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Abstract: Discrete mechanics deals with discrete mechanical systems, such as cellular automata, 
in which time proceeds in integer steps and the configuration space is discrete. Directly modeling 
discrete mechanical systems is a well known alternative to starting from a continuous setting, 
discretizing the model, and finally force the model to the finite alphabet of a computer. The time 
evolution of discrete dynamical systems, however, can be calculated exactly. In order to take into 
account imprecision in the input data and the need to accommodate a finite alphabet, extended 
interval analysis is introduced in the discrete mechanical systems formulation developed by Baez 
and Gilliam. It is shown how the Euler-Lagrange equation must be modified when working with 
interval input.  
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1. Introduction 
 
Baez and Gilliam (1994) and Gilliam (1996) developed an algebraic approach to the mechanics of 
discrete mechanical systems, that is, systems such as cellular automata (CA) (von Neumann, 
1951), in which time evolution proceeds in integer steps and the state space is a finite set. By 
substituting algebraic geometry concepts for differential geometry concepts, the authors derived 
an analog for the Euler-Lagrange equation, a version of Noether’s theorem, and symplectic 
techniques applicable to this context. They also gave a definition of complete integrability for a 
smooth mechanical system on a smooth real affine algebraic variety, and gave a criterion for the 
complete integrability of such systems. Additionally, they showed that, as the time steps of a 
discrete system decrease to zero, a solution of the discrete system converges uniformly to a 
solution of the corresponding continuous system. These Lagrangian and symplectic techniques 
allow one to use computers for exactly simulating discrete mechanical systems that take values in 
a commutative ring, k, as opposed to approximately simulating physical systems by numerically 
solving differential equations: let us expand on this crucial point.  

 
One of the first uses of digital computers was to approximately simulate physical systems by 

numerically solving differential equations. This approach leads to numerical computation that is 
at least three levels removed from the physical world represented by those differential equations: 
 

1) As a first step, one models a physical phenomenon using a differential equation (or a 
system of differential equations) or a variational principle. 

 _______________________________________________ 
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2) Then, one obtains the algebraic forms of the differential equation(s) or variational principle 
by forcing them into the mold of discrete time and space; and 

3) Finally, in order to commit those algebraic forms to algorithms, one projects real-valued 
variables onto finite computer words, thus introducing round-off during computation and 
truncation.  

 
Since at one end of the chain is the original physical system and at the other end is another 

physical system (a computer), physicists wondered whether there was a less roundabout approach 
to modeling physics (Toffoli, 1984; Toffoli and Margolus, 1987). Indeed, the moment one gives 
up symbolic manipulation as a major motive for using differential equations, one starts wondering 
whether one should keep them as a starting point for numerical modeling altogether. Adopting a 
totally different approach, CA have been proposed as a modeling tool that is isomorphic to the 
available and foreseeable computational resources (e.g., Toffoli and Margolus, 1987) and that is 
prototypical for complex interacting systems. Because of the intrinsic discreteness of CA, 
numerical integration is an exact process (there are no truncation or round-off errors), and thus 
the results that one obtains have the force of theorems. In other words, any properties that one 
discovers through simulation are guaranteed to be properties of the model itself rather than a 
simulation artifact (Toffoli, 1984). However, the lack of a rational and physics-based way to 
define evolution rules for CAs hindered their application to mechanics. Baez’s and Gilliam’s 
algebraic approach to discrete mechanical systems for the first time provides for this rational and 
physics-based way to define evolution rules, and shows how CAs can be seen as a subset of 
discrete mechanical systems. 

 
A large body of literature has been devoted to estimating the errors introduced in Step 2 

above. For example, Dow (1998), Oden et al. (2005) and a recent issue of the journal Computer 
Methods in Applied Mechanics and Engineering (2006) give a recent overview of results in the 
finite element discretization method. Peraire and coworkers have started developing algorithms 
for calculating guaranteed bounds on these errors (Sauer-Budge et al., 2004; Xuan et al., 2006); 
however (based on the published literature), their calculations are performed in floating-point 
arithmetic. Errors involved in step 3 have been vigorously attacked by the “reliable computing” 
community using interval analysis started by Warmus (1956) and Moore (1966); the reader I 
referred to the journal Reliable Computing (formerly Interval Computations) and to the web site 
(www.cs.utep.edu/interval-comp/main.html) for up-to-date information. Both types of errors are to be 
addressed during verification and validation of numerical models (Oberkampf et al., 2003). 

 
Discrete mechanical systems avoid these issues associated with Steps 2 and 3. On the other 

hand uncertainty may affect the available information on initial and boundary conditions, as well 
as information on a system’s parameters. Moreover, when using finite computer words for a 
physical quantity (even if it is known exactly), real values must be truncated. Therefore, it seems 
worthwhile to exactly extend such uncertain information to a system’s behavior: if this is not 
possible, guaranteed bounds on the system’s evolution should be calculated. In this paper, it is 
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assumed that information on a physical quantity of interest is given as an interval on k; we will 
refer to this assumption as imprecision. Generalized interval arithmetic (Dimitrova et al. 1992, 
Gardenes et al., 1980a and 1980b, 1981, 1982, 1986, 2001; Kaucher, 1973; Kaucher et al., 1977, 
1980, 1977; Markov 1992, 1995, 1997, Ortolf, 1969; Popova 1994, 2000, 2001, 2005; Popova 
and Ullrich, 1996, 1998; Ratschek, 1970, 1971; Spaniol, 1970) is used to extend information in a 
validated way because generalized interval arithmetic is an algebraically closed system. 

