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Abstract. In this paper options for a realistic evaluation of engineering data characterized by inconsistency
regarding uncertainty and imprecision are discussed. The proposed methods are linked to the generalized
uncertainty model fuzzy randomness. This enables a quantification of uncertainty and imprecision simulta-
neously with a smooth transition between fuzziness and randomness. Statistical information is exploited with
traditional statistical methods, whereas imprecision is dealt with using fuzzy methods. Statistical uncertainty
and imprecision are considered within the same model but notmixed with one another. In this manner, both
components are reflected separately in the computational results from a subsequent structural or safety
analysis. Quantification techniques are elucidated for three typical engineering cases of inconsistent infor-
mation; (i) small sample size and expert knowledge, (ii) imprecise sample elements, and (iii) inconsistent
environmental conditions and expert knowledge. The usefulness of the proposed quantification methods for
a subsequent structural analysis and safety assessment is demonstrated by way of engineering examples.

Keywords: Inconsistent data; Imprecise data; Fuzzy methods; Fuzzy probabilities; Uncertain structural
analysis; Safety assessment.

1. Introduction

The usefulness of the results from an engineering analysis depends significantly on the realistic modeling
of the input parameters. Shortcomings, in this regard, may lead to biased computational results, wrong
decisions, and serious consequences [18]. This applies, inparticular, if the data are characterized by un-
certainty and imprecision. A variety of mathematical models have been formulated to take account of the
available information as realistically as possible [3, 6, 7, 10, 13, 14, 15, 17, 23, 24, 28, 29]. The usefulness
and capabilities of these models have already been demonstrated in the solution of practical problems, for
example, in civil/mechanical engineering [1, 4, 5, 8, 9, 11,12, 14, 16, 19, 21, 22, 25].

In engineering practice the available information frequently appears as partly stochastic and partly
imprecise – in a mixed stochastic/non-stochastic form. In those cases the model fuzzy randomness [19]
provides a proper basis to utilize traditional statisticalmethods together with quantification methods from
fuzzy set theory. In this manner, a broad spectrum of typicalengineering cases can be covered; and the
introduction of unwarranted information is avoided. This is demonstrated in the sequel with proposals of
quantification techniques for three typical engineering situations. First, the quantification of data from a
small sample together with expert knowledge is considered.This is associated with the problem of weak
statistical information from estimations and tests. A solution is obtained by utilizing the statistical impre-
cision in the specification of fuzzy parameters and fuzzy distribution types of a fuzzy random quantity.
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Second, samples with imprecise elements are evaluated, which requires the application of statistics with
fuzzy quantities. For this purpose, fuzzy arithmetic is implemented in statistical estimations and tests. Third,
inconsistent environmental conditions are dealt with together with expert knowledge. This leads to critical
conditions for statistical estimations and tests. For solution, a separation of fuzziness and randomness is
applied in the quantification procedure by constructing groups of consistent data.

In all three cases fuzzy random quantities are obtained which reflect the stochastic uncertainty and the
imprecision of the underlying information simultaneouslyand separately. The fuzzy probability distributions
are described as a bunch of distributions that cover all possible stochastic models within the range of impreci-
sion. Bunch parameters are fuzzy quantities p̃t, which include distribution parameters as well as parameters
for the specification of the distribution type. Then, each crisp point from the p̃t specifies one real-valued
random quantity associated with a certain membership degree according to fuzzy set theory. For a detailed
description see [19]. This enables the utilization and combination of sophisticated and numerically efficient
methods from stochastic mechanics [26, 27] and from interval [22] and fuzzy structural analysis [20] in
subsequent engineering computations. The respective algorithms of fuzzy stochastic structural analysis and
safety assessment are discussed in [19].

