How to Take into Account Dependence Between the Inputs: From Interval Computations to Constraint-Related Set Computations, with Potential Applications to Nuclear Safety, Bio- and Geosciences

M. Ceberio¹, S. Ferson², V. Kreinovich¹
S. Chopra¹,³, G. Xiang¹, A. Murguia¹,⁴, J. Santillan¹

¹Computer Science, University of Texas, El Paso, TX 79968, USA, contact vladik@utep.edu
²Applied Biomathematics, Setauket, NY 11733, USA
³Lexmark International, Lexington, KY 40550, USA
⁴XIMIS, El Paso, TX 79912, USA
1. General Problem of Data Processing under Uncertainty

- *Indirect measurements*: way to measure \(y \) that are difficult (or even impossible) to measure directly.

- *Idea*: \(y = f(x_1, \ldots, x_n) \)

\[
\begin{array}{c}
\tilde{x}_1 \\
\downarrow \hspace{1cm} \downarrow \\
\tilde{x}_2 \\
\vdots \\
\downarrow \\
\tilde{x}_n \\
\end{array}
\quad f
\quad \begin{array}{c}
\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \\
\end{array}
\]

- *Problem*: measurements are never 100% accurate: \(\tilde{x}_i \neq x_i (\Delta x_i \neq 0) \) hence

\[
\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \neq y = f(x_1, \ldots, y_n).
\]

What are bounds on \(\Delta y \overset{\text{def}}{=} \tilde{y} - y \)?
2. Probabilistic and Interval Uncertainty

- Traditional approach: we know probability distribution for Δx_i (usually Gaussian).

- Where it comes from: calibration using standard MI.

- Problem: sometimes we do not know the distribution because no “standard” (more accurate) MI is available. Cases:
 - fundamental science
 - manufacturing

- Solution: we know upper bounds Δ_i on $|\Delta x_i|$ hence

$$x_i \in [\bar{x}_i - \Delta_i, \bar{x}_i + \Delta_i].$$
3. Interval Computations: A Problem

- **Given:**
 - an algorithm \(y = f(x_1, \ldots, x_n) \) that transforms \(n \) real numbers \(x_i \) into a number \(y \);
 - \(n \) intervals \(x_i = [x_i, \bar{x}_i] \).

- **Compute:** the corresponding range of \(y \):
 \[
 [\underline{y}, \bar{y}] = \{ f(x_1, \ldots, x_n) \mid x_1 \in [x_1, \bar{x}_1], \ldots, x_n \in [x_n, \bar{x}_n] \}.
 \]

- **Fact:** even for quadratic \(f \), the problem of computing the exact range \(y \) is NP-hard.

- **Practical challenges:**
 - find classes of problems for which efficient algorithms are possible; and
 - for problems outside these classes, find efficient techniques for approximating uncertainty of \(y \).
4. Why Not Maximum Entropy?

- **Situation:** in many practical applications, it is very difficult to come up with the probabilities.

- **Traditional engineering approach:** use probabilistic techniques.

- **Problem:** many different probability distributions are consistent with the same observations.

- **Solution:** select one of these distributions – e.g., the one with the largest entropy.

- **Example – single variable:** if all we know is that $x \in [x, \bar{x}]$, then MaxEnt leads to a uniform distribution on $[x, \bar{x}]$.

- **Example – multiple variables:** different variables are independently distributed.

- **Conclusion:** if $\Delta y = \Delta x_1 + \ldots + \Delta x_n$, with $\Delta x_i \in [-\Delta_i, \Delta_i]$, then due to Central Limit Theorem, Δy is almost normal, with $\sigma = \frac{1}{\sqrt{3}} \cdot \sqrt{n \sum_{i=1}^{n} \Delta_i^2}$.

- **Why this may be inadequate:** when $\Delta_i = \Delta$, we get $\Delta \sim \sqrt{n}$, but due to correlation, it is possible that $\Delta = n \cdot \Delta_i \sim n \gg \sqrt{n}$.

