On reliability of higher order finite element
method in fluid-structure interaction problems

Svacek, P.

Department of Math. Sciences The University of Texas at El Paso

CTU, Fac. of Mech. Eng., Dep. of Technical Math.

REC'06, February 22-24

On reliability
of FEM in FSI

Svacek, P

Outline

Introduction

Numerical

Approximation




Thanks to

@ M. Horacek, CAS, IT, Czech Rep.
@ M. Feistauer, Charles University, Czech Rep.

o M. (vieérdle, J. Male&ek, Aeronautical Test and Research
Institute.

On reliability
of FEM in FSI

Svacek, P

Outline
Introduction

Mathematical
Model

Numerical

Approximation

Numerical
Results

Conclusions




. On reliability
Outllne of FEM in FSI
Svacek, P

@ Introduction

Outline

Introduction

© Mathematical Model S
Mathematica
@ General Model Model

o SlmpllflcathnS Numerical

Approximation

@ Interface Conditions

Numerical
Results

© Numerical Approximation
@ Time Discretization
@ Space discretization of Fluid Model

Conclusions

@ Numerical Results
@ Fluid Flow Approximation
@ Fluid Approximation over Moving Structure
@ Aeroelastic Simulations

© Conclusions




On reliability

Fluid-structure interaction problem of FEM in F

Svéatek, P

Outline

Introduction

Numerical

Approximation

Numerical
Re

Conclusions

Air Flows Interacts with Elastic Wing
Wind Tunnel in Aeronautical Test and Research Institute,
Prague




Computational Aeroelasticity

@ numerical simulation of both fluid and structure motion
o
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Computational Aeroelasticity

@ numerical simulation of both fluid and structure motion
o fluid-structure mutual interaction

e structure motion — fluid characterization
e aerodynamical forces — structural motion
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Computational Aeroelasticity

@ numerical simulation of both fluid and structure motion
o fluid-structure mutual interaction

e structure motion — fluid characterization
e aerodynamical forces — structural motion

@ determine the safe region (critical velocity)

@ simulate post-critical regimes (nonlinear aeroelasticity)
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Fluid Models

@ incompressible viscous flow (NS eq.)

@ RANS equations - turbulence models
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Reynolds Averaged Navier-Stokes equations

Navier-Stokes system

@"FV‘VV-FVP—VAV = 0

ot
Vv = 0 in Qt

Reynolds Averaging

ov=V+V, p=P+p, suchthatv=V
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Turbulence model - SA model

Reynolds-Stresses approximation ojf =
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Comparison of NS and RANS:

o Navier-Stokes system

o describes (turbulent) fluid flow
e no additional modelling is needed BUT

On reliability
of FEM in FSI

Svacek, P

Outline
Introduction
Mathematical
Model

General Model
Simplification:

Conditions

Numerical

Approximation

Numerical
Results

Conclusions




Comparison of NS and RANS:

o Navier-Stokes system
o describes (turbulent) fluid flow
e no additional modelling is needed BUT
e time/space scales are to small to be correctly
resolved in engineering computations!
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Comparison of NS and RANS:

o Navier-Stokes system
o describes (turbulent) fluid flow
e no additional modelling is needed BUT
e time/space scales are to small to be correctly
resolved in engineering computations!

@ Reynolds Averaged Navier-Stokes system
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Comparison of NS and RANS:

o Navier-Stokes system

o describes (turbulent) fluid flow

e no additional modelling is needed BUT

e time/space scales are to small to be correctly
resolved in engineering computations!

@ Reynolds Averaged Navier-Stokes system

o RANS desribes the mean fluid characteristics, the
fluctuating part is only modelled.
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Comparison of NS and RANS:

o Navier-Stokes system
o describes (turbulent) fluid flow
e no additional modelling is needed BUT
e time/space scales are to small to be correctly
resolved in engineering computations!

@ Reynolds Averaged Navier-Stokes system

e RANS desribes the mean fluid characteristics, the
fluctuating part is only modelled.

e Thus: time/space scales can be correctly resolved
BUT
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Comparison of NS and RANS:

o Navier-Stokes system
o describes (turbulent) fluid flow
e no additional modelling is needed BUT
e time/space scales are to small to be correctly
resolved in engineering computations!