 
For completeness, Talasila et al. (2004a, 2004b) have attempted to extend Baez’s and 

Gilliam’s work to floating point numbers, but have eventually developed a different theory based 
on discrete calculus. Finally, a note of caution: the term “discrete mechanics” is also adopted in 
the literature to denote mechanical systems whose configuration space is continuous and whose 
evolution proceeds in finite time steps (e.g., Marsden and West, 2001 and references therein); 
these systems are frequently used to develop structure-preserving and numerically stable time 
integrators. 

 
In the following sections, some basic notions of discrete mechanics are recalled with more 

background definitions and explanation than in the available literature, so that these notions can 
be more easily grasped by an engineering audience. A simple example of a linear harmonic 
oscillator is used to highlight the properties of a discrete mechanical system. Likewise, the basic 
algebra of generalized intervals is reviewed. Subsequently, the discrete Euler-Lagrange equation 
is modified in order to work with generalized intervals and the harmonic oscillator example is 
extended to accommodate imprecise input values. 
 

2. Basic Notions in Discrete Mechanics (Gilliam, 1996; Lang, 2002) 
 
The configuration space of discrete mechanical systems is required to be no more than a ring or a 
group, without specific topological or analytical properties that allow for the use of the common 
concepts of tangent and cotangent vectors, spaces, bundles, etc. Since algebraic analogs for these 
concepts will be needed, let us review some basic definitions from abstract algebra. 

 
Recall that a group G is a set with an associative law of composition (x, y) → xy, having a 

unit element, and such that for every element x ∈ G, there exists an inverse element y ∈ G such 
that xy = yx = e. If the law of composition is also commutative, a commutative group is obtained. 
A homomorphism f : G → G’ is a mapping between two groups, G and G’, that preserves the 
product, i.e. f(xy) = f(x) f(y), and that maps the unit element of G into that of G’. An isomorphism 
is a bijective homomorphism: if there is an isomorphism between G and G’, then one writes 

to indicate that G and G’ are isomorphic. 'G G≅
 
A ring R is a set, together with two laws of composition called multiplication and addition, 

respectively, and written as a product and sum respectively, satisfying the following conditions: 
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− With respect to addition, R is a commutative group (zero denotes the additive unit element). 
 unit element (denoted as “1”). 

− For

(x + y)z = xy + yz (1) 

 additively, 
together with an operation of M, such that, for all 

− The multiplication is associative, and has a
 all x, y, z in R one has (distributivity) 

 
Also recall that a module M over a ring R is a commutative group, usually written

R on a, b ∈ R and x, y ∈ M one has 

( )a b x ax bx+ = +  and ( )a x y ax ay+ = +  (2) 

, an algebra is a module M with a bilinear map (product) Finally :g M M M× →  
 

Let { }iE  be fami utative groups. Their direct sum G = 0i E=⊕  is the set of all 

sequences (σ

ly of comm ∞ i

1, σ2,…, σp,…) where i iEσ ∈ , and all but a finite number of σi’s are zero. The 
direct sum becomes a group when the sum of tw nts is defined componentwise. A graded 

gebra that can be written as G = 0i E=⊕ , and such that for ( )0 1, ,...s σ σ=  and 

i j p+ =

o eleme

algebra is an al ∞

 in G  in G

sr yσ ρ σ ρ ρ σ ρ= + ∑ , in such a way that if 

i

( )0 1, ,...r ρ ρ= , the product  is defined as 

( )0 0 0 1 0 1, ,..., ,...i j
p

p q

then the product 

Eσ ∈  and Eρ ∈ , q

p q
p q Eσ ρ ∈ . Tensor algebras (e.g., [Error! Reference source not found.], 

page 76 e exam les of graded algebras in which the product  

+

) ar p p qσ ρ  is the outer product of 

tensors pσ  and qρ  of order p and q, respectively. Another example of graded algebra is the 

algebra of polynomial functions described below, in which the product  p qσ ρ  is the product of 

poly omn ials pσ  and qρ  of order p and q, respectively. 

over a field k, then one would use the algebra of polynomial functions in n variables over k, 

,..., i
nk x x E

∞
= ⊕ , where E x n i kλ λ

⎧ ⎫⎪ ⎪= = ∈⎨ ⎬

 
In discrete mechanics, rather than working directly with configuration space, one works with 

the algebraic functions on the configuration space, which form a commutative algebra A over 
configuration space. For example, if the configuration space is an n-dimensional vector space 

0i= 1 1j j= =⎪ ⎪
[ ]1 : ;j

n n
ni

j j j j
⎩
∑ ∑ . The analog of a vector field 

on configuration space is then a derivation on A, that is, a k-linear map  such that 
⎭

:v A A→
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( ) ( ) ( )v ab av b bv a= +  for all a, b ∈ A. In order to define differential forms on A, let us 
introduce the concept of differential. 

