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Abstract. In this work, we report the experimental implementation of a Quantitative Feed-
back Theory (QFT) based robust controller, designed online using hybrid global optimization
and constraint propagation techniques. The hybrid global optimization combines interval global
optimization and nonlinear local optimization methods. The constraint propagation techniques are
very effective in discarding infeasible controller parameter regions in the optimization search. The
obtained experimental results show the effectiveness of hybrid global optimization for the online
design of robust control systems.
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1. Introduction

Most of the practical system consists of uncertainties in the form of disturbances, measurement
noise and unmodelled or imprecisely modeled dynamics. Therefore the design has to seek a control
system that functions adequately over a wide range of uncertain parameters. Such a system is said
to be robust when, it has low sensitivities, is stable over a wide range of parameter variations,
and the performance stays within prescribed limit bounds in the presence of parameter variations.
Sometimes the parameter variations are beyond the uncertainty bounds, then there is need of
retuning (adaptation) of controller parameters online.

Quantitative Feedback Theory (QFT), developed by Horowitz (1993) is a frequency domain
based technique for robust controller design. It converts the design specifications of a closed loop
system and plant uncertainties into robust stability bounds and performance bounds on the open
loop transmission of the nominal system and then synthesize a controller by using the gain-phase
loop shaping technique. Traditionally, this synthesis was done manually by the designer, relying on
design experience and skill. Recently, several researchers have attempted to automate this step, see,
for instance, (Ballance and Gawthrop, 1991; Bryant and Halikias, 1995; Chait et al., 1999; Gera
and Horowitz, 1980; Thompson and Nwokah, 1994)

The main drawback of the approaches cited above lies in attempting to solve a complicated
nonlinear optimization problem using convex or linear programming techniques, which generally
leads to conservative designs. To overcome these difficulties, Chen et al. (1998) reformulated the
problem as one of parameter optimization of a fixed order controller and used genetic algorithms
for obtaining the solutions. However, it is well known that with genetic algorithms one may obtain
a local minimum instead of the global minimum (Dallwig et al., 1997). Moreover, genetic algorithms
tend to become slower as one tries to increase the probability of success.
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Figure 1. Two Degree of Freedom Structure for QFT.

In this paper, we used an efficient method for automatic loop shaping in QFT, proposed in
(Nataraj and Kubal, 2005). The QFT controller synthesis problem is posed as a constrained
optimization problem, where the objective function is the high frequency gain of the controller, and
the constraint set for the optimization is the set of possibly nonconvex, nonlinear magnitude-phase
QFT bounds at the various design frequencies. The method uses hybrid optimization techniques
and constraint propagation ideas to solve the optimization problem. The hybrid optimization part
efficiently combines interval global optimization (Moore, 1979; Ratschek and Rokne, 1988; Hansen,
1992; Kearfott, 1996) and nonlinear local optimization methods. The method supplement the opti-
mization tools with a new so-called quick solution approach, developed based on ideas of constraint
propagation techniques. The quick solution approach can quickly discard sizable portions of the
infeasible controller parameter regions using simple arithmetic calculations.

In the present work, automatic loop shaping using hybrid global optimization and constraint
propagation is used for the experimental implementation of QFT based robust adaptive controller
on a coupled tank system.

The paper is organized as follows: Section 2 deals with the background of QFT. Problem for-
mulation is given in Section 3. Section 4 give details of hybrid global optimization and constraint
propagation. Case study of coupled-tank system is described in Section 5.

