How to Take into Account
Dependence Between the Inputs:
From Interval Computations to
Constraint-Related Set Computations,
with Potential Applications to
Nuclear Safety, Bio- and Geosciences

M. Ceberio!, S. Ferson?, V. Kreinovich!
S. Chopra'?, G. Xiang!, A. Murguia'*#, J. Santillan'

!Computer Science, University of Texas,

El Paso, TX 79968, USA, contact vladik@Qutep.edu
2Applied Biomathematics, Setauket, NY 11733, USA
3Lexmark International, Lexington, KY 40550, USA

4XIMIS, El Paso, TX 79912, USA




1. General Problem of Data Processing under Uncer-
tainty

e Indirect measurements: way to measure y that are are difficult (or even im-
possible) to measure directly.

o Idea: y = f(x1,...,2n)

7 f ?7 f(%l’aafn)

e Problem: measurements are never 100% accurate: ¥; # x; (Axz; # 0) hence
g:f(aflaa?fn) #y:f(ml’ayn)

What are bounds on Ay def y—y?




2.

Probabilistic and Interval Uncertainty
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Az,

Traditional approach: we know probability distribution for Az; (usually
Gaussian).

Where it comes from: calibration using standard MI.

Problem: sometimes we do not know the distribution because no “standard”
(more accurate) MI is available. Cases:

— fundamental science

— manufacturing

Solution: we know upper bounds A; on |Az;| hence

x; € [5, — Al,.ffl + Al]




3. Interval Computations: A Problem

X1
—_—

X2
—_—

f y:f(x].?""xn)

o Given:

e an algorithm y = f(z1,...,z,) that transforms n real numbers z; into
a number y;

e n intervals x; = [z;, T;].

Compute: the corresponding range of y:

[y,@] = {f(:L‘1,. . 7xn) |:131 € [Qlail]"' <3 Tn € [@nvfn]}

e Fact: even for quadratic f, the problem of computing the exact range y is
NP-hard.

Practical challenges:

— find classes of problems for which efficient algorithms are possible; and

— for problems outside these classes, find efficient techniques for approzi-
mating uncertainty of y.




4.

Why Not Maximum Entropy?

Situation: in many practical applications, it is very difficult to come up with
the probabilities.

Traditional engineering approach: use probabilistic techniques.

Problem: many different probability distributions are consistent with the
same observations.

Solution: select one of these distributions — e.g., the one with the largest
entropy.

Ezample — single variable: if all we know is that = € [z,7Z], then MaxEnt
leads to a uniform distribution on [z, Z].

Ezample — multiple variables: different variables are independently distrib-
uted.

Conclusion: if Ay = Az + ...+ Az, with Az, € [-A;, A;], then due to

1
Central Limit Theorem, Ay is almost normal, with 0 = — -

V3

Why this may be inadequate: when A; = A, we get A ~ /i, but due to
correlation, it is possible that A =n - A; ~ n > /n.

Conclusion: using a single distribution can be very misleading, especially if
we want guaranteed results — e.g., in high-risk application areas such as space
exploration or nuclear engineering.




5.

General Approach: Interval-Type Step-by-Step Tech-
niques

Problem: it is difficult to compute the range y.

Solution: compute an enclosure Y such that y CY.

Interval arithmetic: for arithmetic operations f(x1,z3), we have explicit for-
mulas for the range.

Ezamples: when 1 € x1 = [21,T1] and 23 € Xo = [Z4, To|, then:

— The range x1 + Xg for x1 + x2 is [21 + 24, %1 + Ta].
— The range x1 — Xg for 1 — @2 is [x] — Ta,T1 — ).

— The range x; - Xg for z1 - 2 is [y, Y], where
y =min(z - Ty, 21 - T2, T1 - Ty, T1 - T2);
7 = max(z; - Ty, Ty - T2, T1 * Ty, T1 * Ta).

e The range 1/x; for 1/x; is [1/%1,1/z;] (if 0 & x3).

General Approach: . ..




Interval Approach: . ..

6. Interval Approach: Example

Ezample: f(z)=(x —2) - (z+2), z €[1,2].

How will the computer compute it?
o 1 =1 —2;
o roi=x+2;

® 73 I=1T1"T2.

Main idea: do the same operations, but with intervals instead of numbers:
e r:=[1,2] —[2,2] = [-1,0];
o 1y :=[1,2] +[2,2] = [3,4];
e ry:=[-1,0]-[3,4] =[—4,0].

Actual range: f(x) = [—3,0].

Comment: this is just a toy example, there are more efficient ways of com-
puting an enclosure Y Dy.