 
Let  be a graded algebra. The differential of 0

i
i
∞
=Ω = ⊕ Ω Ω  is a map  such that if :d Ω→Ω

pω∈Ω , then  

  ( ) ( ) ( ) (1 pd d d )ωμ ω μ ω= + − μ  (3) 

   (4) ( ) 0dd ω =

Let A be a commutative k-algebra (e.g., the algebraic functions on the configuration space). 
The algebraic differential forms ( ) ( )0

i
iA ∞
=Ω = ⊕ Ω A

A

 are the graded algebra, in which 

, in which the product is written as a wedge product, and which are generated by A 
and by the elements da, where , with the relations: 

( )0 AΩ =
a A∈

  ( )d a daλ λ= , ( )d a b da db+ = +  

( )d ab da b a db= ∧ + ∧ , a db db a∧ = ∧  

da db db da∧ = − ∧   0da da∧ =

for all a, b ∈ A, λ ∈ k, with the last necessary only if 2 has no multiplicative inverse in k.  
A p-form is an element of . ( )p AΩ

 
Since A is the equivalent of the configuration space, the space of histories is the algebra  

H = ( )1
0 ...T

TA A⊗ + = ⊗ ⊗ A  , where the algebras Ai are simply copies of A with Ai thought of as 
the functions on configuration space at time i. The Lagrangian for the system, L, is a fixed 
element of A ⊗ A. In the algebra H, the discrete analog for the action functional in classical 
mechanics is  

   (5) 
1

0

T

i
i

S
−

=

= ∑L

where , with L occupying the ith and (i+1)th slots.  1 ... ... 1i = ⊗ ⊗ ⊗ ⊗L L
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In order to derive Lagrange equations from S, one needs to differentiate S, and thus one needs 
1-forms on the space of histories H. Since for any algebra, A, one has that: 

( ) ( ) ( )1 1 1A A A A AΩ ⊗ = ⊗Ω ⊕Ω ⊗ A , by induction: 

  ( ) ( )1 1
01

... ...T
ii

H A A
=

Ω = ⊗ ⊗Ω ⊗ ⊗⊕ TA  (6) 

Let where pi id p d= i: ( ) ( )1 1H HΩ →Ω  is the projection on the ith summand. The 

variation of S is effected by the operator 
1

1

T
ii

dδ −

=
= ∑ , which keeps the first and the second 

summand of H fixed. Now, since  L = a⊗b with a, b ∈ A: 

  

( ) ( )

( ) ( )( )
( ) ( )

1 1

1 ... ... 1 0 ... ... 0

0 ... ... 0 0 ... ... 0

0 ... 0 ... 0 0 ... 0 ... 0

i i i i

i i i i i

i i

d p d p d

p da b a db

da a

+ +

= ⊗ ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊕ ⊗ ⊗ ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊕ ⊗ ⊗ ⊗ ⊗ ⊗

L L L

 (7) 

and  

  
( ) ( )( )

( ) ( )
1 1 1

0 ... ... 0 0 ... ... 0

0 ... 0 ... 0 0 ... 0 ... 0

i i i i i i i

i i

d p da b a db

b db

− − −
= ⊗ ⊗ ⊗ ⊗ ⊗ ⊕ ⊗ ⊗ ⊗ ⊗ ⊗

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊕ ⊗ ⊗ ⊗ ⊗ ⊗

L
 (8) 

with  for j ≠ i, j ≠ i-1. 0j id =L
 

The variation of S is thus: 

  
1 1 1

1
0 0 1

T T T

i i i i i i
i i i

Sδ δ δ
− − −

d d −
= = =

= = = +∑ ∑ ∑L L L L

0

 (9) 

Finally, Eqs. (7) and (8) indicate that the last sum in Eq. (9) is actually a direct sum. Thus: 
 

  10 i i i iS d dδ −= ⇒ + =L L  (10) 

Eq. (10) is the Euler-Lagrange equation for discrete systems. This 1-form does not vanish on 
the whole space of histories H, but only on the trajectories that satisfy the equations of motion. 
Since the Lagrangian is an element of A ⊗ A, the equations of motion give the configuration at 
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1A
the i-th time step as a function of the previous two time steps i-1 and i-2. This is formalized as a 
homomorphism 2 0: A Aϕ → ⊗ , which defines a homomorphism 1 2 0: A A A A1Φ ⊗ → ⊗ : 

 and 1 1a a⊗ ⊗ ( )1 a ϕ⊗ a

1 0

)1

. One says that ϕ or Φ satisfies the equation of motion 
provided 

*d di i i−Φ + =L L ; (11) 

where ( ) (1 1
* 1 2 0: A A AΦ Ω ⊗ →Ω ⊗ A

2

 is the map induced by Φ, and di is the restriction of di 

on H to its sub-algebras  and 1A A⊗ 0 1A A⊗ . 
 

EXAMPLE (modified from Baez and Gilliam, 1994). Let the base ring k be the ring of 
rational numbers, , so that, in particular, 2 has an inverse. Consider the case of a particle in a 
polynomial potential constrained to move along a line with coordinate q. The algebra of functions 
on configuration space is [ ] { }2 2

0 0 1 0 2 0 1 2 0 3, , , : ,A k q q q q q qλ λ λ λ λ λ λ λ λ λ≅ = + + + + + 3 ... , so 

that [ ]1,A 2A k q⊗ ≅ q , the polynomials in 2 variables over k, and [ ]0 ,..., TH k q q≅ , the 

polynomials in T+1 variables over k. Consider the Lagrangian  (written here as a polynomial 
function) for a particle in a polynomial potential V as a function of consecutive positions  and 

 of the particle:  

iL

iq

1iq +

( ) ( )2
1

1,
2i i i iiq q mq V q+= = −L L i  (12) 

where one defines , and where m is in k, and represents the mass of the particle. 

