary specialized construction methods. For
example, there is no need to overcome the coupling as in the EBE approach. Present method is
highly automated since engineers need to apply only conventional methods for obtaining the linear
system in a parametric form by software tools widely available in modern computing environments
(Matlab, Mathematica, etc.). Uncertainties in all the system parameters (e.g., material, load and
geometry properties) can be considered and handled simultaneously. A combination of interval
methods can ensure very sharp bounds for the system response. Furthermore, the present method
and all the methods combined to obtain sharp bounds for the system response, are implemented in
software tools which are freely available and ready for application. When the construction methods,
used for assembling the global stiffness matrix and the global loading vector, cannot eliminate all the
dependencies between the input parameters, a parametric iteration, respectively the implemented
parametric solver, should be used instead of a non-parametric one.

Being the only general-purpose parametric linear solver, the presented methodology and software
tools are applicable in the context of any problem which requires solving of linear systems whose
input data depend on uncertain (interval) parameters.
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