@ Reynolds Averaged Navier-Stokes system

e RANS desribes the mean fluid characteristics, the
fluctuating part is only modelled.

e Thus: time/space scales can be correctly resolved
BUT

o the turbulent stresses requires further modelling
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Comparison of NS and RANS:

o Navier-Stokes system
o describes (turbulent) fluid flow
e no additional modelling is needed BUT
e time/space scales are to small to be correctly
resolved in engineering computations!
@ Reynolds Averaged Navier-Stokes system
e RANS desribes the mean fluid characteristics, the
fluctuating part is only modelled.
e Thus: time/space scales can be correctly resolved
BUT
o the turbulent stresses requires further modelling
o (any) turbulence model is still inexact !!!
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Structure Model

@ elasticity equation

c’)t2

@ u - structure deflection

@ special cases:
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Structure Model

@ elasticity equation

c’)t2

@ u - structure deflection

@ special cases: linear

"X

dojj(u)
0

—;
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Structure Model On rlbiy
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Interface Conditions

@ elastic structure model
e interface velocity wy

vV =wy,

o equality of fluid/elastic forces

I:I:W/
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Interface Conditions

@ elastic structure model
e interface velocity wy

vV =wy, u=w

o equality of fluid/elastic forces
@ flexibly supported airfoil model
e airfoil surface condition

V=W,

e aerodynamical fluid forces L - lift and M - torsional
moment
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Goals - revisited

Model
o fluid flow
o flexibly supported airfoil
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Goals - revisited

Model
o fluid flow
o flexibly supported airfoil

Goals

o determine the safe region (critical velocity)

e simulate post-critical regimes (nonlinear aeroelasticity)
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Goals - revisited

Model
o fluid flow
o flexibly supported airfoil

Goals

o determine the safe region (critical velocity)
e simulate post-critical regimes (nonlinear aeroelasticity)

e how can we verify our results ?
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Goals - revisited

Model
o fluid flow
o flexibly supported airfoil

Goals

o determine the safe region (critical velocity)
e simulate post-critical regimes (nonlinear aeroelasticity)

e how can we verify our results ?

e compare numerical results to experimental data
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Numerical Approximation

@ time discretization
@ space discretization

@ interface conditions
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How to approximate the time derivative?
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How to approximate the time derivative?

Arbitrary Lagrangian-Eulerian method
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How to approximate the time derivative?

Arbitrary Lagrangian-Eulerian method
@ Define ALE mapping A;

At 0 Qeef — Q4
@ Domain velocity (grid velocity)
~ 0A(Y)
wg(t,Y) = #
o ALE derivative - time derivative on ALE trajectory
DA of
—f=—+(wg-V)f

Dt ot
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How to approximate the time derivative?

Arbitrary Lagrangian-Eulerian method
@ Define ALE mapping A;

At 0 Qeef — Q4
@ Domain velocity (grid velocity)

Wi (t,Y) = aA{;gY)

o ALE derivative - time derivative on ALE trajectory

DA of
Ef—a—l—(wg-V)f

Navier-Stokes system in ALE form

DA
—vVv+(v—wg) - Vv+Vp—vAv = 0

Dt
Vv = 0

in Qt
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Galerkin formulation

FEM gives unstable results?

@ very high Reynolds numbers — convection dominated
flows

h
Relec _ MVl _
14
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Galerkin formulation

FEM gives unstable results?

@ Galerkin method is unstable — several sources of
instabilities

@ very high Reynolds numbers — convection dominated
flows

h
Relec _ MVl _
14
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Galerkin formulation

FEM gives unstable results?

@ Galerkin method is unstable — several sources of
instabilities

o Babuska-Brezzi (inf-sup) condition needs to be satisfied

gn, V - Vp
sup LV V) 5 g
VhGXh ||vh||1,2,Q

@ very high Reynolds numbers — convection dominated

flows

hl|v
Il _

Rel?c = 1
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Galerkin formulation

FEM gives unstable results?