Since  
1ii i iq q q+= −

( )1 2d ,
ii q q q q= ∂L L d i

1dq−

)

 , i = 1, 2, one obtains: 

( ) ( )1 'i i i i i i i id m q q V q dq mq dq+= − − − =L  (13) 

Likewise 

( )1 1i i i i i id m q q mq− −= − =L  (14) 

The Euler-Lagrange equation is thus: 

( ) (1 'i i im q q V q−− = − , (15) 

which is the discrete analog for Newton’s law, and yields the time evolution map 
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( ) ( ) ( )1
2 1 0 1 1 0 1' 2 'q q q m V q q q m V qϕ −= + − = − − 1−  (16) 

and homomorphism Φ 

( )1 1q qΦ = , ( ) ( ) ( )1
2 2 1 02q q q q m Vϕ −Φ = = − − 1' q

d dq qΦ = ( )

 (17)  

( )* 1 1 , ( )1
* 2 1 0 1 1d 2d d '' dq q q m V q q−Φ = − −  (18) 

Let us check that the time evolution map satisfies the equation of motion: 

( ) ( )
( ) ( )( )( ) ( )

( )( ) ( )( ) ( )

1 1* 1 1 1 0 * 1 2 1 0 1 1

* 2 1 1 1 1 0 1

1
1 0 1 1 1 1 1 0 1

d d , d , d

' d d

2 ' ' d d

q qq q q q q q

m q q V q q m q q q

m q q m V q q V q q m q q q−

Φ + = Φ ∂ + ∂ =

= Φ − − − + −

= − − − − − + − =

L L L L

0

 

It can be seen that homomorphism Φ* pulls back   from 1 1d L ( )1
1 2A AΩ ⊗  to 

(1
0 1 )A AΩ ⊗ . In this simple case, this entails substituting the expression for the time evolution 

map (16) into the expression Euler-Lagrange equation (15). 
 

Figure 1 shows the evolution of a linear harmonic oscillator with: m = 1, q0 = 8; q1 = 16; V= 
½sq2 (where s is the spring stiffness), s = 1. The mass takes positions: {8, 16, 8, -8, -16, -8, 8, 16, 
8, -8…}, and the mass revisits the same location in space after 6 steps. Notice that this time 
integration is exact, and can be exactly reversed.  

 
 

 
i = 1 

 
i = 5 

 
i = 2 

 
i = 6 

 
i = 3 

 
i = 7 

 
i = 4 

 
i = 8 

Figure 1. Evolution of a linear harmonic oscillator with m = 1, q0 = 8; q1 = 16; V= ½sq2, s = 1. 
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However, if the ratio s/m is not an integer, then the mass never revisits the same location 
twice; for example, for s/m = 1/3, the coordinates of the particle are (all calculations in this paper 
were carried out using Mathematica exact arithmetic): {8, 16, 56/3, 136/9, 176/27, -344/81, -
3304/243, -13424/729, -37384\/2187, -66104/6561, 5936/19683, 624616/59049, 
3069656/177147…}. The numbers of digits in the numerator and denominator keep increasing at 
each time step as shown in Figure 2. In Figure 2, each digit in the [0, 9] range is assigned a color. 
Each digit of the numerator occupies a cell, and numerator digits for the i-th step occupy the first 
cells from the left of the (2i-1)-th row. Likewise, denominator digits for the i-th step occupy the 
first cells from the left of the 2i–th row. 

 
 
 
 
 

 
(a) 

 
(b) 

Figure 2. Graphical representation of the digits in the numerator and denominator of a particle coordinates. The particle 
is a linear harmonic oscillator with m = 1, q0 = 8; q1 = 16; V= ½sq2, s = 1/3. 

 (a) First 100 time steps; (b) First 1,000 time steps. 
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Since there is no periodicity in the pattern of digits, the CA depicted in Figure 2 belongs to 
the third CA class in the following Wolfram’s classification (Wolfram, 1985a, 1985b): 
1) Class 1: All components attain the same state; the final state is unique and unaffected by any 

change to the initial state; 
2) Class 2: Simple stable states or periodic and separated structures emerge; small changes in 

the initial state only affect a fixed finite region around the area in which the values were 
changed; 

3) Class 3: Chaotic non-periodic patterns are generated; a minimal perturbation to the initial 
state affects arbitrarily large regions; or 

4) Class 4: Complex, localized, propagating structures are formed; some perturbations to some 
initial configurations appear to propagate arbitrarily far, whereas others die out. 
 
Figures 3a through 3c show all the positions occupied by the particle after 100, 1,000, and 

10,000 time steps. It can be seen that these positions are closer one to the other around the 
extremes of the current oscillation range (Figures 3a and 3b), where the particle velocity is 
smaller. The particle positions form clusters separated by empty segments (Figure 3b). After the 
first two steps and within 10,000 time steps, the particle never occupies a position having an 
integer coordinate: it is an open question whether it will eventually occupy integer coordinate 
positions. Another open question is whether the particle will visit all positions between the 
extremes reached, say, after 1,000 iterations, or there will always be “holes” in between.  

 
 
 
 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Cumulative positions occupied by a linear harmonic oscillator with m = 1, q0 = 8; q1 = 16; V= ½sq2, s = 1/3  
(same as in Figure 2). (a) First 100 time steps; (b) First 1,000 time steps; 
 (c) First 10,000 time steps (positions are indistinguishable at this scale). 

