
Checking Computation of Numerical Functions
by the Use of Functional Equations

F. Vainstein and C. Jones

Georgia Institute of Technology
feodor.vainstein@gtsav.gatech.edu

Abstract: Systematic use of functional equations for fault-tolerant computation of numerical
functions have been introduced by M. Blum (1989) and then independently by F. Vainstein
(1991). The later has introduced definition of polynomially checkable (PC) functions – the
functions for which functional equations are polynomials, and proved that the class of PC
functions is large and includes many commonly used functions. The functional equations that are
used to check computations of numerical functions are called checking polynomials. In this paper
we discuss an algorithm for computing coefficients of these polynomials. By using this algorithm
we obtain checking polynomials for the commonly used functions.
Keywords: fault tolerance, algebraic methods, numerical functions, error checking, checking
polynomials.

1. Introduction

Computers continue to take on more mission and safety critical operations in industrial, scientific,
and consumer markets. Modern processors compute a wide range of numerical functions.
Detecting and correcting errors due to numerical computations are critical aspects of processor
design.

There have been numerous approaches to fault tolerant computation of numerical functions.
These include hardware, information, time, and software redundancy methods (Lala 2001).
However, each of these methods comes at a significant price to the system in space or time. And
while the dimensions of chip technology are continually reduced the complexity of the systems
placed on chips continues to rise.
The technique described here employs the algebraic concept of the transcendental degree of field
extensions to exploit the structure of a specific numerical computation. This method requires
significantly less hardware redundancy, offers good fault coverage, and has significant fault
location capability (Vainstein 1993).

© 2006 by authors. Printed in USA

REC 2006 – F. Vainstein and C. Jones

mailto:feodor.vainstein@gtsav.gatech.edu

2 F. Vainstein and C. Jones

Algorithms used in numerical computations can be sophisticated and numerous
implementations exist (Koren 2001; Muller 1997; Ercegovac, Lang et al 2000). Many
considerations go into choosing a certain numerical algorithm based on specific application and
design criteria. Contrary to the perception of many, the computation of numerical functions can
be quite complex and susceptible to faults.

In order to give the flavor of an algorithm for computing an elementary function, consider
Wong and Goto’s algorithm for computing logarithms (Wong and Goto 1994). This description
is based on the presentation of this algorithm given by Muller in (Muller 1997). See Muller’s text
for a complete description of the assumptions, details, and technical issues of the algorithm.

 The notation
[] baz −

is the number obtained by zeroing all the bits of z but the bits a to b. For example, if
, then 43210 mmmmmm =

[] ...000.0 32131 mmmm =−
To compute the logarithm of a normalized IEEE-754 double precision floating-point number

onentmx exp2×=
We have to follow the steps below:

1. Obtain factor and 1K ()1ln K from tables.
2. Use a rectangular multiplier to multiply m by . Then is chosen such that

 is close to 1. And
1K 2K

mKK 21 ()[] 5612ln −K is obtained from tables.

3. Use a rectangular multiplier to multiply ()1mK by . As in the previous step
 is obtained from tables.

2K
()[] 5613ln −K

4. Use a rectangular multiplier to multiply ()21KmK by . The result is 3K γ−1 , where

. This result is close enough to 1 that a degree-3 Taylor polynomial
approximation will give good accuracy.

2420 −<≤ γ

5. Then, full multiplication and tables are used to compute

[]
561

3
3325

561

2

3

2

−

−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

γ

γ

and

REC 2006 – F. Vainstein and C. Jones

3 Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations
of Numerical Functions

6. And, finally,

() ≈xln exponent () []
561

3
3325

561

2

321 32
lnlnln2ln

−

−

−

⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−−−−−×

γγγKKK

As we see from this example, even “simple” numerical functions such as the logarithmic
function can be quite sophisticated and thus susceptible to faults.

The method presented in this paper seeks to address the fault-tolerant needs of numerical
algorithms with low processor overhead. To illustrate this method, let us consider an example.