7. Interval Computations: Analysis ——

o Computation time: < 4 arithmetic operations per original operation, so O(T),
where T is the running time of the original algorithm.

o Result: often, enclosure Y O y with excess width.

e Reason: there is a relation between intermediate results, and we ignore it in
straightforward interval computations.

e Alternative: we can compute the exact range: e.g., Tarksi algorithm for
algebraic f.

o Computation time: can be exponential O(27T).
o Summarizing: we have two algorithms:

— a fast and efficient O(T') algorithm which often has large excess width;

— aslow and inefficient (often non-feasible) algorithm with no excess width.
e [t is desirable: to develop a sequence of feasible algorithms with:

— longer and longer computation time and

— smaller and smaller excess width.




8.

Interval Computations: Limitations

Traditional interval computations:

— we know the intervals x; of possible values of different parameters x;,
and
— we assume that an arbitrary combination of these values is possible.

In geometric terms: the set of possible combinations x = (z1,...,2,) is a
box x =x1 X ... X X,.

In practice: we also know additional restrictions on the possible combinations
of z;.

Ezample: in geosciences, in addition to intervals for velocities v; at different
points, we know that |v; —v;| < A for neighboring points:

Ezample: in nuclear engineering, experts often state that combinations of
extreme values are impossible, we have an ellipsoid, not a box.

Interval . . .




9. Similar Situation: Statistics

e Ideally, we should take into account dependence between all the variables.

Similar Situation: . . .

e In the first approximation, it is often reasonable to consider them indepen-
dent.

e In the next approximation, we consider pairwise dependencies.

e To get an even better picture, we can consider dependencies between triples,
etc.

e As a result, we get a sequence of methods which:

— require more and more time

— but at the same time lead to more and more accurate results.




10.

Let Us Use a Similar Idea for Interval Uncertainty

Ideally, we should take the box x; X ... X X,, (or appropriate subset of the
box), divide it into smaller boxes, estimate the range over each small box,
and combine the results.

This requires C™ subboxes — i.e., exponential time.

In straightforward interval computations, we consider only intervals of possi-
ble values of x;.

A natural next approximation is when we consider:

— sets x; of possible values of z;, and also

— sets x;; of possible pairs (z;,2;).
Third approximation: we also consider possible sets of triples, etc.
As a result, we hope to get a sequence of methods which:

— require more and more time

— but at the same time lead to more and more accurate results.

Let Us Use a Similar. ..




11. How to Represent Sets

e First idea: do it in a way cumulative probability distributions (cdf) are rep-
resented in RiskCalc package: by discretization.

e In RiskCalc, we:

— divide the interval [0,1] of possible values of probability into, say, 10
subintervals of equal width and

— represent cdf F'(z) by 10 values z1,. .., 210 at which F(z;) = /10.
e Similarly, we:

— divide the box x; X x; into, say, 10 x 10 subboxes and

— describe the set x;; by listing all subboxes which contain possible pairs.
o Comment:

— A more efficient idea is to represent this set by a covering paving — in
the style of Jaulin et al. — i.e., consider boxes of different sizes starting
with larger ones and only decrease the size when necessary.

— It is also possible (and often efficient) to use ellipsoids.

— Idea is similar to rough sets.

How to Represent Sets




12. How to Propagate This Uncertainty: A Problem
and General Idea

Problem:

e In the beginning: we know the intervals rq, ..., r, corresponding to the input
variables r; = x;, and we know the sets r;; for ¢, j from 1 to n.

e Question: propagate this information through an intermediate computation
step, a step of computing r, = 7, * 1, for some arithmetic operation * and
for previous results r, and ry, (a,b < k).

o By the time we come to this step, we know the intervals r; and the sets r;;
for i,j < k.

e We want to find the interval ry for xj, and the sets r;; for ¢ < k.
General idea:

e The range ry can be naturally found as {r, * 75 | (ra,7b) € Tap}-
e The set rq is described as {(rq,7a *75) | (Fa,Ts) € Tap}-

e The set ry is described as {(rp, 74 * r) | (Ta,7b) € Tab}-

For i # a, b, the set ry; is described as

{(risra 1) | (risTa) € Tia, (riy7p) € Tip}.

Comment. This is related to join

Toi X Ty = {(Ta,75,78) | (Tas7i) € Taiy (15,78) € Tip ).

How to Propagate. ..




13. First Example: Computing the Range of = — «

e Problem:

— for f(z) =z —x on [0, 1], the actual range is [0, 0];

— straightforward interval computations lead to an enclosure [0, 1]—[0, 1] =
[—1,1].

How to Propagate. ..

In straightforward interval computations:

— we have 7, = x with interval r; = [0,1];
— we have 1 = x with interval x5 = [0, 1];

— the variables r; and r, are dependent, but we ignore this dependence.