Additionally, it is not possible to determine a priori the maximum and minimum coordinates 
reached by the particle for an infinite number of time steps. For any finite number of time steps, 
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the maximum and minimum coordinates are not symmetric about zero. For example, the 
maximum (minimum, resp.) coordinate after 100 time steps is approximately equal to 
18.682435719981747 (-18.68289250959053), after 1,000 time steps it is approximately equal to 
18.683060458305423 (-18.68289250959053), after 10,000 time steps it is approximately equal to 
18.6839719940311 (-18.683972612054987). The maximum coordinate increases steadily, but the 
minimum coordinate remains constant between 100 and 1,000 time steps, and then it decreases 
further. Thus, even for a very simple linear harmonic oscillator without any forcing, it is 
impossible to find a shortcut to its range of oscillation: all we can do is to sit back and watch it 
evolve.  

 
Let us now introduce some basic concepts of extended interval algebra and then see how the 

discrete mechanics formulation described in this section must be modified in the presence of 
imprecision. 
 
 

3. Ordering of k and generalized interval arithmetic 
 
In order to work with intervals, we need to introduce the concept of ordering. Let k be a ring. An 
ordering of k is a subset P of k having the following properties (Lang, 2002): 

1) Given x∈k, either x∈P or x = 0, or -x∈P, and these possibilities are mutually exclusive. 
In other words, k is a disjoint union of P, {0}, and –P. 

2) If x, y ∈ P, then x + y and xy ∈ P. 

One also says that k is ordered by P and one calls P the set of positive elements. Let x, y ∈ k. 
Define x < y (or y > x) to mean that y-x ∈ P; define x ≤ y to mean x < y or x = y. Define x x=  if 

x>0, and x x= −  if x<0.  
 
In generalized interval arithmetic, the set of proper intervals { }[ , ] | ; ,x x x x x x k− + − + − +≤ ∈  is 

extended by the set { }[ , ] | ; ,x x x x x x k− + − + − +≥ ∈  of improper intervals, thus obtaining the set 

{ } 2[ , ] |; ,x x x x k k− + − += = ∈ ≅xD  of all ordered couples called generalized intervals (strictly 

speaking, generalized interval arithmetic is defined over the reals, but it is easy to see that the 
operations and properties used below are valid over any ordered ring, k). Denote the set of 
generalized intervals that involve zero by { }| x x− + 0= ∈xT D ≤ . In this paper, intervals are 

written in boldface type. 
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From a physical viewpoint, a proper interval, x, can also be seen as a set 

{ }[ , ] | ; ,x x x k x x x x x− + − + − += = ∈ ≤ ≤ ∈x k  of possible values of a physical quantity of 

interest, say X. Improper intervals are introduced to make interval algebra closed: if, at the end of 
a calculation sequence, X  turns out to be an improper interval, then this means that the possible 
set of values of X is the empty set (more refined semantics has been developed in modal interval 
analysis (Gardenes et al., 2001), but this is beyond the scope of this paper).  
The “dual” is an important operator that reverses the endpoints of the intervals. Let 

; its dual is defined as Dual(x) = [ , ]x x− += ∈x D [ , ]x x+ −
− = ∈x D . In order to simplify the 

formulae below, we use the functional notation introduced by Popova (2001). Define Λ = {+, -}, 
and, for μ and ν ∈Λ, define the (commutative) product λ = μν ∈Λ by λ = {+, if μ = ν, - 
otherwise}.  
For λ ∈Λ, define: 

 
ifif

and
ifif

x
x

x
λ

λ

λλ
λλ

+

−
−

= +⎧ ⎧= +
= =⎨ ⎨ = −= − ⎩⎩

x
x

x
.                                  (19) 

The direction of an interval, , its sign, ( )τ x ( )σ x , and its relative magnitude, ( )ν x , are defined 
as, respectively:  

( )
if
if
if

x x
x x
x x

τ

− +

− +

− +

⎧+ <
⎪= − >⎨
⎪± =⎩

x     ( )
( )

( )

if 0

if 0

x

x

τ

τ
σ

−⎧+ >⎪= ⎨
− <⎪⎩

x

x
x     ( )

if

if

if

x x

x x

x x

ν

+ −

+

+ −

⎧+ >
⎪⎪= − <⎨
⎪
± =⎪⎩

x − (20) 

Addition, multiplication, and subtraction of intervals are defined as follows: 

,x y x y− − + +⎡+ = + +⎣x y ⎤⎦ , for x, y ∈  (21) D
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\

,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

{ } { } ( ) ( )
( ) ( )

, , \

, \ ,

, ,

min , ,max , , ,

0 ,

x y x y

x y x y

x y x y

x y x y x y x y

σ σ σ σ

σ τ σ σ τ σ

σ σ τ σ σ τ

τ τ

τ τ

− −

−

−

− + + − − − + +

⎧⎡ ⎤ ∈⎣ ⎦⎪
⎪⎡ ⎤ ∈ ∈⎣ ⎦⎪
⎪= ⎡ ⎤⎨ ∈ ∈⎣ ⎦⎪
⎪⎡ ⎤ ∈ =⎣ ⎦⎪
⎪ ∈ = −⎩

y x y x

x y x x y x

y y x y y x

x y

x y

xy x y

x y x y

x y x y

D T

D T T

T D T

T

T

 (22) 

( 1) ,x y x y− + + −⎡− = + − = − −⎣x y x y ⎤⎦ , for x, y ∈ ;  D

-1 is the additive unit of 1∈k      (23) 
 
Addition and multiplication are commutative and associative, and have unit elements, namely  
[0, 0] for addition and [1, 1] for multiplication. Any element x ∈  has a unique inverse element 
for addition, namely 