Suppose we have to compute the function]10,0[,5sin)(∈= − xxexf x

Let ;21 R,aa ∈
Denote by ,5sin)0(0 xexff x−=+=

),(5sin)(1
)(

11
1 axeaxff ax +=+= +−

).(5sin)(2
)(

22
2 axeaxff ax +=+= +−

Denote by ;5sin ;5cos ;5sin ;5cos 22221111
2211 aeqaepaeqaep aaaa −−−− ====

 121221 ; ; qCqBqpqpA =−=−=
Then 0210 =++ CfBfAf

For every . Rx ∈
It is very important that A, B and C do not depend on x and depend only on

Taking (1) into consideration we can consider the following method for error detection.
21 and aa

Denote the computed values of function at the points f 21,, axaxx ++ by 210
~,~,~ fff

respectively. Then if the computation is correct
0~~~

210 =++ fCfBfA (Independently of x!) (2)

For error correction (single error in this case) we can proceed as follows.
Consider 0~~~let and 2 ; 21021 ≠++== fCfBfAaaaa (3)

Because one of .2 ,1 ,0 ;~
=≠ iff ii

Suppose for example that 221100
~ ;~ ;~ ffffff ==≠

Then the correct value is given by the formula

 210
~~ f

A
Cf

A
Bf −−= (4)

Location of the error can be obtained by using (2) for the following triples:

