

Semantic Tolerance Modeling based on Modal Interval Analysis

Yan Wang, Ph.D. Department of Industrial Engineering University of Central Florida

Motivation

Assumptions of rigid geometry "The conventional addition theorem of variance is no longer valid for deformable sheet metal assemblies." – Takezawa (1980) material difference understand numbers "Thou Shallt Not Lie" University of Pittsburgh () UMassAmherst

assembly sequence difference

Background - Tolerance Analysis

- Variational estimation
 - 2D/3D geometric tolerance zone
- Statistical approximation
 - root-sum-square, Taylor series
 - adjustment & correction 01111000
- Kinematic formulation 101110
 - displacement vectors & matrices
- Monte Carlo simulation
 - most accurate
 - time consuming

Background - Tolerance Analysis of Flexible Assembly

Linear FEM structural model [Liu et al., Camelio et al.]

Tech

Background – Interval Analysis in Engineering

- Computer Graphics
- Robust geometry construction & evaluation
- Robot control
- Set-based modeling1010010111101
- Imprecise structural analysis
- Design optimization
- Finite-element analysis
- Soft constraint solving
- Worst-case tolerance analysis

Background - Modal Interval Analysis (MIA)

- Limitation of traditional IA
 - Linear stack-up based on worst-case scenario
 - Not interpretable
- Modal Interval Analysis

[Gardenes *et al.*, 2001; Markov, 2001; Popova, 2001; Shary, 2001 & 2002; Armengol *et al.*, 2001;]

- Semantic extension
- Tighten range estimation

Semantic Tolerance Modeling

The purpose of semantic tolerance modeling is to capture logical therefore engineering meanings and implications in mathematical representation, which is to build a bridge between mathematic theory and tolerancing practice.

🚺 Tech

Uni-Incident Interpretability

$$f(x, y) = x + y$$

Dimensional relation a = b + c

Case 1: given Part **B** and Part **C**, Part **A** needs to fit **B** and **C**. $\forall b \in B', \forall c \in C', \exists a \in A', a = b + c$

[2,5]+[1,3]=[3,8]

Case 2: given Part **B**, Part **A** and Part **C** need to fit **B**. $\forall b \in B', \exists c \in C', \exists a \in A', a = b + c$

[2,5]+[3,1]=[5,6]

Virginia III Tech

- Manufacturing & Assembly sequence
- Tolerancing intent

Multi-incident Interpretability

f(x, y) = xy/(x+y) X = [-1,3] Y = [15,7]

 $fR(\mathbf{X}) = [-1,3] \times [15,7]/([-1,3] + [15,7]) = [-0.5,1.5]$ is **NOT** interpretable

01101010100101010010111101

0101010010101001011110001

 $fR(\mathbf{XT}^*) = [-1,3] \times [15,7]/([-1,3] + [7,15]) = [-1.16667, 3.5] \qquad \forall x \in [-1,3], \exists y \in [7,15], \exists z \in [-1.16667, 3.5], z = xy/(x + y)$ $fR(\mathbf{XT}^*) = [-1,3] \times [7,15]/([-1,3] + [15,7]) = [-1.07143, 3.21429] \qquad \forall x \in [-1,3], \exists y \in [7,15], \exists z \in [-1.07143, 3.21429], z = xy/(x + y)$ $fR(\mathbf{XT}^{**}) = [-1,3] \times [15,7]/([3,-1] + [15,7]) = [-0.388889, 1.16667] \qquad \forall x \in [-1,3], \exists y \in [7,15], \exists z \in [-0.388889, 1.16667], z = xy/(x + y)$ $fR(\mathbf{XT}^{**}) = [3,-1] \times [15,7]/([-1,3] + [15,7]) = [4.5,-1.5] \qquad \forall x \in [-1,3], \forall z \in [-1.5,4.5], \exists y \in [7,15], z = xy/(x + y)$

Rigidity Interpretability

- Existential interval
 - "fluctuation" "autonomous"
- Universal interval
 - "regulating" "feedback" 01101010100101010010 01010100101010010111

011010101001010100101110

- R + S = [5.2, 5.7] + [2.6, 2.8] = [7.8, 8.5] = B
- $\forall r \in [5.2, 5.7], \forall s \in [2.6, 2.8], \exists b \in [7.8, 8.5], r+s=b$
- No flexible material is required to absorb variance.