In the new approach: we have ry = ry = [0, 1], and we also have rys:

The resulting set is the exact range {0} = [0, 0].




14. How to Propagate This Uncertainty: Numerical
Implementation

e First step: computing rg:

— In our representation, the set x,; consists of small 2-D boxes X, x Xj.

— For each small box X, x X;, we use interval arithmetic to compute the
range X, * X of the value r, * r, over this box.

First Example: . . .

— Then, we take the union (interval hull) of all these ranges.
e Second step: computing r;:

— We consider the sets rgp, rq;, and ry;.
— For each small box R, x Ry from rgy, we:

x consider all subintervals R; for which R, x R; isin ry; and Ry x R;
is in rp;, and then

x we add (R, * Rp) X R; to the set ry;.
— To be more precise:

* since the interval R, * Ry may not have bounds of the type p/10,
* we may need to expand it to get within bounds of the desired type.

o We repeat these computations step by step until we get the desired estimate
for the range of the final result of the computations.




15. First Example: Computing the Range of r — x
(cont-d)

Problem:

— for f(z) = x —z on [0, 1], the actual range is [0, 0];
— straightforward interval computations lead to an enclosure [0, 1]—[0, 1] =
[-1,1].

o In straightforward interval computations: S (SRR

— we have 1 = z with interval r; = [0,1];
— we have 1y = x with interval x5 = [0, 1];

— the variables r; and ro are dependent, but we ignore this dependence.

In the new approach: we have ry = ry = [0, 1], and we also have rys:

X

X

For each small box, we have [—0.2,0.2], so the union is [-0.2,0.2].

e If we divide into more pieces, we get close to 0.




16. Second Example: Computing the Range of 7 — 22

e In straightforward interval computations:

— we have r = x with interval ry = [0, 1];

— we have ry = 22 with interval x5 = [0, 1];

— the variables r; and r; are dependent, but we ignore this dependence
and estimate rs as [0,1] — [0,1] = [-1,1].

e In the new approach: we have r;y = ra = [0, 1], and we also have ris:

How to Compute r;j

— the union of R? is [0, 1], so we have [0,0.2], [0.2,0.4], etc.;
— for Ry = [0,0.2], we have R? = [0,0.04], so only [0,0.2] is affected;
— for Ry = [0.2,0.4], we have R? = [0.04,0.16], so only [0,0.2] is affected;

— for Ry = [0.4,0.6], we have R? = [0.16, 0.25], so [0,0.2] and [0.2, 0.4] are
affected, etc.

X

=
—r

e For each possible pair of small boxes R; x Ry, we have R; — Ry = [—0.2,0.2],
[0,0.4] and [0.2,0.6], so the union of Ry — Ry is r3 = [—0.2,0.6].

e If we divide into more pieces, we get closer to [0,0.25].




17.

How to Compute r;;

Since r3 = [—0.2,0.6], we divide this range into 5 subintervals [—0.2, —0.04],
[~0.04,0.12], [0.12,0.28], [0.28,0.44], [0.44, 0.6].

For R; = [0,0.2], the only possible Rz is [0,0.2], so R; — Ry = [-0.2,0.2].
This covers [—0.2, —0.04] and [—0.04, 0.12].

For R; = [0.2,0.4], the only possible Ry is [0,0.2], so Ry — Ry = [0,0.4].
This covers [—0.04,0.12], [0.12,0.28], and [0.28, 0.44].

For Ry = [0.4,0.6], we have two possible Rs:

— for Re = [0,0.2], we have R; — Ro = [0.2,0.6]; this covers [0.12,0.28],
[0.28,0.44], and [0.44,0.6];

— for Ry =[0.2,0.4], we have Ry — Ry = [0,0.4]; this covers [—0.04,0.12],
[0.12,0.28], and [0.28,0.44].

For Ry = [0.6,0.8], we have R? = [0.36, 0.64], so three possible Ry: [0.2,0.4],
[0.4,0.6], and [0.6,0.8], to the total of [0.2,0.8]. Here, [0.6,0.8] — [0.2,0.8] =
[—0.2,0.6], so all 5 subintervals are affected.

For Ry = [0.8,1.0], we have R? = [0.64,1.0], so two possible Ry: [0.6,0.8]
and [0.8,1.0], to the total of [0.6,1.0]. Here, [0.8,1.0] —[0.6,1.0] = [—0.2,0.4],
so the first 4 subintervals are affected.

X
XX X[ X[ X
X X[ X[ X| X
X X[ X[ X

Distributivity: a - (b+ ...