4 F. Vainstein and C. Jones

 axaxxaxax 2 2 ++−−
 |_________________|
 |_______________|
 |________________|

It should be taken into consideration that computations are done in practice with a certain
level of accuracy. Hence the formula 2 should be substituted by the formula
 | 210

~~~ fCfBfA ++   |  ,δ≤         (2’) 
where δ  is a small positive number specified by the precision of the computation. 
 
 

2. Polynomial checking 
 
For the readers convenience let us present the following definitions and results from the field 
extension theory (Lang 1992). 
Definition 1.  Let LK ⊂  be a field extension and  be the set of all polynomials in 

 over K.  The elements 
],....,[ 1 nTTK

nTT ,...,1 Laa n ∈  ,....1  are called algebraically dependent over K, if there 
exists a polynomial 0],,...,[ 1 ≠∈ PTTKP n , such that .0),...( 1 =naaP   The elements 

 are called algebraically independent over K, if they are not algebraically 
dependent.  By  we denote the quotient field of the ring  

Laa n ∈,...,1

),...,( 1 nTTK ].,...,[ 1 nTTK

Example 2.  Consider the field extension   Then the numbers .RQ ⊂ 2  and R∈3  are 
algebraically dependent over Q.   The numbers 1,  are 
algebraically independent over Q. 

.5),( 2
2

2
121 −+= TTTTP Rπ∈

Definition 2.  Let LK ⊂  be a field extension.  Transcendental degree (Tr.deg.) of this extension 
is by definition the maximum possible number of elements from L algebraically independent over 
K. 

If Tr.deg. of LK ⊂  is equal to n and m>n, the any subset { } Laa m ⊂,...,1  is 
algebraically dependent. 
Example 3.  Tr.deg. of  equals to 1. R(T)R ⊂
                     Tr.deg. of equals to 2. )R(x,eR x⊂
                     Tr.deg. of  equals to 0. )x,ex,  R(x,)x,eR(x, xx cossinsin ⊂
Definition 3.  A field L is called algebraically closed if any polynomial ][TLP∈  has a root in L. 
Example 4.  R is not algebraically closed.   does not have roots in R.  C is 
algebraically closed. 

1)( 2 += TTP

REC 2006 – F. Vainstein and C. Jones 



5 Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations 
of Numerical Functions 

 
 
Definition 4.  A field K  is called an algebraic closure of field K is 
1.  K  is algebraically closed. 
2. Tr.deg. of KK ⊂  is equal to 0. 
Theorem 1.  For any field K its algebraic closure K  exists and is unique up to isomorphism. 
Definition 5.  A function  is called polynomially checkable (PC) if there exists an 
integer k, such that for any 

Rf:R →
R,...,aa k ∈1  the functions 

)()(),...,()(),()( 110 kk axfxfaxfxfxfxf +=+==  are algebraically dependent, i.e. there 
exists a polynomial  such that ,0 ],...,TR[TP k∈ 0),...,( 0 =kffP  (for any ).  The 
polynomial P is called a checking polynomial of the function f. 

Rx∈

The computation of a PC function can be readily verified.  For a given value of x, denote by 

kfff ~,....,~,~
10  the values of f at the points ,,...,, 1 kaxaxx ++  respectively.  Then if all the values 

are computed correctly, the following equality holds: 
                0)~,...,~,~( 10 =kfffP                                                                        (5) 

This property provides a unified approach to the problem of error detection/correction in 
computation of numerical functions.  Indeed we can consider inequality similar to  )2( ′

               δ≤)~,...,~,~( 10 kfffP ,                                                                      )5( ′

where δ  is a small positive number specified by the precision of the computation.  In case of 
correct computation  is satisfied.  We have to note, however, that even if  is satisfied it 
doesn’t give us 100% warrantee that computation is correct.  There are some faults that cannot be 
detected by  

)5( ′ )5( ′

).5( ′
The first class of faults (we can call them software faults) are result of the fact that some 

other PC function  can have the same checking polynomial.  For instance if 
 where b is a constant, then g(x) and f(x) have the same checking polynomials.  

Preliminary results show that a PC function with bounded spectrum is uniquely defined by its 
checking polynomial (the set of shifts is fixed) and its values at a finite set of points.  This 
property can be used to fight the software faults. 

)(f )( xxg ≠
),(f )( bxxg +=

The second class of faults which can not be detected by using )5( ′ are hardware faults.  They 
are result of physical defects of a device which performs the calculation of function.  Random 
faults are hardware faults.  The fault coverage of random faults is calculated below for an 