🕲 University of Pittsburgh 🛞 UMassAmherst 🛛 🌜 UCF Carnegie Mellon

Semantic Tolerancing

Domain	Existential or Proper category	Universal or Improper category
Supply management	Pre-determined, Uncontrollable, Supplied	Un-determined, Controllable, Built
Manufacturing ¹⁰¹⁰ sequence 011010	Working dimension, Clearance 0000	Balance dimension, Stock removal
Assembly sequence 101 01101010	Place, Virtual condition size 11100 1001010100101110	Fit, Bonus tolerance
Material property 01	Rigid, Wearable 100101010	Flexible, Deformable
Process control	Open loop, Manual mode	Closed loop, Auto mode

- Uni-incident optimality 0010100100111
 - If variables **X** have the same modality, $fR(\mathbf{X})$ is optimal.
 - $f(x, y) = (x + y)^2$ $fR(\mathbf{X}) = ([1,3] + [2,5])^2 = [9,64]$
- Multi-incident optimality
 - If $fR(\mathbf{X})$ is *totally monotonous* for all of its multi-incident arguments, by transforming, for every multi-incident component, all incidences into its dual if the corresponding incidence has a mononicity sense *contrary* to the global one, $fR(\mathbf{XD})$ is optimal.

f(x, y) = xy/(x + y) $fR(\mathbf{XD}) = [1,3] \times [15,7]/([3,1] + [7,15]) = [0.9375,2.1]$

Tolerance Propagation Estimation

Inputs		Output: Position of roller (b)			
Name	Lower limit	Upper limit	Method	Lower limit	Upper limit
Height of hub (a)	27.595	27.695	DLM+RSS (CE/Tol®)	4.3585	5.2625
Radius of ring (e)	50.7875	50.8125	DLM+WC (CE/Tol®)	4.1368	5.4842
Radius of roller (r)	11.42	11.44	MIA	4.08381	5.44048
			True Range	4.08381	5.44048
b e	$\phi = \cos \theta$	$\frac{e-r}{e-r}$			
	Method	l (DLM) ^{[Cl}	nase <i>et al.</i> , 1997]	ITZation	
University of Pittsburgh	UMassAmhe	rst 🔮 UCF C	arnegie Mellon ^{Virgin}	ia Tech	1

HD Track Distance Simulation

l: arm length θ : arm angle

(track number)

r: distance to disk center

$$R_{k+1} = R_k \cos\frac{\Delta}{2} + \sqrt{4L^2 - [Dual(R_k)]^2} \sin\frac{\Delta}{2}$$

$$r_{k+1} = r_k \cos\frac{\delta}{2} + \sqrt{4l^2 - r_k^2} \sin\frac{\delta}{2}$$

 r_k : distance from track k to disk center r_{k+1} : distance from track k+1 to disk δ : arm angle increment for each track

(a) In hard disk, precise arm movement is required to seek tracks

(c) Incremental relation between track distances

Tech

Virginia

UCF Carnegie Mellon

15

Derivative Process Control Simulation

$$V(k+1) = V(k) + K_{d}[V_{0} - V(k)] - \frac{1}{S}[V(k) - V_{a}]$$

$$V(k+1) = V(k) + K_{d}[V_{0} - dual(V(k))] - \frac{1}{S}[dual(V(k)) - V_{a}]$$

 $K_d = [0.004, 0.005]$ $V_a = [2,3]$ S = [1000, 1001] $V_0 = [240, 241]$ V(0) = [3,3]

National Science Foundation Industry/University Cooperative Research Center for e-Design

Closeness of MIA Arithmetic Operations

- In traditional IA
 - There is no interval [x,y] such that [a,b]+[x,y]=0.