2. Overview of QFT

Consider a two degree freedom feedback system configuration (see Fig 1), where G(s) and F (s) are
the controller and prefilter respectively. The uncertain plant P (s) is given by P (s) ∈ {P (s, λ) : λ ∈
λ}, where λ ∈ Rl is a vector of plant parameters whose values vary over a parameter box λ

λ = {λ ∈ Rl : λi ∈ [λi, λi], λi ≤ λi, i = 1, ..., l}
This gives rise to a parametric plant family or set

P = {P (s, λ) : λ ∈ λ}
The open loop transmission function is defined as

L(s, λ) = G(s)P (s, λ) (1)

and the nominal open loop transmission function is

L0(s) = G(s)P (s, λ0) (2)
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The objective in QFT is to synthesize G(s) and F (s) such that the various stability and performance
specifications are met for all P (s) ∈ P. In general following specifications are considered in QFT:

1. Robust stability margin ∣∣∣∣
L(jω)

1 + L(jω)

∣∣∣∣ ≤ ωs

2. Robust tracking performance

|TL(jω)| ≤
∣∣∣∣
F (jω)L(jω)
1 + L(jω)

∣∣∣∣ ≤ |TU (jω)|

3. Robust input disturbance rejection performance
∣∣∣∣

G(jω)
1 + L(jω)

∣∣∣∣ ≤ ωdi(w)

4. Robust output disturbance rejection performance
∣∣∣∣

1
1 + L(jω)

∣∣∣∣ ≤ ωdo(w)

In practice, the objective is to satisfy the given specifications over a finite design frequency set
Ω. The main steps of QFT design specifications are

1. Generating templates: For a given uncertain plant P (s) ∈ P, at each design frequency
ωi ∈ Ω, calculate the value set of the plant P (jωi) in the complex plane.

2. Computation of QFT bounds: At each design frequency ωi, combines the stability and
performance specifications with the plant templates which results in the stability margin and
performance bounds. The bound at ωi is denoted as Bi(∠L0(jω), ωi) or simply Bi

3. Design of Controller : Design a controller G(s) such that

− The bound constraints at each design frequency ωi are satisfied.

− The nominal closed loop system is stable.

4. Design of Prefilter: Design a prefilter P (s) such that the robust tracking specifications are
satisfied.
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3. Problem Formulation

We consider the controller structure in the gain-pole-zero form as

G(s, x) =

kG

nz∏

i1=1

(s + zi1)

np∏

k1=1

(s + pk1)

(3)

where
x = (kG, z1, ...znz , p1, ..., pnp) (4)

is the controller parameter vector. The magnitude and phase functions of G(s, x) are defined as

Gmag(ω, x) = |G(s, x)|; Gang(ω, x) = ∠G(s, x) (5)

Now, the QFT controller synthesis problem can be formulated as: Given the QFT bounds and
the nominal plant, develop a controller automatically which provides nominal closed loop stability,
satisfies all the bound constraints, with minimum high frequency controller gain kG. Minimization
of the high frequency gain of the controller tends to reduce the amplification of the sensor noise in
the high frequency range, as shown in (Horowitz, 1993).

The QFT synthesis problem can be posed as a constrained optimization problem

min
x∈x

f = kG (6)

subject to H(x) ≤ 0

− x is the vector of controller parameters, x is some suitably specified initial search box of
controller parameter values.

− H(x) = {hi(x)} is set of bound constraints at each design frequency ωi

single valued upper bound constraint : hu
i (x) = |L0(jωi, x)| −Bi(∠L0(jωi, x), ωi) ≤ 0 (7)

single valued lower bound constraint : hl
i(x) = Bi(∠L0(jωi, x), ωi)− |L0(jωi, x)| ≤ 0 (8)

A multiple valued bound constraint denoted as hul
i can be split into a single-valued upper

bound constraint hu
i and a single-valued lower bound constraint hl

i, and then the condition of
both the bounds consider together.

− The bound constraint on the controller parameter vector, i.e. the controller parameter values
should lie in the initial search region.