important case.  It is shown in (Abamowitz and Stegun 1965) that the class of PC functions is 
very broad even for a small k. 



6 F. Vainstein and C. Jones 

Denote by S the set of three functions:   Let denote by R(A) the field of all 

rational functions in  and by 

.sin,, xex x ;SA ⊆

Ag j ∈ R(A) its algebraic closure. 

Example 5.  a) A = (x), R(A) = 
⎭
⎬
⎫

⎩
⎨
⎧

)(
)(

xQ
xP

i

i , where  are polynomials of one variable with 

real coefficients.  Its algebraic closure 

ji QP ,

)(AR  includes, as a special case any function g(x) which 
is a solution of an equation  where 

 are polynomials of one variable with real coefficients. 
0)(...)()()()( 0

1
1 =+++ −
− xPxgxPxgxP n

n
n

n

nixPi ,...,1,0),( =
 

In particular, R(A)  includes the set of all functions that can be obtained by application of 
finite number of additions, subtractions, multiplications, divisions, and raising to a rational power 
to the function .)( xxg =  

b) { }
x),(eQ
x),(eP  ; R(A)x,eA x

i

x
ix

sin
sinsin == , where  are polynomials of two variables with 

real coefficients. 

ji QP ,

Theorem 2  Let  belong to the field Rf:R → x).,(x,e,AR(A) x sin⊆   Then f is polynomially 

checkable with Ak = . 

Proof.  We prove the theorem for the case { }.sin,, xexA x=   For the other cases the proof is 
analogous. 

Let x),R(x,ef(x) x sin∈  and R ,a,aa ∈321 ; denote:  ),()(  ),()( 110 axfxfxfxf +==   
).()( ),()( 332 axfxfaxfxf +=+=  We have to show that are algebraically 

dependent.  This follows from the statements: 
30 ,..., ff

1) Tr.deg of x),R(x,eR x sin⊂  equals to 3. 

2) For every  x),R(x,ea)R,f(xa x sin∈+∈ . 

Indeed ⇔∈ x),R(x,ef(x) x sin  there exists a polynomial  such that x)[T],R(x,eA x sin∈
0)()()(...)()()( 01 =+++= xAxfxAxfxAfA n , where .Let us denote x),R(x,e(x)A x

i sin∈
)(...)()()( 0 xAxfxAx n ++=ρ .Then  

. )cossin00 xx,R(x,ea)(x,Aa)(xA...a)a)f(x(xAa)ρ(x x
in ∈+=+++++=+

Hence x),,R(x,ex)x,,R(x,e  But  ,).x,,R(x,ea)f(x xxx sincossincossin =∈+  

REC 2006 – F. Vainstein and C. Jones 



7 Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations 
of Numerical Functions 

 
 
hence  x),R(x,ea)f(x x sin∈+  and, therefore, x).,R(x,e,f,f,ff x sin3210 ∈  

But the Tr.deg. of x),R(x,eR x sin⊂  equals to 3, hence  are algebraically dependent. 3210 ,f,fff
Let f be the result of application of a finite number of additions, subtractions, 

multiplications, divisions and raising to a rational power to the following functions: 
Const,  where  are rational numbers. ),cos(),sin(,, jjii

x bxrbxrex ++ ji rr ,
Then f is a PC function with . 3≤k

Example 6. The function 
3
1

3245

425
3

))2(sin(

cos))
711

(sin(
)(

x

x

xexxxx

xxex

xf
+++

+++
=

π

 is a PC function with k=3. 

 
Example 7. Consider the function 

)(sin)(;
)4)53sin(3(cos)7sin(

) cos)((sin)(
17
1

2
1

3
1

xRxf
xxx

xxxf ∈

−+−+

+
=  

Tr.deg. of extension x)R(R sin⊂ equals to 1, therefore f(x) is a PC function with k=1.   
Note.  The theorem 2 states that the class of PC functions is very big.  We have to note, however, 
that a number of commonly used functions like ln(x),  are non PC functions. )(cos),(sin 11 xx −−

 
 

3. Finding a Checking Polynomial by Least Square Estimation 
 
To find a checking polynomial we consider the following optimization problem. Let 

[ ] RBAf →,:  
Denote 

( ) ( ) ( ) ( )( )∫ −+−−+−=
B

A
kkk dxaxfaxfxf 2

01110 2,,, βααααβδ KK  

Find such 01 ,,, βαα kK , that ( k )ααβδ ,,, 10 K  takes minimal value. To solve this problem 
consider the following equations: 



8 F. Vainstein and C. Jones 

( )( )( )

( )( )

( )( )∫

∫

∫

=−−−−=
∂
∂

=−−−−=
∂
∂

=−−−−−=
∂
∂

B

A
kkk

k

B

A
kk

B

A
kk

dxfffxf

dxfffxf

dxffxf

02

02

012

011

1011
1

011
0

βααδ
α

βααδ
α

βααδ
β

K

M

K

K

 

Let us denote by ( )∫ ⋅=
B

A

dxgfgf , . Using this notation, we can express the system of 

equations in the form 
( )

1,,,,

1,,,,

1,,,,

,1,11,

0110

20212120

10111110

0110

kkkkkk

kk

kk

kk

fffffff

fffffff

fffffff

ABfff

βαα

βαα

βαα

βαα

+++=

+++=

+++=

−+++=

K

M

K

K

K

 

Solving this system we obtain kααβ ,,, 10 K . If ( ) 0,,, 10 =kααβδ K  then f is an LC function 
with the checking polynomial  

00110 =−−−− βαα kk fff K  
If ( ) 0,,, 10 ≠= δααβδ kK  then  does not have a checking polynomial of degree 1. However, 
if 

f
δ  is a small number the formula  

δβαα ≤−−−− kk fff
~

1

~

10

~
K  

can be used to verify the correctness of computations. A similar method can be used for obtaining 