2. Small Sample size and Expert Knowledge

Assume that a concrete sample of small size is available. Thesample elements are random realizations.
The available information on the sample is insufficient, however, to describe a real-valued random variable
free of doubt. The type of the distribution function and the parameters cannot be determined uniquely;
additional uncertainty exists. Expert knowledge and experience are available from similar cases in the
past. This uncertainty is rather non-stochastic and may be accounted for with the aid of fuzzy set theory
[2, 30]. Statistical methods may be used as a basis for quantification, which are supplemented by fuzzy
methods to finalize the modeling. Depending on the availableinformation it is possible to formulate an
imprecise parametric or nonparametric estimation problem. On this basis, the type and the parameters of
the sought distribution are determined in as imprecise quantities, namely, as fuzzy quantities. These fuzzy
quantities are, subsequently, lumped together as fuzzy parameters p̃t(X̃), in which X̃ represents a fuzzy
random quantity – for convenience, limited to the one-dimensional case. The p̃t(X̃) may be determined from
imprecise empirical statistical information extracted from the sample together with expert knowledge.

If, for example, the type of distribution is known with sufficient certainty, this implies an imprecise,
parametric estimation problem. The sample functions applied in statistical methods yield more or less ac-
ceptable estimation values for the parameters of a distribution. In order to take account of the imprecision of
the estimator, confidence intervals may be determined for the estimator in question. The probabilistic propo-
sitions for confidence intervals applied in statistical methods may then serve as additional information for
the specification of the membership functionsµ(pt(X)) of the p̃t(X̃) in the present case. Expert knowledge
is brought in with regard to

− the specification of the distribution type,

− the choice of the estimator,

− the construction of confidence intervals (type and levels),
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− the assignment of membership degrees to the selected confidence levels, and

− the subsequent modification of the initial draft of the membership functionsµ(pt(X)).

Table I. Sample of the cylinder compressive strength fc of a concrete

Number i of realization Compressive strength
xi = fci[N/mm2]

Number i of realization Compressive strength
xi = fci[N/mm2]

1 28.3 11 26.8

2 31.5 12 35.3

3 35.2 13 26.3

4 29.8 14 23.1

5 27.6 15 20.2

6 30.7 16 29.2

7 25.2 17 25.7

8 34.6 18 34.2

9 28.9 19 24.8

10 19.2 20 22.8

Table II. Statistical estimation and assignment of membership values for m̃x and
σ̃x

Estimation Confidence level mX σX α-level

Point - – 27.97 4.75 1.00

Interval 0.50 [27.24, 28.70] [4.35, 5.43] 0.75

0.75 [26.71, 29.23] [4.05, 5.92] 0.50

0.90 [26.13, 29.81] [3.77, 6.52] 0.25

0.99 [24.93, 31.01] [3.34, 7.92] 0.00

Suppose that a sample of size 20 is available for the cylindercompressive strength fc of a concrete
according to Table 2. A normal distribution is assumed basedon expert knowledge, and the parameters mx

andσx are determined as fuzzy values m̃x andσ̃x. For this purpose interval estimations are applied. From
the 20 measured values of the compressive strength the central confidence intervals for the confidence levels
0.50, 0.75, 0.90, and 0.99 are determined. Dependencies between the parameters are not taken into account.
Additionally, common point estimations are used to specifycrisp values for the expected value (as the mean
value of the sample) and the standard deviation (based on thesample variance). The results (Table 2) are then
taken as a basis for the specification of the parameters as fuzzy quantities. Membership values are assigned
to the estimation results by subjective assessment. That is, the confidence intervals are interpreted as being
α-level sets of the fuzzy values m̃x and σ̃x; see Table 2. The mean values of the fuzzy numbers are taken
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from the point estimations. Eventually, the fuzzy quantities m̃x andσ̃x are obtained according to Fig.??. As
dependencies between the parameters in the interval estimations are neglected, interaction between m̃x and
σ̃x is not obtained.
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Figure 1. Fuzzy expected value m̃x and fuzzy standard deviatioñσx