D
−−x x . A: 0−− =x dditionally, conditional distributivity laws hold and have 

been summarized by Popova (2001). To illustrate, let us introduce a law, which will be used in 

the examples that follow. Denote ( ) ( )
( ) ( ) { }

\
μ̂ x r 

\ 0
if

if
σ
ν τ
⎧ ∈⎪= ⎨ ∈⎪⎩

x x
x x x

D T

T
. Fo { }1,x x  

=s x ∈s D D n  

2 \ 0∈D  and

+ x , if )∈ ∪yT, T , the1 2 (\ \ k

( ) ( ) ( ) ( ) ( )1 21 2 1 2ˆ ˆ ˆ ˆμ μ μ μ+ = +x s x sx x y x y x y  iff (24) 

either or 1 2, \∈x x D T,

{ } { } { }\ 0 for some 1, 2 and either 0or 0for all \ 0i ii x x− +∈ ∈ = = ∈x xT T . 
 

Thus,  is a conditional ring, and one could be tempted to blindly use all results derived by 
Baez and Gilliam (1994) using  as the ring in which the system takes values. However, since 
the addition unit of x is ,  unless x is degenerate, i.e. 

D
D

−−x 0− ≠x x ( )τ x =±, and only conditional 
distributivity applies. Finally, we will use the following properties: 
• An element x ∈ D\T   is a multiplication unit in  iff all x ∈ x are units in k; the 

multiplicative inverse of x is then x
D

_
-1 with 

1/ 1/ ,1/ ;1/ _ 1/ ,1/x x x+ − − +⎡ ⎤ ⎡= =⎣ ⎦ ⎣x x x ⎤⎦   
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• The dual operator is distributive with respect to finite addition 
( ( ) ( ) ( )Dual Dual Dual+ = +x y x y ) and multiplication 

( ( ) ( ) ( )Dual Dual Dual=xy x y ) and is an automorphism. 

Let ( ) :f x k k→ be a rational function. The generalized rational interval extension of f is 

the interval function  defined by the syntactic expression of f, where the 
variables in k are replaced by generalized intervals, and operations on k are replaced by the 
operations between generalized intervals described above. Likewise, the derivative 

, if it exists, is defined by the syntactic expression of f’, only replacing the 
argument x by its interval counterpart x, and its operations on k by their corresponding interval 
operations. The united extension, R

( ) :fR →x D D

( )' :fR →x D D

ƒ, is defined as the range of function values 

 ( ) ( ) ( )min ,maxf x x
R f x f x

∈ ∈
⎡=
⎣ x x

x ⎤
⎦

x

  

In general, . Similar definitions apply for multi-dimensional cases.  ( ) ( )ffR R⊇x
 
Since calculating the united extension is an NP-hard problem involving global optimization, 

generalized interval arithmetic will be used to carry out symbolic manipulations, and an algorithm 
due to Popova (2005) will be used to calculate interval extensions for the rational functions of 
interest in such a way that ( ) ( )ffR R=x x . The following thus rewrites Baez’s and Gilliam’s 
results using  as the ring in which the system takes values. Time evolution still proceeds in 
integer steps: if one is interested in the evolution of a system in the interval of time [i, i+n], such 
evolution is just the union of the results at each time step in [i, i+n]. Imprecision in time 
measurement is accounted for by allowing time-related quantities to be intervals, e.g., the initial 
velocity. Future research will deal with the case in which such physical quantities are measured in 
a time interval, e.g., the initial velocity measured between time steps i, and i+n.  

D

 
 

4. Euler-Lagrange equation 
 
As in Section 2, let A be a commutative algebra over  and let D ( ) ( )1

i
i

A A∞

=
Ω = Ω⊕  be the 

graded-commutative differential graded algebra on A with differential d, and product written as a 
wedge product. Let time take value in the discrete set {0, …, T} and Ai be a copy of A 
representing the system at time i. In order to satisfy Newton’s first and second laws, the Euler-
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Lagrange equation on the space of histories H = ( )1
0 ...T

TA A⊗ + = ⊗ ⊗ A  must be modified as 
follows: 

   (25) ( ) 1 0i i i iDual d d −+ =L L

where L ∈ A ⊗ A is the Lagrangian, 1 ... ... 1i = ⊗ ⊗ ⊗ ⊗L L  (in which L occupies the ith and 

(i+1)th slots); pi: ( ) ( )1 1H HΩ →Ω  is the projection on the ith summand of  

( ) ( )1 1
01

... ...T
i Ti

H A A
=

Ω = ⊗ ⊗Ω ⊗ ⊗⊕ A , and i id p d= . The example that follows illustrates 
why the Dual operator is necessary in Eq. (25). 
 

Recall that the time evolution map is formalized as a homomorphism 
:  and 1 2 0 1: A A A AΦ ⊗ → ⊗ 1 1a a⊗ ⊗ ( )1 a ϕ⊗ a 1A, where 2 0: A Aϕ → ⊗  is a 

homomorphism that formalizes the equation of motion. Similarly to Section 2, ϕ or Φ satisfies 
the equation of motion provided 

( )* 1 1 1 0d dDual Φ + =L L 0

)1

; (26) 

where ( ) (1 1
* 1 2 0: A A AΦ Ω ⊗ →Ω ⊗ A  is the map induced by Φ.  