 $A + X = B \qquad X = B - dual(A)$ $[2,3] + X = [4,7] \qquad X = [4,7] - dual([2,3]) = [4,7] - [3,2] = [2,4]$ [2,3] + [2,4] = [4,7] $AX = B \qquad X = B / dual(A)$ $[2,3] * X = [6,12] \qquad X = [6,12] / dual([2,3]) = [6,12] / [3,2] = [3,4]$ [2,3] * [3,4] = [6,12]

$$f(R_1, R_2, \cdots, R_n) = 0$$

Tolerance Analysis

AX = B

• If A is strictly diagonally dominant

- Jacobi algorithm [Sainz et al., 2002] $B_{i} - \sum_{i \neq j} Dual(A_{ij}) \times Dual(X_{j})$ $\Im(X_{i}) \coloneqq \frac{1}{Dual(A_{ii})} \quad (0 \notin A_{ii} \text{ and } i = 1, \dots, n)$

 $\mathbf{X}^{(0)} \supseteq \mathbf{X}^{(1)} \subseteq \mathbf{X}^{(2)} \supseteq \cdots \subseteq \mathbf{X}^{(2k)} \supseteq \mathbf{X}^{(2k+1)} \subseteq \cdots$

• If A is not strictly diagonally dominant, general interval methods (such as [Neumaier, 1990; Hansen, 1992; Ning and Kearfott, 1997])

Stacked Block Assembly

(a) known parameters

(b) vector loop 1

(c) vector loop 2

(d) vector loop 3

Known size	$a = 6.62 \pm 0.2$ $b = 6.805 \pm 0.075$ $c = 10.675 \pm 0.125$
variation	$d = 4.06 \pm 0.15 e = 24.22 \pm 0.35 f = 3.905 \pm 0.125$
Unknown kinematic 101 variation	$u_1 = 18.7181 \pm ? \qquad u_2 = 8.6705 \pm ? \qquad u_3 = 10.0477 \pm ? \qquad u_4 = 2.1894 \pm ? \qquad u_5 = 27.2965 \pm ? \\ \phi_1 = 74.7243 \pm ? \qquad \phi_2 = -74.7243 \pm ? \qquad \phi_3 = -105.2761 \pm ? \qquad \phi_4 = -105.2761 \pm ? \\ \phi_4 = -105.2761 \pm ? \qquad \phi_5 = 27.2965 \pm ? \\ \phi_5 = -105.2761 \pm ? \qquad \phi_5 = -105.2761 \pm ? \\ \phi_5 = -105.2761$
Loop 1 0 1 0	$\begin{cases} F_1 = u_2 \cos(90 + \phi_2) + a \cos(180 + \phi_2) + a \cos(180 + \phi_1 + \phi_2) = 0\\ F_2 = u_3 + u_2 \sin(90 + \phi_2) + a \sin(180 + \phi_2) + a \sin(180 + \phi_1 + \phi_2) - u_1 = 0\\ F_3 = 90 + \phi_2 + 90 + \phi_1 + 90 + 90 - 360 = 0 \end{cases}$
Loop 2	$\begin{cases} F_4 = b\cos(\phi_2) + u_4\cos(\phi_2 + 90) + d\cos(\phi_2 + 90 + \phi_3) - f = 0\\ F_5 = u_3 + b\sin(\phi_2) + u_4\sin(\phi_2 + 90) + d\sin(\phi_2 + 90 + \phi_3) = 0\\ F_6 = 90 + \phi_2 - 90 + 90 + \phi_3 - 90 + 180 = 0 \end{cases}$
Loop 3	$\begin{cases} F_7 = b\cos(\phi_2) + u_5\cos(\phi_2 + 90) + c\cos(\phi_2 + 90 + \phi_4) - e - f = 0\\ F_8 = u_3 + b\sin(\phi_2) + u_5\sin(\phi_2 + 90) + c\sin(\phi_2 + 90 + \phi_4) = 0\\ F_9 = 90 + \phi_2 - 90 + 90 + \phi_4 - 90 + 180 = 0 \end{cases}$
C	University of Pittsburgh () UMassAmherst () UCF Carnegie Mellon Urginia