- **Conclusion:** using a single distribution can be very misleading, especially if we want guaranteed results – e.g., in high-risk application areas such as space exploration or nuclear engineering.
5. **General Approach: Interval-Type Step-by-Step Techniques**

- **Problem:** it is difficult to compute the range y.
- **Solution:** compute an enclosure Y such that $y \subseteq Y$.
- **Interval arithmetic:** for arithmetic operations $f(x_1, x_2)$, we have explicit formulas for the range.
- **Examples:** when $x_1 \in x_1 = [x_1, \overline{x}_1]$ and $x_2 \in x_2 = [x_2, \overline{x}_2]$, then:
 - The range $x_1 + x_2$ for $x_1 + x_2$ is $[x_1 + x_2, \overline{x}_1 + \overline{x}_2]$.
 - The range $x_1 - x_2$ for $x_1 - x_2$ is $[x_1 - \overline{x}_2, \overline{x}_1 - x_2]$.
 - The range $x_1 \cdot x_2$ for $x_1 \cdot x_2$ is $[\underline{y}, \overline{y}]$, where
 \[
 \underline{y} = \min(x_1 \cdot x_2, x_1 \cdot \overline{x}_2, \overline{x}_1 \cdot x_2, \overline{x}_1 \cdot \overline{x}_2); \\
 \overline{y} = \max(x_1 \cdot x_2, x_1 \cdot \overline{x}_2, \overline{x}_1 \cdot x_2, \overline{x}_1 \cdot \overline{x}_2).
 \]
- The range $1/x_1$ for $1/x_1$ is $[1/\overline{x}_1, 1/\underline{x}_1]$ (if $0 \not\in x_1$).
6. Interval Approach: Example

- **Example:** \(f(x) = (x - 2) \cdot (x + 2), \ x \in [1,2]. \)

- How will the computer compute it?
 - \(r_1 := x - 2; \)
 - \(r_2 := x + 2; \)
 - \(r_3 := r_1 \cdot r_2. \)

- **Main idea:** do the same operations, but with *intervals* instead of *numbers*:
 - \(r_1 := [1,2] - [2,2] = [-1,0]; \)
 - \(r_2 := [1,2] + [2,2] = [3,4]; \)
 - \(r_3 := [-1,0] \cdot [3,4] = [-4,0]. \)

- **Actual range:** \(f(x) = [-3,0]. \)

- **Comment:** this is just a toy example, there are more efficient ways of computing an enclosure \(Y \supseteq y. \)
7. **Interval Computations: Analysis**

- *Computation time:* ≤ 4 arithmetic operations per original operation, so $O(T)$, where T is the running time of the original algorithm.

- *Result:* often, enclosure $Y \supseteq y$ with excess width.

- *Reason:* there is a relation between intermediate results, and we ignore it in straightforward interval computations.

- *Alternative:* we can compute the exact range: e.g., Tarksi algorithm for algebraic f.

- *Computation time:* can be exponential $O(2^T)$.

- *Summarizing:* we have two algorithms:
 - a fast and efficient $O(T)$ algorithm which often has large excess width;
 - a slow and inefficient (often non-feasible) algorithm with no excess width.

- *It is desirable:* to develop a sequence of feasible algorithms with:
 - longer and longer computation time and
 - smaller and smaller excess width.
8. Interval Computations: Limitations

- Traditional interval computations:
 - we know the intervals x_i of possible values of different parameters x_i,
 and
 - we assume that an arbitrary combination of these values is possible.

- In geometric terms: the set of possible combinations $x = (x_1, \ldots, x_n)$ is a box $x = x_1 \times \ldots \times x_n$.

- In practice: we also know additional restrictions on the possible combinations of x_i.

- Example: in geosciences, in addition to intervals for velocities v_i at different points, we know that $|v_i - v_j| \leq \Delta$ for neighboring points:

- Example: in nuclear engineering, experts often state that combinations of extreme values are impossible, we have an ellipsoid, not a box.
9. Similar Situation: Statistics

- Ideally, we should take into account dependence between all the variables.
- In the first approximation, it is often reasonable to consider them independent.
- In the next approximation, we consider pairwise dependencies.
- To get an even better picture, we can consider dependencies between triples, etc.
- As a result, we get a sequence of methods which:
 - require more and more time
 - but at the same time lead to more and more accurate results.
10. Let Us Use a Similar Idea for Interval Uncertainty

- Ideally, we should take the box \(x_1 \times \ldots \times x_n \) (or appropriate subset of the box), divide it into smaller boxes, estimate the range over each small box, and combine the results.