—

—
—
—
—

—
—




18. Distributivity: a- (b+c¢) vs. a-b+a-c

e Problem: compute the range of x; - (x2 + x3) = 21 - 3 + x1 - €3 when z1 €
x1 = [0,1], xo = [1,1], and x5 = [-1, —1].
o Actual range: we have x1 - (z2 + x3) = 0 for all possible z; hence the actual
range is [0, 0].
o Straightforward interval computations:
— for x1 - (x2 + x3), we get [0,1] - [0,0] = [0,0];
— for x1 -x2+x1 -x3, we get [0,1]-14[0,1]- (1) = [0,1]+[-1,0] = [-1,1],

i.e., excess width.

e Reason: we have ry = x1 - x2, 75 = x1 - 3, but we ignore the dependence
between r4 and 5.

Distributivity: New. ..

—

—
KNS

—
—




19.

Distributivity: New Approach

Reminder: ry =11 19,15 =11 -73, 76 =Tr4+75,r1 = [0,1], ro =1, r3 = —1.

When we get ry = r1 - 72, we compute the ranges ri4, ro4, and rsy; the only
non-trivial range is ry4:

X

For r5 = ry - r3, we get r5 = [—1,0].
To compute the range ry5, for each possible box R; x Rg, we:

— consider all boxes R4 for which R4 x Ry is possible and R4 x Rg is

possible;
— add R4 X (Rl . R3) to the set rys5.
Result:
X
X
X
X

X

Hence, for r¢ = r4 + r5, we get [—0.2,0.2].

If we divide into more pieces, we get the enclosure closer to 0.

Toy Example with . ..

—

—
KNS

—
—




20.

Toy Example with Prior Dependence

e Case study: find the range of ry — r9 when r; = [0,1], ro = [0,1], and
|’f’1 —’I“Ql §02

Actual range: [—0.2,0.2].

Straightforward interval computations: [0,1] —[0,1] = [-1,1].
o New approach:

— First, we describe the set ris:

— Next, we compute {r; — ro| (r1,72) € r12}.

e Result: [—0.2,0.2].

Computation Time

—

—
KNS

—
—




21. Toy Example with Prior Dependence (cont-d)

e Case study: find the range of 11 — ro when r; = [0,1], ro = [0,1], and
|T1 - 7’2| S 0.1.

o Actual range: [—0.2,0.2].
o Straightforward interval computations: [0,1] — [0,1] = [-1,1].
e New approach:

— First, we describe the constraint in terms of subboxes:

X| X
X| X| X
X| X| X
X| X| X
X| X

— Next, we compute Ry — Ry for all possible pairs and take the union.
o Result: [—0.6,0.6].

e If we divide into more pieces, we get the enclosure closer to [—0.2,0.2].

What Next?

—

—
KNS

—
—




22. Computation Time

o Straightforward interval computations:

— we need to compute T intervals r;, 1 =1,...,7T;
— so, it requires O(T") steps.

o New idea:
— we need to compute T2 sets ri, 47 =1,...,T;
— 50, it requires O(T?) steps.

o Conclusion:

— the new method is longer than for straightforward interval computations,
but

— it is still feasible.

Probabilistic Case: In. ..

—

—
KNS

—
—




23.

What Next?

Known fact: the range estimation problem is, in general, NP-hard (even
without any dependency between the inputs).

Corollary: our quadratic time method cannot completely avoid excess width.

To get better estimates, in addition to sets of pairs, we can also consider sets
of triples ryj.

This will be a T2 time version of our approach.
We can also go to quadruples etc.

Similar ideas can be applied to the case when we also have partial information
about probabilities.

Acknowledgments

e

—
KNS

—
—




24.

Probabilistic Case: In Brief

Traditionally: expert systems use technique similar to straightforward inter-
val computations.

We parse F' and replace each computation step with corresponding probabil-
ity operation.

Problem: at each step, we ignore the dependence between the intermediate
results Fj.

Result: intervals are too wide (and numerical estimates off).
Ezample: the estimate for P(AV —A) is not 1.

Solution: similarly to the above algorithm, besides P(F}), we also compute
P(FJ &Fz) (OI‘ P(Fjl & ... &F]k))

On each step, use all combinations of [ such probabilities to get new estimates.

Result: e.g., P(AV —A) is estimated as 1.
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26.

When is the New Method Exact?

Straightforward interval computations are exact for single-use expressions
(SUE).

Our method is exact for x — x, z — 22, and x1 - T3 + 21 - 3.
In all these expressions, each variable occurs no more than twice.
Hypothesis: the new method is exact for all “double-use” expressions (DUE).

Counterexample:

2
o 1 & IR

— variance is DUE V = - 2;9012 - (5 : 2;3%) , but
i= i=

— computing the range of variance on interval data x; is NP-hard.

Counterexample to another reasonable hypothesis: range estimation is NP-
hard even for SUE expressions with linear SUE constraints.

Open question: when is the new method exact?
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