Stacked Block Assembly - Results

$$\left[\frac{\partial F_i}{\partial s_j}\right]_{i \times j} \Delta \mathbf{s} + \left[\frac{\partial F_i}{\partial k_i}\right]_{i \times i} \Delta \mathbf{k} = 0$$

• Results compared with DLM [Chase *et al.*, 1997]

MIA Linearization	DLM Worst-Case	DLM Statistical
$\Delta u_1 = [0.5420, -0.5420]$	$\Delta u_1 = [-0.5421, \ 0.5421]$	$\Delta u_1 = [-0.2998, \ 0.2998]$
$\Delta u_2 = [0.4672, -0.4672]$	$\Delta u_2 = [-0.3899, 0.3899]$	$\Delta u_2 = [-0.2725, \ 0.2725]$
$\Delta u_3 = [0.3137, -0.3137]$	$\Delta u_3 = [-0.2942, 0.2942]$	$\Delta u_3 = [-0.1844, \ 0.1844]$
$\Delta u_4 = [0.2729, -0.2729]$	$\Delta u_4 = [-0.2384, \ 0.2384]$	$\Delta u_4 = [-0.1411, \ 0.1411]$
$\Delta u_5 = [0.5209, -0.5209]$	$\Delta u_5 = [-0.5174, \ 0.5174]$	$\Delta u_5 = [-0.3836, \ 0.3836]$
$\Delta \phi_{\rm l} = [0.0228, -0.0228]$	$\Delta \phi_1 = [-0.8156, 0.8156]$	$\Delta \phi_{\rm l} = [-0.4784, 0.4784]$
$\Delta \phi_2 = [0.0228, -0.0228]$	$\Delta \phi_2 = [-0.8156, 0.8156]$	$\Delta \phi_2 = [-0.4784, 0.4784]$
$\Delta \phi_3 = [0.0228, -0.0228]$	$\Delta \phi_3 = [-0.8156, 0.8156]$	$\Delta \phi_3 = [-0.4784, 0.4784]$
$\Delta \phi_4 = [0.0228, -0.0228]$	$\Delta \phi_4 = [-0.8156, 0.8156]$	$\Delta \phi_4 = [-0.4784, 0.4784]$

National Science Foundation Industry/University Cooperative Research Center for e-Design