- This requires \(C^n \) subboxes – i.e., exponential time.

- In straightforward interval computations, we consider only intervals of possible values of \(x_i \).

- A natural next approximation is when we consider:
 - sets \(x_i \) of possible values of \(x_i \), and also
 - sets \(x_{ij} \) of possible pairs \((x_i, x_j) \).

- Third approximation: we also consider possible sets of triples, etc.

- As a result, we hope to get a sequence of methods which:
 - require more and more time
 - but at the same time lead to more and more accurate results.
11. **How to Represent Sets**

- **First idea:** do it in a way cumulative probability distributions (cdf) are represented in RiskCalc package: by discretization.

- In RiskCalc, we:
 - divide the interval $[0, 1]$ of possible values of probability into, say, 10 subintervals of equal width and
 - represent cdf $F(x)$ by 10 values x_1, \ldots, x_{10} at which $F(x_i) = i/10$.

- Similarly, we:
 - divide the box $x_i \times x_j$ into, say, 10×10 subboxes and
 - describe the set x_{ij} by listing all subboxes which contain possible pairs.

- **Comment:**
 - A more efficient idea is to represent this set by a covering paving – in the style of Jaulin et al. – i.e., consider boxes of different sizes starting with larger ones and only decrease the size when necessary.
 - It is also possible (and often efficient) to use ellipsoids.
 - Idea is similar to rough sets.
12. **How to Propagate This Uncertainty: A Problem and General Idea**

Problem:

- **In the beginning**: we know the intervals r_1, \ldots, r_n corresponding to the input variables $r_i = x_i$, and we know the sets r_{ij} for i, j from 1 to n.

- **Question**: propagate this information through an intermediate computation step, a step of computing $r_k = r_a \ast r_b$ for some arithmetic operation \ast and for previous results r_a and r_b ($a, b < k$).

- By the time we come to this step, we know the intervals r_i and the sets r_{ij} for $i, j < k$.

- We want to find the interval r_k for x_k, and the sets r_{ik} for $i < k$.

General idea:

- The range r_k can be naturally found as $\{r_a \ast r_b \mid (r_a, r_b) \in r_{ab}\}$.

- The set r_{ak} is described as $\{(r_a, r_a \ast r_b) \mid (r_a, r_b) \in r_{ab}\}$.

- The set r_{bk} is described as $\{(r_b, r_a \ast r_b) \mid (r_a, r_b) \in r_{ab}\}$.

- For $i \neq a, b$, the set r_{ik} is described as $\{(r_i, r_a \ast r_b) \mid (r_i, r_a) \in r_{ia}, (r_i, r_b) \in r_{ib}\}$.

- **Comment**: This is related to join

 $$r_{ai} \bowtie_i r_{ib} = \{(r_a, r_i, r_b) \mid (r_a, r_i) \in r_{ai}, (r_i, r_b) \in r_{ib}\}.$$
13. First Example: Computing the Range of $x - x$

- **Problem:**
 - for $f(x) = x - x$ on $[0, 1]$, the actual range is $[0, 0]$;
 - straightforward interval computations lead to an enclosure $[0, 1] - [0, 1] = [-1, 1]$.

- In straightforward interval computations:
 - we have $r_1 = x$ with interval $r_1 = [0, 1]$;
 - we have $r_2 = x$ with interval $x_2 = [0, 1]$;
 - the variables r_1 and r_2 are dependent, but we ignore this dependence.

- In the new approach: we have $r_1 = r_2 = [0, 1]$, and we also have r_{12}:

- The resulting set is the exact range $\{0\} = [0, 0]$.
14. How to Propagate This Uncertainty: Numerical Implementation

• First step: computing r_k:

 - In our representation, the set x_{ab} consists of small 2-D boxes $X_a \times X_b$.
 - For each small box $X_a \times X_b$, we use interval arithmetic to compute the range $X_a \ast X_b$ of the value $r_a \ast r_b$ over this box.
 - Then, we take the union (interval hull) of all these ranges.