 
The Dual operator in Eq. (26) is necessary in order to ensure that distributivity be a necessary 

condition for the evolution map to satisfy the equation of motion, as shown in the following 
example. 
 

EXAMPLE (modified from Baez and Gilliam, 1994). Suppose 2 is a unit in k and that the 
algebra [ ]A q≅D , so that [ ]1 2,A A q q⊗ ≅D  and [ ]0 ,..., TH q q≅D , the polynomials in T+1 

variables over . Consider the Lagrangian  (written here as a polynomial function) for a 
particle in a polynomial potential V as a function of consecutive positions  and  of the 
particle:  

D iL

iq 1i+q

( ) ( )
2.

1
1,
2i i i i+ i −

= = −q q mq V qL L  (27) 

where one defines  (so that 
.

1ii += −q q q _i

.
0i =q  iff 1i+ i=q q ), and where m is a unit in  

representing the mass of the particle. Notice that 

D

0i =L  iff ( )
2.1

2 ii =mq V q . Since  
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( )1 2d ,
ii q q= ∂ q qL L d i  , i = 1, 2 and the Dual operator is distributive with respect to sum and 

product, one obtains: 

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

1 _

1 _

' _

_ _ ' _ _ '

_ '

i i i i i i

i i i i i i i i

i i i i

Dual d Dual dq

dq dq dq dq

dq dq

+

+

= − − − =

= − − − = − − =

= − −

m q q V q

m q q V q m q V q

mq V q

L

i

1 q−

0

 

Likewise 

( )1 1_i i i i i id d− −= − =m q q mqL  

The Euler-Lagrange equation is thus: 

( ) ( )1_ 'i i i−− + =mq mq V q , (28) 

which correctly yields  iff ( )' 0i =V q 1i i−=q q (compare with Eq. (10)).  
 
The discrete analog for Newton’s second law is immediately derived: 

( ) ( ) ( ) ( ) ( )
( )
( )
( )

1 1

1
1

1
1

1
1

_ ' 0 _ _ '

_ _ ' _

_ '

_ _ '

i i i i i i

i i i

i i i

i i i

− −

−
−

−
−

−
−

− + = ⇔ = −

⇔ = −

⇔ − = −

⇔ − = −

mq mq V q mq mq V q

q q m V q

q q m V q

q q m V q

_

_

1
1

−

, 

which yields the time evolution map (compare with Eq. (16)) 

( ) ( ) ( )1
2 0 1 1 01 ' 2 _ 'ϕ −

−−
= + − = − −q q q m V q q q m V q  (29) 

and homomrphism Φ (compare with Eqs. (17) and (18)) 

( )1 1Φ =q q , ( ) ( ) ( )1
2 2 1 02ϕ −

− −Φ = = − −q q q q m V 1' q

d dq qΦ = ( )

 (30) 

( )* 1 1 , ( )1
* 2 1 0 1 1d 2d d '' dq q q q−

−− −m V qΦ =  (31)  

Let us check that the time evolution map satisfies the equation of motion: 
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( ) ( )( ) ( )

( ) ( )( )( )( ) ( )

( )( ) ( )( )( ) ( )

( )( ) ( )( )( ) ( )

1 1* 1 1 1 0 * 1 2 1 0 1 1

* 2 1 1 1 1 0 1

1
1 0 _ 1 1 1 1 1 0

_

1
1 0 _ 1 1 1 1 0 1

_

d d , d , d

' d d

2 ' ' d

' ' d d

q qDual Dual q q

Dual q q

q q

q q

− −−

−
− − −

−
− −−

Φ + = Φ ∂ + ∂ =

= Φ − − − + −

= − − − − − + −

= − − − − + −

q q q q

m q q V q m q q

m q q m V q q V q m q q

m q q m V q V q m q q

L L L L

1d−

 

whether or not this quantity is equal to zero depends on the actual input data, as the two following 
numerical examples of a harmonic oscillator show (assume k = ): 

1. Example 2a: assume , 0 [40,45]=q [ ]1 50,65=q ; ( ) 2
1

1
2

=V 1q sq ; s = [1/25, 6/25]; 

; m = [1, 2]. Then ( )1' =V q sq1 ( )( ) ( )1
1 0 _ 1 1' '−

− −
− − − −m q q m V q V q = [-38, -13] ⊂ 

( )1 0−− −m q q = [-40, -10] because only sub-distributivity holds.  As a result, 

( )* 1 1 1 0d dDual Φ + LL = [-3, 2], and thus generalized interval arithmetic leads to the 
conclusion that the time evolution map does not satisfy the equation of motion.  

2. Example 2b: assume 0 [11,000, 11,100]=q , [ ]1 10,000, 11,000=q ; 

( ) 2
1

1
2

=V 1q sq ; s = [1/5000, 3/5500]; ( )1' =V q sq1 ; m = [1, 2]. Then 

( )( ) ( )1
1 0 _ 1 1' '−

− −
− − − −m q q m V q V q = [100, 2000] = ( )1 0−− −m q q = [100, 2000] 

and the time evolution map satisfies the equation of motion.  
 

More in general, if Eq. (24) applies, then the time evolution map is satisfied using generalized 
interval arithmetic iff ( ) ( ) ( ) ( )1 2ˆ ˆ ˆ ˆANDμ μ μ μ= + =x s x s + , with 1 1 0−= −x q q , 

, and . If one defines the momentum as , 

then these conditions are equivalent to the momentum having the same sign, 
( )1

2 _ '−= −x m V q1 = −y m ( )1 _i i i i+= = −p mq m q q
σ  (Eq. (20)), as the 

spring force - ( )1' i+V q . If the time evolution map does not satisfy the equation of motion because 

only subdistributivity holds, then  pulls  back to a subset of *Φ i id L 1i id −− L . 
 