a checking polynomial of degree > 1. 

Other methods for finding a checking polynomial are described in (Vainstein 1998). 
 
 

4. Numerical Results 

REC 2006 – F. Vainstein and C. Jones 



9 Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations 
of Numerical Functions 

 
 
A Matlab program was developed to implement the algorithm described using techniques from 
linear algebra. This program can determine the coefficients of the checking 
polynomial, kααβ ,,, 10 K , for various numerical functions. 

From the system of equations defined above, denote 
( )

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛ −

=

1,,,

1,,,
1,,,

,1,1

1

2212

1111

1

kkkk

k

k

k

fffff

fffff
fffff

ABff

A

K

MMMM

K

K

K

. 

Define vector X  as 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

k

o

X

α

α
β

M
1 . 

And, define vector B  as 

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

kff

ff

ff

f

B

,

,

,

1,

0

20

10

0

M

. 

First, the program computes the coefficients of matrix A and vector B using the trapezoidal 
integration method. Then, the equation BAX =  is solved by a reduced row echelon form 
method. The resulting values of vector X then give us the coefficients of the checking 
polynomial, kααβ ,,, 10 K . 

The values of kααβ ,,, 10 K  are then used to evaluate ( )kααβδ ,,, 10 K  as described above. 
This gives the value ofδ . 

In order to investigate the effect of increasing k, the program finds the values of  δ   for a 
given range of  values and determines which of these produces the minimum deviation. Shown 
below are the results from these computations for various numerical functions. 

k



10 F. Vainstein and C. Jones 

In Table 1 and Figure 1 we see the algorithm’s results when applied to . ( ) ( )xxf ln=
Function ( )xln  
Best  k 9  
Accuracy, δ  610063.1 −∗  

1α  13.636083507129 

2α  -48.3372588311351 

3α  33.8356474758064 

4α  104.402870905685 

5α  -173.871357832086 

6α  19.6783752309016 

7α  95.3406000928846 

8α  -40.7070503540183 

9α  -2.97970571433605 

oβ  0.0104815654867488

Stepsize,  h 0001.0  
Lower limit, A 1 
Upper limit, B  100  

Table 1. Best results for ( ) ( )xxf ln= .  

 

 
Figure 1. Graph of the accuracy δ  versus  fork ( ) ( )xxf ln= . 

REC 2006 – F. Vainstein and C. Jones 



11 Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations 
of Numerical Functions 

 
 

These results show that, in the interval [ ]100,1 , and with a step size of , the 
checking polynomial of that returns the best accuracy, or minimum deviation

0001.0=h
( ) ( )xxf ln= δ , is 

the polynomial with values for kααβ ,,, 10 K  as given in Table 1. 
As a result of the computational experiments we observed that, as a rule, the deviation, δ , is 

decreasing with increasing k, for small values of k. However, as k continues to increase δ  
eventually begins to increase. The reason for this increase is the limited accuracy of computer 
arithmetic. In general, we are interested in the smallest value of k (since the overhead increases 
with k) that provides us with a satisfactory deviation. 

As another example, let’s consider a more complicated looking numerical function 
( ) ( )( ) ( ) xxxxxf +−−= cossincos      (6) 

The graph δ versus k for this function is shown below in Figure 3. 
 

 
Figure 3. Graph of the accuracy δ  versus  for k ( ) ( )( ) ( ) xxxxxf +−−= cossincos . 

We note in the results of Figure 3 the two important features mentioned above: the deviation 
initially decreases but then eventually increases with increasing k. 

Given in the table below are some other sample results. 
Function k δ  kααα ,,, 21 K  β  

)cos(x  2 1.5655594  2610−∗ 1.08060461 
-0.999999999 

-
4.6509012  1510−∗

2x  2 5.3305333  2010−∗ 2.00000000 
-1.00000000 

2.0000000 

x  6 3.5165389  910−∗ 17.6933009 -0.73834646 



12 F. Vainstein and C. Jones 

-82.75929 
138.617962 
-51.0106681 
-69.7915475 
48.319250 

xe  2 5.4703917  2210−∗ 0.00810684622 
0.132352941 

-5.80812  1210−∗

( ) ⎥
⎦

⎤
⎢
⎣

⎡
++ 2

1
2 1log xx  

3 1.8593950  1010−∗ 1.67126425 
3.81365972      
-5.13358327 

2.2870721 

( )( ) ( ) xxxx +−− cossincos  7 7.6541494  1510−∗ -1.16902598 
-0.58592973 
-0.74339752 
-1.48341738 

-0.454274819 
-0.230924645 
0.684256990 

7.6417875 

Table 3. Sample results of the least square estimation method. All results for step size, h  0001.0=
These results in Table 3 give the values of kααβ ,,, 10 K  that define the checking polynomial 

of the form 