• Second step: computing r_{ik}:

 - We consider the sets r_{ab}, r_{ai}, and r_{bi}.
 - For each small box $R_a \times R_b$ from r_{ab}, we:

 * consider all subintervals R_i for which $R_a \times R_i$ is in r_{ai} and $R_b \times R_i$ is in r_{bi}, and then

 * we add $(R_a \ast R_b) \times R_i$ to the set r_{ki}.

 - To be more precise:

 * since the interval $R_a \ast R_b$ may not have bounds of the type $p/10$,

 * we may need to expand it to get within bounds of the desired type.

• We repeat these computations step by step until we get the desired estimate for the range of the final result of the computations.
15. First Example: Computing the Range of $x - x$ (cont-d)

- **Problem:**
 - for $f(x) = x - x$ on $[0, 1]$, the actual range is $[0, 0]$;
 - straightforward interval computations lead to an enclosure $[0, 1] - [0, 1] = [-1, 1]$.

- In straightforward interval computations:
 - we have $r_1 = x$ with interval $r_1 = [0, 1]$;
 - we have $r_2 = x$ with interval $x_2 = [0, 1]$;
 - the variables r_1 and r_2 are dependent, but we ignore this dependence.

- In the new approach: we have $r_1 = r_2 = [0, 1]$, and we also have r_{12}:

 ![Diagram](attachment:image.png)

- For each small box, we have $[-0.2, 0.2]$, so the union is $[-0.2, 0.2]$.

- If we divide into more pieces, we get close to 0.
16. Second Example: Computing the Range of \(x - x^2 \)

- In straightforward interval computations:
 - we have \(r_1 = x \) with interval \(r_1 = [0, 1] \);
 - we have \(r_2 = x^2 \) with interval \(x_2 = [0, 1] \);
 - the variables \(r_1 \) and \(r_2 \) are dependent, but we ignore this dependence and estimate \(r_3 \) as \([0, 1] - [0, 1] = [-1, 1]\).

- In the new approach: we have \(r_1 = r_2 = [0, 1] \), and we also have \(r_{12} \):
 - the union of \(R^2_1 \) is \([0, 1]\), so we have \([0, 0.2], [0.2, 0.4]\), etc.;
 - for \(R_1 = [0, 0.2] \), we have \(R^2_1 = [0, 0.04] \), so only \([0, 0.2]\) is affected;
 - for \(R_1 = [0.2, 0.4] \), we have \(R^2_1 = [0.04, 0.16] \), so only \([0, 0.2]\) is affected;
 - for \(R_1 = [0.4, 0.6] \), we have \(R^2_1 = [0.16, 0.25] \), so \([0, 0.2] \) and \([0.2, 0.4]\) are affected, etc.

- For each possible pair of small boxes \(R_1 \times R_2 \), we have \(R_1 - R_2 = [-0.2, 0.2], [0, 0.4] \) and \([0.2, 0.6]\), so the union of \(R_1 - R_2 \) is \(r_3 = [-0.2, 0.6] \).

- If we divide into more pieces, we get closer to \([0, 0.25]\).
17. How to Compute r_{ik}

- Since $r_3 = [-0.2, 0.6]$, we divide this range into 5 subintervals $[-0.2, -0.04]$, $[-0.04, 0.12]$, $[0.12, 0.28]$, $[0.28, 0.44]$, $[0.44, 0.6]$.

- For $R_1 = [0, 0.2]$, the only possible R_2 is $[0, 0.2]$, so $R_1 - R_2 = [-0.2, 0.2]$. This covers $[-0.2, -0.04]$ and $[-0.04, 0.12]$.

- For $R_1 = [0.2, 0.4]$, the only possible R_2 is $[0, 0.2]$, so $R_1 - R_2 = [0, 0.4]$. This covers $[-0.04, 0.12]$, $[0.12, 0.28]$, and $[0.28, 0.44]$.

