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This talk will consider:

� the basic ideas in the interval global
optimization algorithm, and

� its application �nding the global solution of
reliability allocation problems
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Problem Formulation

Particularly, we deal with the two reliability
allocation problems:

Minimize C(x);
Subject to R(x) � R0;

x = (x1; x2; : : : ; xn); (1)
xi � 2;

xi is integer for i = 1; : : : ; n;
or

Maximize R(x);
Subject to C(x) � C0;

x = (x1; x2; : : : ; xn); (2)
xi � 2;

xi is integer for i = 1; : : : ; n
where C(x) and R(x) are di�erentiable
functions, and 0 � R0 � 1.

Feb 21-25, REC-2006{2



Introduction

� Many algorithms have been proposed to
solve nonlinear programming problems
using optimization techniques, but only a
few have been demonstrated to be e�ective
when applied to large scale nonlinear
programming problems for system
reliability with redundancy (Tillman,
Ramakumar, Harunuzzaman, Bul�n).

� Another drawback is that the solutions are
no integers and hence the true optimal
solution which must be integer is not
guaranteed.

� The Lagrange multiplier method and the
branch-and-bound technique are very
commonly used for both the redundancy
allocation problem and the mixed
integer-type reliability-redundancy
allocation problem.
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� In recent years, interval techniques have
proved to be e�ective solving nonlinear
global optimization problems (Baker,
Hansen, Ratschek).

Original System

An original system is assumed to consist of n
units in series, with costs c1; c2; : : : ; cn and
reliabilities p1; p2; : : : ; pn.

1 2 � � � n
Figure 1: Original System.

Total original system cost : C0 =
nX

i=1 ci
Total original system reliability: R0 =

nY
i=1 pi
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Unit Redundancies
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Figure 2: System with Unit Redundancy Con�guration

If the individual units of the system are
replicated, then we have unit redundancy, as
shown in Figure 2.
Given the basic system with n di�erent units
as shown in Figure 1 , the goal is to improve
the overall system reliability to R, by using
the unit redundancy with a minimum cost.
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Unit Redundancy

The two main questions to be addressed are:
a) What should be the minimum number of

redundancies for the i-th unit, for
i = 1; 2; : : : ; n, so that the system
reliability is maximum?

b) What should be the number of
redundancies for the i-th unit, for
i = 1; 2; : : : ; n, so that the system cost is
minimum?

Minimizing the System Cost

The constrained optimization problem is
de�ned by

minimize C =
nX

i=1 cixi;

subject to R =
nY

i=1[1� (1� pi)xi] (3)
� R0;



Maximizing the System Reliability

The constrained optimization problem is
de�ned by

maximize R =
nY

i=1[1� (1� pi)xi]

subject to C =
nX

i=1 cixi � C0; (4)

where
C : total system cost
C0 : the maximum required system cost
R : system reliability
R0 : the minimum required system reliability
ci : cost of unit i:
xi : the number of units in parallel replacing the

original unit i:
pi : reliability of unit i:
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Interval Arithmetic (IA)

� IA is an arithmetic on closed intervals of
real numbers (Hansen, Kearfott). IA has
been used in many optimization
applications (Moore, Ratschek, Neumaier).

� x = (x1; � � � ;xn) is a real interval vector,
where xi = [xi; xi] for i = 1; : : : ; n.

� GlobSol is a global optimization package,
developed on IA techniques. GlobSol �nd
the global minimum of smooth and
nonsmooth objective functions in a given
feasible region x(0).

� Assumption: the global optimum will
occur at an interior stationary minimum of
the objective function on x(0).
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Solution Methods

� The Lagrange Multipliers Method, the
Kuhn-Tucker Conditions and Newton's
Method.

� Branch-and-Bound Technique in
Redundancy Allocation.

The branch-and-bound technique of integer
programming in reliability optimization is
developed by Nakagawa as follows:
1. Solve the problem as if all variables were
real numbers. This solution is the upper
bound for the maximization problem (or
the lower bound for the minimization
problem).

2. Choose one variable at a time that has a
noninteger value, says xj, and branch that
variable to the next higher integer value for
one problem and to the next lower integer
value for the other. This results in two



constraints xj � [xj] + 1 and xj � [xj]
that are added in the two branched
problems. Solve both problems by the
Lagrange multiplier method.

3. Now variable j is an integer in either
branch. Fix the integers of xj for the
following steps of branch and bound.
Select the branch that results in higher
system reliability. Then repeat step2 on
another variable xk 6= xj for each of the
new problems until all variables become
integers.