@ Galerkin method is unstable — several sources of
instabilities

o Babugka-Brezzi (inf-sup) condition needs to be satisfied

sup (qha V- Vh)

> cllgnllo2,0
vieXy |IVhll12.0

@ very high Reynolds numbers — convection dominated

flows

hl|v
il

Relec = 1

= use Galerkin/Least-Squares stabilization
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Spatial discretization of FEM in PO
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Stabilized problem

Galerkin terms, GALS stabilization, grad-div stabilization

a(U, VI+L(U, V)+ 3 7 (v V- ¢) = F(V)+F(V).
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Other topics

@ solution of nonlinear problem (NS) - linearization
@ solution of linear problem (UMFPACK)
@ approximation of ODEs

@ interface conditions - coupling of fluid-structure models
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Numerical Results

@ Fluid Flow Approximation (fixed structure)
@ Fluid Flow over Moving structure (validation)
@ Aeroelastic Simulations
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Numerical Results

@ Fluid Flow Approximation (fixed structure)
o Fluid Flow over Moving structure (validation)
@ Aeroelastic Simulations compare to NASTRAN
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Approximation of Boundary Layer - Taylor Hood of FEN n P4
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Blasius solution - Taylor-Hood of FEM n P
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Blasius solution - Taylor-Hood of FEM n P
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Blasius solution - Taylor-Hood of FEM n P
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laminar flow (Re = 2 - 10°)
FE Dimension: 16683 x 2 4 4242 = 37608
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Blasius solution - P3/P2 elements

laminar flow (Re = 2 - 10°)

uniform p-distribution

FE Dimension: 4012 x 2 + 1809 = 9833

Nodes: 472
Elements: 866

velocity U

uirem
° Ut

line x=0.9

coprdinate y
B
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Blasius solution - P4/P3 elements of FEM in PO
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Flow over NACA 63, — 415

Fluid velocity isolines, Re =5 - 10°, AVI format
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Flow over NACA 63, — 415

Fluid velocity isolines, Re = 5 - 10° AVI format
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Flow over NACA 63, — 415

@ aerodynamical lift coefficient (time averaged values)
@ comparison with experimental data for NACA 63, — 415
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Flow over NACA 63, — 415 ST

Svacek, P

@ aerodynamical moment coefficient (time averaged values)
Outline

@ comparison with experimental data for NACA 63, — 415
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Flow over NACA 63, — 415

@ aerodynamical lift coefficient (time averaged values)
@ comparison with experimental data for NACA 63, — 415
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Prescribed vibrations of «, 30 Hz, amplitude 3,2,1 |ptiuds
degrees. Suitek, P
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Prescribed vibrations of «, 30 Hz, amplitude 1
degree.
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Pressure coeficient (up/down) at x/c = 0.15 - dependence on
time.
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Pressure Coefficient ST

Svacek, P
@ What is pressure coefficient? Qutline
Introduction
c — P — Po
P 1 ()2
ZPUOO Numerical
Approximation
@ for prescribed vibrations Numerical

a = ag - sin(27ft)

Approximation

over Moving
. . . . Structure
@ the pressure at airfoil surface is expected to behave like Acroclasi

Conclusions
cp = " + ¢ sin(2nft) + ¢, cos(2nft)

@ comparison with experimental data
Benetka, J. et al, Tech. report 3418/02, ARTI, 2002 ,
Triebstein, H., 1986., J. Aircraft 23.
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Stall Flutter Approximation

a = (10 + 10 - sin(2ft)), Re = 5000

Naudasher, E., Rockwell, D., Flow-Induced Vibrations, 1994
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Stall Flutter Approximation

a = (10 + 10 - sin(27ft)), Re = 5000

o = 19.4553 a = 12.045 a = 8.06
Naudasher, E., Rockwell, D., Flow-Induced Vibrations, 1994
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Stall Flutter

Fluid velocity isolines, Re = 5 - 10° AVI(1) format
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Aeroelastic simulations - laminar
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Aeroelastic simulations - laminar
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Aeroelastic simulations - laminar
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Aeroelastic simulations - laminar

h [mm]

0z 04 08 03 1 12
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Aeroelastic simulations - laminar
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Aeroelastic model - Turbulent Flow

o flexibly supported airfoil NACA 0012
@ RANS + Spallart-Almaras turbulence model

@ NASTRAN computation with the STRIP model critical
speed Uso = 37.7m/s

o frequencies and damping comparison
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Aeroelastic model - Turbulent Flow

o) AvAvAv E
tis] 1s]