_			
	Known	$a = 6.62 \pm 0.2$ $b = 6.805 \pm 0.075$ $c = 10.675 \pm 0.125$	
_	size variation	$d = 4.06 \pm 0.15 e = 24.22 \pm 0.35 f = 3.905 \pm 0.125$	
If variations of \square	Known	$\phi_1 = 74.7243 \pm 0.4281 \qquad \phi_2 = -74.7243 \pm 0.4281$	
anglas ara known variation		$\phi_3 = -105.2761 \pm 0.4281 \phi_4 = -105.2761 \pm 0.4281$	
	Unknown	$u_1 = 18.7181 \pm ?$ $u_2 = 8.6705 \pm ?$ $u_3 = 10.0477 \pm ?$ $u_4 = 2.1894 \pm ?$ $u_5 = 27.2965 \pm ?$	
	kinematic		
-	variation Linear equations		
	Linear equations	$\left[-u_{1}+u_{2}\sin(90+\phi_{2})+u_{3}+a\sin(180+\phi_{2})=0\right]$	
		$u_2 \cos(90 + \phi_2) + a \cos(180 + \phi_2) - a = 0$	
		$\begin{cases} u_3 + u_4 \sin(\phi_2 + 90) + b \sin(\phi_2) - d = 0 \\ (u_1 - 20) - b \sin(\phi_2) - d = 0 \end{cases}$	
		$u_4 \cos(\phi_2 + 90) + b \cos(\phi_2) - f = 0$	
		$\left[u_5 \cos(\phi_2 + 90) + b \cos(\phi_2) - e - f = 0 \right]$	
		$\begin{bmatrix} -1 & [0.2562, 0.2707] & 1 & 0 & 0 \\ 0 & [-6.1804, -6.5922] & 0 & 0 & 0 \end{bmatrix}$	
		$\begin{bmatrix} 0 & [0.9626, 0.9667] & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	
		$\begin{bmatrix} 0 & 0 & 1 & [0.2562, 0.2/0/] & 0 & U_3 &= [10.8602, 10.3888] \\ 0 & 0 & 0 & [0.9626, 0.9667] & 0 & U_4 &= [2.20541, 0170] \end{bmatrix}$	
		$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0.9626, 0.96671 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2.5034, 1.9179 \\ 0 & 0 & 0 \end{bmatrix}$	
010107	Result of Iacobi	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	
	algorithm	$U_1 = \begin{bmatrix} 0 & 0.024 \\ 0 & 0.024 \end{bmatrix}$	
		U_2 [9.0020,8.34302] U_1 = [10.2466.9.85174]	
		$U_1 = \begin{bmatrix} 10.2400, 0.05174 \end{bmatrix}$	
		U_4 [2.59497,1.98597]	
	Internetation of	U(x, [18, 7024, 18, 7225])U(x, [6, 42, 6, 92])U(4, [6, 72, 6, 92])U(4, [10, 55, 10, 9])U(4, [2, 01, 4, 21]))	
	result	$U(a_{1}, 16.7024, 16.7555) U(a_{1}, 6.42, 0.82) U(b_{1}, 6.73, 0.86) U(c_{1}, 10.55, 10.8) U(a_{1}, 5.51, 4.21) U(a_{1}, 12.3, 10.8) U(a_{1}, 5.51, 4.21) U(a_{1}, 12.3, 10.8) $	
		$U(\phi_{1}[-105,7042,-104,8480])U(\phi_{1}[-105,7042,-104,8480])$	
		$F(\mu_2 [8 34302 9 0026])F(\mu_2 [9 85174 10 2466])F(\mu_4 [1 98397 2 39497])F(\mu_5 [26 6762 27 9196])F(\mu_5 [26 6762 27 916])F(\mu_5 [26 6762 27 9162])F(\mu_5 [26 7762 27 9162])F(\mu_5 [26 7762 27 9162])F(\mu_5 [26 7762 27 9162$	
		$\int (-u_1 + u_2 \sin(90 + d_2) + u_2 + a \sin(180 + d_2) = 0$	
		$u_1 + u_2 \sin((50 + \phi_2)) + u_3 + u \sin((50 + \phi_2)) = 0$ $u_2 \cos(90 + \phi_2) + a \cos(180 + \phi_2) - a = 0$	
		$\int_{a_2}^{a_2} \frac{\cos(\phi_1 + \phi_2) + \cos(\phi_1 + \phi_2)}{\cos(\phi_1 + \phi_2)} dt = 0$	
		$ \begin{aligned} & \ u_{4} \cos(\phi_{2} + 90) + b \cos(\phi_{2}) - f = 0 \end{aligned} $	
		1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
		$ u_5 \cos(\phi_2 + 90) + b \cos(\phi_2) - e - f = 0$	

Concluding Remark

- A semantic tolerance modeling scheme based on modal interval is proposed
- To capture engineering and logic relation between specifications
 - physical property difference between rigid and flexible materials
 - 5 -- sequence of specification, measurement, and assembly
- To support better design and manufacturing specifications

🚺 Tech

Yet to be Achieved

Instead of focusing only on mathematic and numerical convenience, a good mathematic model of tolerance should convey the full semantics of size and geometric tolerances and support analysis and synthesis with a simple yet comprehensive structure.