- For $R_1 = [0.4, 0.6]$, we have two possible R_2:
 - for $R_2 = [0, 0.2]$, we have $R_1 - R_2 = [0.2, 0.6]$; this covers $[0.12, 0.28]$, $[0.28, 0.44]$, and $[0.44, 0.6]$;
 - for $R_2 = [0.2, 0.4]$, we have $R_1 - R_2 = [0, 0.4]$; this covers $[-0.04, 0.12]$, $[0.12, 0.28]$, and $[0.28, 0.44]$.

- For $R_1 = [0.6, 0.8]$, we have $R_1^2 = [0.36, 0.64]$, so three possible R_2: $[0.2, 0.4]$, $[0.4, 0.6]$, and $[0.6, 0.8]$, to the total of $[0.2, 0.8]$. Here, $[0.6, 0.8] - [0.2, 0.8] = [-0.2, 0.6]$, so all 5 subintervals are affected.

- For $R_1 = [0.8, 1.0]$, we have $R_1^2 = [0.64, 1.0]$, so two possible R_2: $[0.6, 0.8]$ and $[0.8, 1.0]$, to the total of $[0.6, 1.0]$. Here, $[0.8, 1.0] - [0.6, 1.0] = [-0.2, 0.4]$, so the first 4 subintervals are affected.
18. **Distributivity:** $a \cdot (b + c) \text{ vs. } a \cdot b + a \cdot c$

- **Problem:** compute the range of $x_1 \cdot (x_2 + x_3) = x_1 \cdot x_2 + x_1 \cdot x_3$ when $x_1 \in x_1 = [0, 1], x_2 = [1, 1]$, and $x_3 = [-1, -1]$.

- **Actual range:** we have $x_1 \cdot (x_2 + x_3) = 0$ for all possible x_i hence the actual range is $[0, 0]$.

- **Straightforward interval computations:**
 - for $x_1 \cdot (x_2 + x_3)$, we get $[0, 1] \cdot [0, 0] = [0, 0]$;
 - for $x_1 \cdot x_2 + x_1 \cdot x_3$, we get $[0, 1] \cdot 1 + [0, 1] \cdot (-1) = [0, 1] + [-1, 0] = [-1, 1]$, i.e., excess width.

- **Reason:** we have $r_4 = x_1 \cdot x_2$, $r_5 = x_1 \cdot x_3$, but we ignore the dependence between r_4 and r_5.

- **Reminder**: $r_4 = r_1 \cdot r_2$, $r_5 = r_1 \cdot r_3$, $r_6 = r_4 + r_5$, $r_1 = [0, 1]$, $r_2 = 1$, $r_3 = -1$.
- When we get $r_4 = r_1 \cdot r_2$, we compute the ranges r_{14}, r_{24}, and r_{34}; the only non-trivial range is r_{14}:

```
  ×
  ×
  ×
  ×
  ×
```

- For $r_5 = r_1 \cdot r_3$, we get $r_5 = [-1, 0]$.
- To compute the range r_{45}, for each possible box $R_1 \times R_3$, we:
 - consider all boxes R_4 for which $R_4 \times R_1$ is possible and $R_4 \times R_3$ is possible;
 - add $R_4 \times (R_1 \cdot R_3)$ to the set r_{45}.
- **Result**:

```
  ×
  ×
  ×
  ×
  ×
```

- Hence, for $r_6 = r_4 + r_5$, we get $[-0.2, 0.2]$.
- If we divide into more pieces, we get the enclosure closer to 0.
20. Toy Example with Prior Dependence

- **Case study**: find the range of $r_1 - r_2$ when $r_1 = [0, 1]$, $r_2 = [0, 1]$, and $|r_1 - r_2| \leq 0.2$.

- **Actual range**: $[-0.2, 0.2]$.

- **Straightforward interval computations**: $[0, 1] - [0, 1] = [-1, 1]$.

- **New approach**:
 - First, we describe the set r_{12}:

 ![Diagram](image)

 - Next, we compute $\{r_1 - r_2 | (r_1, r_2) \in r_{12}\}$.

- **Result**: $[-0.2, 0.2]$.

21. Toy Example with Prior Dependence (cont-d)

- **Case study:** find the range of $r_1 - r_2$ when $r_1 = [0, 1]$, $r_2 = [0, 1]$, and $|r_1 - r_2| \leq 0.1$.