− The nominal closed loop stability test is based on finding out the zeros of 1 + L(s, z0, λ0) for
some z0 ∈ z ⊆ x
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4. Hybrid Global Optimization

Let z = (kG, z1, ..., znz ,p1, ...,pnp) be the controller parameter box. Let Gmag(ωi, z) and Gphase(ωi, z)
denote the natural interval extensions of controller magnitude and phase functions respectively. The
natural interval extensions of nominal open loop transfer function magnitude and phase are defined
as

L0mag(ωi, z) = |L0(jωi, z)| = Gmag(ωi, z) |P (ωi, λ0)| (9)

L0phase(ωi, z) = ∠L0(jωi, z) = Gphase(ωi, z) + ∠P (ωi, λ0) (10)

The evaluations of the natural interval extensions at a given frequency ωi give magnitude and phase
intervals that define a box-like region in the Nichols chart. This is called as the L0 box at ωi.

The algorithm proposed in (Nataraj and Kubal, 2005) mainly consists of seven major compo-
nents: a quick solution approach, feasibility test, local optimization call, initialization, list sorting
and handling, a bisection strategy and a termination criteria.

1. Feasibility test: Based on the location of the L0 box w.r.t. bounds Bi, the parameter box z
is determined as feasible, infeasible or indeterminate at ωi, see Fig. 2. The flagz represents the
feasibility of parameter box z The details for the feasibility test are given in sec. 4.1.

2. Quick Solution approach: The quick solution approach discards the portion of the controller
parameter box z based on the location of the L0 box w.r.t. the bounds (for details see sec. 4.3).

3. Initialization: The current processing box z is assigned to the initial search box. The quick
solution and feasibility test is done for z. If z is infeasible, then by the inclusion property of
interval analysis, there is no feasible solution ∀z̃ ∈ z, hence, the algorithm exits and print the
message ‘No solution exist in the given initial search box’. Else, a list L is initialized with triple
(z, z, f lagz), where z = inf z(1) is the minimum value of the high frequency gain based on the
current parameter box z.

4. Local optimization call: A constrained local optimization routine is called to solve the
constrained optimization problem (6). For details see sec. 4.2.

5. Bisection: At each iteration, the box z of leading triple is bisected into two subboxes v1 and
v2

6. List sorting and handling: At each iteration, the leading triple is deleted from the list L
and the indeterminate bisected triples are added into the list. The list is sorted and arranged
in the non decreasing order of the value of objective function.

7. Termination:

a) As the list is sorted and arranged in the non decreasing order of the value of objective
function z at each iteration, the leading triple always contains the minimum value of the
objective function. Hence, at any iteration, if the box z of the leading triple is feasible, then
the algorithm can be terminated by printing the optimal controller parameter box z
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Figure 2. Feasibility conditions for different locations of L0 box w.r.t. single valued lower bound at ωi. Box A shows
feasible case, box B shows infeasible case and box C shows the indeterminate case.

b) If the relative gain width of the box z of leading triple is less than a specified relative gain
tolerance, and the box z contains the feasible parameter vector (i.e. feasible local solution)
then the algorithm can be terminated by printing the optimal parameter vector zlocal

4.1. Feasibility check

The feasibility check for a controller parameter box z consists of checks for the bound constraints
satisfaction in (7) and (8) at a given ωi, i = 1, ..., n.

4.1.1. Feasibility check for bound satisfaction
Let |Bi|max and |Bi|min be the top most and bottom most value of the single valued lower bound
for the entire phase interval ∠L0(jωi, z). Based on the location of the L0 box w.r.t. the single valued
lower bound one of the following cases arises (see Fig.2)

1. If the entire L0 box lies on or above |Bi|max (box A in Fig. 2) then hl
i is satisfied for any

controller parameter vector z ∈ z, so that the entire box z is feasible at ωi.

2. If the entire L0 box lies below |Bi|min (box B in Fig. 2) then hl
i is not satisfied for any controller

parameter vector z ∈ z, so that the entire box z is infeasible at ωi.