This shows that the imprecision in the input data together with subdistributivity may lead to a 
time evolution map that does not satisfy the equation of motion, which is nevertheless satisfied 
when no imprecision exists. In other terms, the time evolution map may not satisfy the equation 
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of motion in  even if it is always satisfied for every ring k. It may also happen that the time 
evolution map ceases to satisfy the equation of motion after a finite number of time steps: this 
occurs, for example, in Example 1b for i = 13. Let us analyze this crucial point in more detail.  

D

 
What is happening is overestimation caused by the multi-incidence of some variables in the 

expressions to be evaluated: a well known problem in interval analysis. Since the evolution map 
is always defined in terms of the previous two time steps (e.g., Eq. (29)), multi-incidence occurs 
in the computation of the flow as well. The dependency problem in range computation over a 
domain of proper intervals is eliminated using the algorithm developed by Popova (2005), which 
applies to rational functions such as those arising here by working on a polynomial configuration 
space. Within the Mathematica environment, this is efficiently accomplished by transforming the 
function to be evaluated using the IntervalComputations`Range package (2005), which 
takes into account the function’s monotonicity properties in each incidence.  

 
In the Example above, the described algorithm leads ( )* 1 1 1 0d dDual Φ +L L  to be identically 

equal to zero. As for the flow, steps 3 to 15 of the flow for Example 2b are given below as a way 
to exemplify: 

 

These ranges exactly correspond to those computed using the Mathematica global 
optimization functions Maximize and Minimize, thus confirming that ( ) ( )ffR R=x x . 
However, when using Mathematica global optimization functions, computational times are over 
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313 10⋅  times higher, and they could be impractically higher for more complex problems. As a 
way to interpret these results, recall that the time evolution map (Eq. (16)) is continuous in q1, q0, 
m and s. As a consequence, the meaning of interval qi calculated at the i-th step is as follows: the 
actual position of the particle at the i-th time step is a rational number in the interval qi. In a non-
degenerate interval qi there are infinite (albeit countable) possible positions. 

Similarly to the example in Section 2, the numbers of digits in the numerator and 
denominator increase at each time step. As time steps proceed, the shift to the left of the upper 
bound (slowest possible particle) is much smaller (1%) than the shift to the left undergone by the 
left bound (146%), which becomes negative at the 11th time step (fastest possible particle). At the 
15th time step, the width of the position interval is equal to about 15,475, whereas at the 1st time 
step it was equal to 1,000. Thus, the width has increased by about 150%. Figure 4 illustrates this 
behavior using some snapshots of the evolution of the configuration space. Notice that when the 
fastest particle bounces back to the right after the 80th step, the lower bound remains constant. 
The upper bound keeps decreasing because the slowest particle keeps marching to the left, until 
the fastest particle (which is now marching to the right) overcomes the slowest particle between 
i = 140 and i = 160, and makes the upper bound increase again.  

 
After the 160th time step, the interval never decreases because the fastest possible particle is 

always “much faster” than the slower possible particle. Similarly to the precise case of Section 2, 
it is impossible to determine the asymptotic values for the smallest and largest coordinates 
reached by the particle. Despite the fact that it is unknown whether the particle will actually visit 
all rational coordinate positions between the reached extremes (see Section 2), the continuity of 
the evolution map ensures that the particle may occupy any of the rational coordinate positions in 
the intervals depicted in Figure 4.     

 
i=1 

 
i=140 

 
i=20 

 
i=160 

 
i=40 

 
i=180 

 
i=60 

 
i=200 

 
i=80 

 
i=220 

Figure 4. Snapshots of the evolution of the configuration interval for the harmonic oscillator in Example 2a.  
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When the function’s monotonicity properties cannot be exploited because the hypotheses in 
(Popova, 2005) are not fulfilled, validated bounds on the system’s evolutions can be calculated by 
a discrete version of Taylor models. Taylor models have proven very effective in reducing 
overestimation in validated calculations of the flow for continuous systems (e.g., Makino, K. and 
Berz, 2004 and Berz and Makino, 1998 and references therein). The extension of Taylor models 
to discrete mechanics is the subject of current study.  

 
5. Conclusions 

 
Discrete dynamical systems that take values in a ring k allow for an exact integration of their time 
evolution. When the ring k is the ring of rational numbers, it may be impossible to determine a 
priori the evolution of even the simpler linear systems. 
  

When discrete dynamical systems take values in  (the set of extended intervals defined on 
a ring k), one finds that: 

D

• The definition of the Euler-Lagrange equation and of satisfaction of the equation of motion 
for the time evolution map must be modified by introducing the Dual operator for extended 
intervals. 

• When monotonicity can be exploited, exact bounds on the system evolution can be 
calculated very efficiently at each time step without the use of global optimization. When 
monotonicity cannot be exploited, validated bounds can be calculated, but more research is 
needed in this field, where Taylor models look very promising.   

 
Two interpretations of directed intervals have been used, namely directed interval as an 

ordered couple of elements of k and as a set of elements of k. The interpretation of directed 
intervals in terms of modal logic (Gardenes, 1986) opens the way to logical interpretations of 
mechanical systems (including cellular automata) and vice versa; this aspect will be investigated 
in the future. 
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