4. Stop branching the problem if the solution
is worse than the current best integer
solution. Stop the iteration when all the
desired integer variables are obtained.
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Multivariate Interval Newton
Method

The nonlinear simultaneous equations
F (x) = (f1(x); : : : ; fn(x))T = (0; : : : ; 0)T can
also be solved by using multivariate interval
Newton methods, which are developed for both
smooth and non smooth cases. Convergence
and existence or uniqueness veri�cation with
interval Newton methods have been studied in
the past Baker, Moore, and Neumaier.
The solution algorithm presented in this paper
is applied to a sequence of intervals, beginning
with some initial interval vector x(0) given by
the user. The initial interval can be chosen to
be su�ciently large to enclose all physically
feasible points. It is assumed that the global
optimum will occur at an interior stationary
minimum of the objective function and not at
the boundaries of x(0).
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Solution Algorithm

Let x(0) be an initial interval vector. For an
interval vector x(k) in the sequence of interval
vectors x(0) � x(1) � � � � � x(k), follow the
steps:

1. Compute interval evaluations for the
gradient of the objective function,
rC(x(k)), and the constraint function,
R(x(k)).

2. Gradient range test If the zero vector is
not in the gradient of C, 0 =2 rC(x(k)),
then x(k) is discarded, thus no solution of
rC(x(k)) = 0 exists in this interval vector.
Otherwise, the testing of x(k) continues.
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3. Objective range test Compute an interval
evaluation of the objective function,
C(x(k)). If the lower bound of C(x(k)) is
greater than a known upper bound on the
global minimum of C(x), then x(k) cannot
contain the global minimum, and it is
discarded. Otherwise, testing of x(k)
continues.

4. Interval Newton test Solve the linear
interval equation system for a new interval
Nk

C 00(x(k))(Nk �
d
x(k)) = �rC( dx(k));

where C 00(x(k)) is an interval evaluation of
the Hessian matrix of C(x), over the
current interval x(k), where d

x(k) is the
midpoint of x(k). It can be shown that if x�

is a root of rC(x(k)) = 0, then it is also
contained in Nk.
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a. If Nk \ x(k) = ;, then rC(x(k)) = 0
does not have a root in x(k) and x(k) is
discarded.

b. Evaluate C( dx(k)) and �nd an upper
bound for use in Step 3.

c. If Nk \ x(k) = Nk, then there is exactly
one root of rC(x(k)) = 0 in x(k), which
may correspond to the global minimum.

d. If neither of the above is true, then no
further conclusion can be drawn.

Numerical Results

The following examples compare GlobSol
results with those of the Lagrange multiplier
method for the unit redundancy optimization
problem (3). Gi represents GlobSol results,
LM represents results from the Lagrange
multiplier method, and LMBB results from
the Lagrange multiplier method with
branch-and-bound technique.
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Example 1 A basis series consists of 4
units with costs c1 = 1, c2 = 2, c3 = 4, and
c4 = 8 units of money and reliability values
p1 = 0; 2, p2 = 0:4, p3 = 0:6, p4 = 0:8.
Design a new system con�guration
incorporating the unit redundancy concept
to achieve an overall system reliability of
R = 0:995 at minimum cost. Solve the dual
problem maximizing the system reliability
with the cost constraint.
Considering x = (x1; x2; x3; x4), an integer
programming problem corresponding to this
example is de�ned as follows:

Minimize �(x) = x1 + 2x2 + 4x3 + 8x4
subject to the constraints

(1�0:8x1)(1�0:6x2)(1�0:4x3)(1�0:2x4) � 0:995
xi positive integer for i = 1; 2; 3; 4:
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Table 1: Results of Example 1Method Solution Cost Reliability
G1 (28; 14; 8; 4) 120 .995035
G2 (30; 15; 7; 4) 120 .995062
G3 (32; 14; 7; 4) 120 .995194
G4 (30; 13; 8; 4) 120 .995209
LM (30; 14; 8; 4) 122 .99573

The original system cost is, C0 = 15, the
minimum cost for the unit redundancy
concept by using Globsol is C = 120 = 8C0,
and by using classical LM is
C = 122 = 8:13C0.
Maximizing the overall system reliability
with a maximum cost of C=120, the
optimum solution was
(x1; x2; x3; x4) = (30; 13; 8; 4), in Globsol and
LM and a maximum system reliability of
R = :9952. When the cost constraint is
changed to C < 123, GlobSol and LM
obtain the same (x1; x2; x3; x4) = (30; 14; 8; 4)
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Example 2 Similar to Example 1, with
unit costs c1 = 2, c2 = 3, c3 = 4, and c4 = 5,
and reliability values
p1 = p2 = p3 = p4 = 0:5. Design a new
system con�guration incorporating the unit
redundancy concept to achieve an overall
system reliability of R = 0:98 at minimum
cost.