3. Else box z is indeterminate (box C in Fig. 2).
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4.2. Local optimization

Local optimization gives an early knowledge of the approximate global minimum. However, the
main difficulty is to decide of when to call a local optimization algorithm in a hybrid algorithm. If
local optimization is called at each algorithmic iteration, then the computational costs will grow
dramatically. Hence, the following decision rule is made regarding when to call the local optimization
routine.

− Let z, be any parameter vector belong to the parameter box z.

− z is compared with all previous starting points of local optimization, say zv,

− If z is sufficiently different (say, for instance more than 10%) from all previous starting points
zv, then call the local optimization routine for z.

4.3. Quick Solution

We can easily show from (2), (3) that the magnitude and phase of L0 vary monotonically over the
gain, zero and pole intervals. Further, from Fig. 3, we also observe that the coordinate (inf∠L0, sup|L0|)
is contributed by supremum values of gain and zero intervals and infimum values of pole intervals,
while the coordinate (sup∠L0, inf|L0|) is contributed by infimum values of gain and zero intervals
and supremum values of pole intervals

The proposed quick solution approach uses these simple observations and a few arithmetic
calculations for discarding infeasible parts of gain, pole and zero intervals. In general, optimization
techniques alone would take perhaps many iterations to achieve the same.

5. Case study

5.1. Plant Description

The coupled tank system whose schematic is given in Fig. 4 consists of two hold-up tanks which
are coupled by an orifice. Water is pumped in to the first tank by variable speed pump. The orifice
allows this water to flow into the second tank and hence out to a reservoir. The aim is to control
the water level in the second tank by changing the flow rate to the first tank by varying the speed
of the pump. The speed of the pump is varied by varying the control voltage (0-10V) to the pump.
The liquid level in the tank is measured using a depth sensor whose output is voltage (0-10V),
which is proportional to the level.

The input to the plant is the voltage to the variable speed pump and the output is the water
level in the second tank in terms of voltage signal.

The control voltage to the pump motor drive is from a digital computer along with the Advantech
5000 series data acquisition system. The mentioned data acquisition comprises 8-channel analog
input module and 4-channel Analog output module. The analog input channel accepts the signal
of 0− 10 volts. The analog output channels can generate an output of 0−10 volts. Communication
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Figure 3. Variation of |L0(jωi, z)|, ∠L0(jωi, z) w.r.t. gain, zero and pole intervals. The outer rectangle shows the L0

box.
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Figure 4. Schematic of Coupled Tank System.

between data acquisition system and the digital computer is via serial port. The control design
algorithm is implemented on a PC in Microsoft FORTRAN 95 with interval arithmetic support
INTLIB (Kearfott et al., 1994).

5.2. Real-time Parameter Estimation

On-line determination of process parameters is a key element in adaptive control system. In the
present work recursive least square method is used for parameter estimation. In recursive identifi-
cation method, the parameter estimates are computed recursively in time. This method has a small
requirement on memory since only a modest amount of information is stored. This amount will not
increase with time.
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Figure 5. Experimental closed-loop responses to setpoint changes for the coupled-tank system.

5.3. Controller Design and Implementation

For the design of robust QFT controller, the closed-loop specifications include the robust QFT
stability margins and tracking performance which are specified by

∣∣∣∣
L(jω)

1 + L(jω)

∣∣∣∣ ≤ 3dB

and
|TL(ω)| ≤

∣∣∣∣
F (jω)L(jω)
1 + L(jω)

∣∣∣∣ ≤ |TU (ω)|
respectively, where

TU (s) =
16.67s + 1

2140s2 + 56.44s + 1
and

TL(s) =
1

4.495× 104s3 + 4740s2 + 139.2s + 1
A second order model structure is selected for the coupled-tank plant, whose parameters are
estimated online using recursive least square method. The method mentioned in sec. 4 is used
to design the controller online. The implementation results are shown in the Figs. 5 and 6.

It can be noticed in Fig. 6 that the obtained closed-loop responses satisfy the given time-domain
specifications.
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