00110 =−−−− βαα kk fff K  

for each numerical function. 
A number of other common and specialized numerical functions were also tested. The results 

are shown in Table 4 below. Each of these functions were tested over a domain interval for which 
they are well behaved. 
 

Function k δ  

Airy Function: ( ) ∫
∞

∞−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

= dtezA
tzti

i
3

3

2
1
π

; for 1=i  
6 8.01855604514853  1310−∗

Bessel Function of 1st Kind: ( ) ( )
( )∑

+

⎟
⎠
⎞

⎜
⎝
⎛

++Γ
−

=
ν

ν

kk z
kk

zJ
2

1 2!1
1

 
7 6.77944398369068 1210−∗

Beta Function: ( ) ( ) ( )
( )aa

aadtttaaB aa

+Γ
ΓΓ

=−= ∫ −−
1

0

11 1),(  
5 1.94247036365353  910−∗

REC 2006 – F. Vainstein and C. Jones 



13 Determining Coefficients of Checking Polynomials for an Algebraic Method of Fault Tolerant Computations 
of Numerical Functions 

 
 

Scaled Complementary Error Function: ( ) ∫
∞

−=
x

tx dteexf
22 2

π
 

6 5.53736923276668 1110−∗

Exponential Integral: ( ) ∫
∞ −

=
x

t

dt
t

exf  
5 1.09725876920181 1010−∗

Logarithm of the Gamma Function: 

( ) ( )∑
∞

=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−=Γ

1

log1loglog
k

zz
k
z

k
zz γ  

5 2.24588944104907  710−∗

Inverse Cosine: ( ) ( )21 1log
2

cos ziziz −++=− π
 

6 9.57918288982022  610−∗

Inverse Hyperbolic Cosine: ( ) ( )11logcosh 1 +−+=− zzzz  4 5.68478815529586  910−∗

Hyperbolic Cosine: ( )
2

cosh
zz eez

−+
=  

2 1.63905802795885 2110−∗

Inverse Tangent: ( ) ⎟
⎠
⎞

⎜
⎝
⎛
−
+

=−

zi
ziiz log

2
tan 1  

5 2.2975351543044  610−∗

Complete Elliptic Integral of the First Kind: 

( ) ∫
−−

==
1

0
22 11

1 dt
ztt

zK  

4 1.29605146674611 1110−∗

Riemann Zeta Function: ( ) ∑
∞

=

==
1

1
k

sk
sζ  

3 5.31429308150972  910−∗

Dawson’s Integral:  ( ) ∫ −−=
x

tx dteexF
0

22
7 1.48383522053584  610−∗

Fresnel Sine Integral: ( ) ∫ ⎟
⎠
⎞

⎜
⎝
⎛ ⋅=

x

dttxS
0

2

2
sin π

 
6 4.04417425710405  510−∗

Table 4. Results for various functions (Abamowitz and Stegun 1965; Wolfram 1999). 
 
 

5. Conclusions and Future Work 
 



14 F. Vainstein and C. Jones 

We have demonstrated that checking polynomials can be effectively used for fault tolerant 
computations. In particular, checking polynomials for some common numerical functions and 
some specialized functions have been found. 

A program was developed in Matlab that allow us to obtain an “approximate” checking 
polynomial for a wide range of numerical functions. 

The examples considered showed that even for functions that do not appear simple an 
approximate checking polynomial provides a small value of deviation,δ . 

A future paper will describe a hardware implementation of this fault tolerance technique. 
Issues related to computational overhead and comparisons to overhead incurred by other methods 
will be discussed. 

We will also consider the problem of obtaining checking polynomials of degree greater than 
one. Once this theoretical foundation is established an approach such as that outlined in this paper 
will be developed for finding coefficients of higher degree checking polynomials. 

References 
Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions, National Bureau of 

Standards, Applied Math. Series #55, Dover Publications, 1965. 
Ercegovac, Milos D., Tomás Lang, Jean-Michel Muller, and Arnaud Tisserand. “Reciprocation, 

Square Root, Inverse Square Root, and Some Elementary Functions Using Small 
Multipliers.” IEEE Transactions on Computers, 49(7):628-637, July 2000. 

Koren, Israel. Computer Arithmetic Algorithms. A K Peters, 2001. 
Lala, Parag K. Self-Checking and Fault-Tolerant Digital Design. Morgan Kaufmann, 2001. 
Lang, S., Algebra, Addison-Wesley Publishing Co., 1992. 
Muller, Jean-Michel. Elementary Functions: Algorithms and Implementation. Birkhäuser, 1997. 
Vainstein, Feodor. “Algebraic Methods in Hardware/Software Testing.” Ph. D. Thesis, Boston 

University, 1993. 
Vainstein, F. S. “Self Checking Design Technique for Numerical Computations.” VLSI Design, 

1998, Vol. 5, No. 4, pp. 385-392. 
Wolfram, Stephen, The Mathematica Book, 4th Ed., Cambridge University Press, 1999. 
Wong, W.F. and Goto, E. “Fast hardware-based algorithms for elementary function computations 

using rectangular multipliers.” IEEE Transactions on Computers, 43(3):278-294, March 
1994. 

 

REC 2006 – F. Vainstein and C. Jones 


	1. Introduction
	2. Polynomial checking
	3. Finding a Checking Polynomial by Least Square Estimation
	4. Numerical Results
	Function
	5. Conclusions and Future Work
	References