Table 2: Results of Example 2Method Solution Cost Reliability
G1 (8; 8; 8; 7) 107 .980606
LM (9; 8; 8; 7) 109 .982528

The original system cost is C0 = 14, the
minimum cost for the unit redundancy
concept by using GlobSol is
C = 107 = 7:64C0 and by using LM is
C = 109 = 7:79C0 (see Table 2). The dual
optimization problem, to maximize the
overall system reliability with a maximum
cost of 107, was also solved with GlobSol
obtaining similar results. In both problems
the optimum solution was



(x1; x2; x3; x4) = (8; 8; 8; 4), with a total cost
of C = 107 and a maximum system
reliability of R = :980606.

Example 3 A 4-stage series system with
two linear constraints is formulated as a
pure integer programming problem. The
decision variables, x = (x1; x2; x3; x4), are
the number of redundancies at each stage.
The problem is formulated as follows

maximize R =
4Y

i=1[1� (1� ri)xi]

subject to
4X

j=1 cijxi � bi; i = 1; 2 (5)
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Table 3: Data for Example 3Stage, j 1 2 3 4
rj 0.80 0.70 0.75 0.85
c1j 1.2 2.3 3.4 4.5
c2j 5 4 8 7
b1 = 56
b2 = 120

With the data given in Table 3, the real
solution obtained by the LM and the
Kuhn-tucker conditions is,
x = (5:11672; 6:30536; 5:23536; 3:90151),
using interval and LMBB techniques give
the same integer solution x = (5; 6; 5; 4).
Even both methods provide the same
conclusions about the decision variables,
interval techniques provide a more rigorous
reasoning by guaranteeing the optimality for
this problem.
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Example 4 A 5-stage series system with
three nonlinear constraints is formulated as
a mixed integer programming problem. Both
the number of redundancies, xj, and the
component reliability, rj, are to be
determined. The problem from Tillman's
book is

maximize Rs(x; r) =
4Y

i=1[1� (1� ri)xi]

subject to g1(x) =
5X

j=1 pjx
2j � P � 0

g2(x; r) =
5X

j=1�j(
�t
ln rj

)�j(xj + exp(xj=4))� C � 0

g3(x) =
5X

j=1!jxj exp(xj=4))�W � 0
xj � 1 are integers and 0 < rj < 1 for all j:

With the data given in Table 4, the problem
was solved with the methods: the LMBB,
and with a combination of the sequential
method, Hooke and Jeeve Pattern Search,
and the heuristic redundancy allocation
method HJHRA [21].



The results are shown in Table 5, for the
LMBB method with the solution (Rs; r; x) =
(:9298; :7796; :8007; :9023; :7104; :8595; 3; 3; 2; 3; 2)
is superior to the
HJHRA method with the solution (Rs; r; x) =
(:9149; :7582; :8000; :9000; :8000; :7500; 3; 3; 2; 2; 3)
given in [21]. This mixed integer
programming problem has many local
optima. The HJHRA method has the
drawback of being trapped by a local
optimum, and the LMBB method overcomes
this drawback and it is quite e�ective.
Interval techniques provide the optimal
solution for the redundancy allocation
problem related to this problem. We could
not verify the solution provided by the
LMBB method to the mixed integer
programming problem by using interval
techniques in our computer systems.
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Table 4: Data for Example 4j �j pj !j P C W
1 2:33� 10�5 1 72 1:45� 10�5 2 83 5:41� 10�5 3 8 110 175 2004 8:05� 10�5 4 65 1:95� 10�5 2 9

�j = 1:5; j = 1; : : : ; 5 t=1000
Table 5: Comparison of MethodsLMBB HJHRA

Number of redundancies x = (3; 3; 2; 3; 2) x = (3; 3; 2; 2; 3)Component reliability R = (:77960; R = (:7582;
:80065; :8000;
:90227; :9000;
:71044; :8000;
:85947) :7500)System reliability Rs = :9298 Rs = :9149

Conclusions
Interval arithmetic techniques, proved to be an
e�ective tool to determine optimal design
con�gurations for systems with unit
redundancy, and can be used to solve mixed
reliability-redundancy allocation problems.
Interval arithmetic techniques are competitive
alternatives since they provide management
with di�erent options and exibility.
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