- **Actual range:** $[-0.2, 0.2]$.

- **Straightforward interval computations:** $[0, 1] - [0, 1] = [-1, 1]$.

- **New approach:**

 - First, we describe the constraint in terms of subboxes:

 \[
 \begin{array}{ccccccc}
 & & \times & \times & & & \\
 & \times & \times & \times & & & \\
 \times & \times & \times & & & & \\
 \times & \times & & & & & \\
 \times & & & & & & \\
 \end{array}
 \]

 - Next, we compute $R_1 - R_2$ for all possible pairs and take the union.

- **Result:** $[-0.6, 0.6]$.

- If we divide into more pieces, we get the enclosure closer to $[-0.2, 0.2]$.
22. Computation Time

- **Straightforward interval computations:**
 - we need to compute T intervals r_i, $i = 1, \ldots, T$;
 - so, it requires $O(T)$ steps.

- **New idea:**
 - we need to compute T^2 sets r_{ij}, $i, j = 1, \ldots, T$;
 - so, it requires $O(T^2)$ steps.

- **Conclusion:**
 - the new method is longer than for straightforward interval computations, but
 - it is still feasible.
23. **What Next?**

- *Known fact:* the range estimation problem is, in general, NP-hard (even without any dependency between the inputs).

- *Corollary:* our quadratic time method cannot completely avoid excess width.

- To get better estimates, in addition to sets of pairs, we can also consider sets of *triples* r_{ijk}.

- This will be a T^3 time version of our approach.

- We can also go to *quadruples* etc.

- Similar ideas can be applied to the case when we also have partial information about probabilities.
24. **Probabilistic Case: In Brief**

- *Traditionally:* expert systems use technique similar to straightforward interval computations.

- We parse F and replace each computation step with corresponding probability operation.

- *Problem:* at each step, we ignore the dependence between the intermediate results F_j.

- *Result:* intervals are too wide (and numerical estimates off).

- *Example:* the estimate for $P(A \lor \neg A)$ is not 1.

- *Solution:* similarly to the above algorithm, besides $P(F_j)$, we also compute $P(F_j \& F_i)$ (or $P(F_{j_1} \& \ldots \& F_{j_k})$).

- On each step, use all combinations of l such probabilities to get new estimates.

- *Result:* e.g., $P(A \lor \neg A)$ is estimated as 1.
25. Acknowledgments

This work was supported in part:

- by NASA under cooperative agreement NCC5-209,
- by NSF grant EAR-0225670,
- by NIH grant 3T34GM008048-20S1,
- by Army Research Lab grant DATM-05-02-C-0046,
- by Star Award from the University of Texas System,
- by Texas Department of Transportation grant No. 0-5453, and
- by the workshop organizers.

Many thanks to:

- Luc Jaulin,
- Arnold Neumaier, and
- Bill Walster

for valuable suggestions.

Acknowledgments

This work was supported in part:

- by NASA under cooperative agreement NCC5-209,
- by NSF grant EAR-0225670,
- by NIH grant 3T34GM008048-20S1,
- by Army Research Lab grant DATM-05-02-C-0046,
- by Star Award from the University of Texas System,
- by Texas Department of Transportation grant No. 0-5453, and
- by the workshop organizers.

Many thanks to:

- Luc Jaulin,
- Arnold Neumaier, and
- Bill Walster

for valuable suggestions.
26. **When is the New Method Exact?**

- Straightforward interval computations are exact for single-use expressions (SUE).
- Our method is exact for \(x - x \), \(x - x^2 \), and \(x_1 \cdot x_2 + x_1 \cdot x_3 \).
- In all these expressions, each variable occurs no more than twice.
- **Hypothesis:** the new method is exact for all “double-use” expressions (DUE).
- **Counterexample:**
 - variance is DUE \(V = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)^2 \), but
 - computing the range of variance on interval data \(x_i \) is NP-hard.

 - **Counterexample to another reasonable hypothesis:** range estimation is NP-hard even for SUE expressions with linear SUE constraints.

- **Open question:** when is the new method exact?