Solution of the coupled aeroelastic model (h,«), U =5m/s
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Aeroelastic model - Turbulent Flow

oo

Solution
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coupled aeroelastic model (h,a), U =7.5m/s
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Aeroelastic model - Turbulent Flow

) AVAVA"" E
tis] 1s]

Solution of the coupled aeroelastic model (h,a), U = 10m/s
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Aeroelastic model - Turbulent Flow
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Aeroelastic model - Turbulent Flow
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Solution of the coupled aeroelastic model (h,a0), U = 15m/s
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Aeroelastic model - Turbulent Flow
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coupled aeroelastic model (h,«t), U =17.5m/s
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Aeroelastic model - Turbulent Flow
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Solution of the coupled aeroelastic model (h,a), U =20m/s
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Aeroelastic model - Turbulent Flow
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Aeroelastic model - Turbulent Flow
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Aeroelastic model - Turbulent Flow
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Aeroelastic model - Turbulent Flow
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Aeroelastic model - Turbulent Flow
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On reliability

Aeroelastic model - Turbulent Flow of FEM in Fol
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Aeroelastic model - Turbulent Flow

e U=37m/s
@ velocity isolines, AVI format
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Comparison with NASTRAN computation On reiabilty
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Comparison with NASTRAN computation
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Summary

@ NS solver numerical results were compared to
experimental /computational data.

@ NS solver and RANS solver results for aeroelastic problem
were compared each to other.

@ Performence: RANS x NS (?)

Conclusion

@ RANS and NS shows good agreement with NASTRAN
computations.

On reliability
of FEM in FSI

Svacek, P

Outline
Introduction

Mathematical
Model

Numerical

Approximation

Numerical
Results

Conclusions




Summary

@ NS solver numerical results were compared to
experimental /computational data.

@ NS solver and RANS solver results for aeroelastic problem
were compared each to other.

@ Performence: RANS x NS (?)

Conclusion

@ RANS and NS shows good agreement with NASTRAN
computations.

@ We must provide: careful mesh design, time step value, ...
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Summary

@ NS solver numerical results were compared to
experimental /computational data.

@ NS solver and RANS solver results for aeroelastic problem
were compared each to other.

@ Performence: RANS x NS (?)

Conclusion

@ RANS and NS shows good agreement with NASTRAN
computations.

@ How to increase reliability?
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On reliability

Can the grid motion “pollute” the solution? of FEM in Fo

Svakek, P.




On reliability

Can the grid motion “pollute” the solution? of FEM in Fo

Svakek, P.

AVI format Test Problem: constant fluid velocity v = (1,0)
on rectangle.




Use anallytical derivative of ALE mapping ... On relabilty
Svakek, P.
ox
W, = —
£ ot

A = - “ann 0O/ f1\ AN £ 2 a



On reliability

Use finite difference formula ... of FEM in FoI

Svacek, P

3x(n+1) = X(n) + X(nfl)
2At

Wg%

ol B W DR Y o P C . " (L e AL



On reliability

The ALE derivative approximation of FEM in FS|

Svacek, P

@ use v,_1 - defined on Q,_1

@ v, - defined on Q,




On reliability

The ALE derivative approximation of FEM in FS|

Svakek, P.

@ use v,_1 - defined on Q,_1
@ v, - defined on Q,

@ and v, - defined on 2,11

DAv 3Vni1 — 4y + U0y
Dt~ 2At




On reliability

The ALE derivative approximation of FEM in FS|

Svacek, P

@ use v,_1 - defined on Q,_1

@ v, - defined on Q,

@ where v, and V,_; lives on 9,41




On reliability

Spatial discretization of FEM in F8

Svacek, P

e Stabilization ¢y = (w - V)p + Vg

L(U, V)zZ(SK (;Tv—uAv+(w-V)v+Vp,w) )
X K

_ yn—1
Zax( e w) ,
K
Stabilized problem

@ Gelhard, T., Lube, G., Olshanskii, M. A., 2004. Stabilized
finite element schemes with BB-stable elements for

incompressible flows. Journal of Computational and
Applied Mathematics (accepted).

@ Gelhard, T., Lube, G., Olshanskii, M. A., 2004. Stabilized
finite element schemes with LBB-stable elements for
incompressible flows. Journal of Computational and
Applied Mathematics .
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