3. Imprecise Sample Elements

Imprecision of sample elements may occur, for example, due to imprecise readings of (analog) measuring
devices or as a reflection of imprecise individual care of personnel in tests. This imprecision can be expressed
in form of fuzzy numbers for the measured values representing the sample elements. It is then possible to
construct a fuzzy random quantitỹX directly from the imprecise data material. The corresponding fuzzy
parameters p̃t(X̃) for the description of the fuzzy random quantityX̃ can be estimated based on statistical
estimations and tests extended to deal with fuzzy arguments. This requires a proper application of fuzzy
arithmetic in these algorithms. For a numerical evaluation, the fuzzy analysis based onα-level optimization
according to [20] may be utilized. This framework enables animplementation of algorithms of mathematical
statistics as the mapping model of a fuzzy analysis. Each fuzzy sample element is then treated as a fuzzy
input quantity of the mapping model. The fuzzy result represents the sought parameter p̃t(X̃).

As an example, the sample elements from Table 2 are assumed topossess an imprecision of±2N/mm2

due to imprecise readings of the measuring device. This provides information for a modeling of the sample
elements as fuzzy triangular numbers denoted by x̃i =< xi µ=0l,xi µ=1,xi µ=0r >. The values from Table 2
are assessed withµ = 1, from where the linear branches of the membership functiondecrease down toµ = 0
at the points of the maximum deviation±2N/mm2; see Table 3.

In order to compute the empirical parameters, common statistics (sample functions) are applied with
the fuzzy values x̃i as arguments. The fuzzy sample mean is then obtained with

x̃ =
1
n

n

∑
i=1

x̃i , (1)

in which n is the sample size. The linearity of this mapping model leads to a fuzzy triangular number for
the fuzzy sample mean, which is completely specified by the membership levelsµ = 1 andµ = 0 as shown
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in Fig. 2, x̃ =< 25.97,27.97,29.97 > N/mm2. In contrast to this, the mapping model for computing the
standard deviation of the sample is nonlinear and even non-monotonic,

s̃x =

√

√

√

√

√

1
n−1





n

∑
i=1

x̃2
i −

1
n

(

n

∑
i=1

x̃i

)2


. (2)

This requires a more sophisticated evaluation technique. In the example,α-level optimization [20] is applied

Table III. Fuzzy sample elements of the cylinder compressive strength fc of a concrete

Number i of
fuzzy realization

Fuzzy compressive strength
x̃i = f̃ci[N/mm2]

Number i of
fuzzy realization

Fuzzy compressive strength
x̃i = f̃ci[N/mm2]

1 < 26.3,28.3,30.3 > 11 < 24.8,26.8,28.8 >

2 < 29.5,31.5,33.5 > 12 < 33.3,35.3,37.3 >

3 < 33.2,35.2,37.2 > 13 < 24.3,26.3,28.3 >

4 < 27.8,29.8,31.8 > 14 < 21.1,23.1,25.1 >

5 < 25.6,27.6,29.6 > 15 < 18.2,20.2,22.2 >

6 < 28.7,30.7,32.7 > 16 < 27.2,29.2,31.2 >

7 < 23.2,25.2,27.2 > 17 < 23.7,25.7,27.7 >

8 < 32.6,34.6,36.6 > 18 < 32.2,34.2,36.2 >

9 < 26.9,28.9,30.9 > 19 < 22.8,24.8,26.8 >

10 < 17.2,19.2,21.2 > 20 < 20.8,22.8,24.8 >
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Figure 2. Fuzzy meañx and fuzzy standard deviation s̃x of the sample from Table 3

to evaluate Eq. (2). The membership functionµ(sx) is obtained with nonlinear branches; see Fig. 2.
The fuzzy sample elements x̃i enter Eq. (1) and Eq.(2), simultaneously. Thus, a relationship exists be-

tween the fuzzy sample mean and the fuzzy standard deviationof the sample. This is referred to as interaction
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between the fuzzy quantities̃x and s̃x. This interaction is shown in Fig. 3 for the membership levelα = 0.
Certain combinations of crisp values from̃x and s̃x cannot appear. An analytical or numerical determination
of this interaction is, however, virtually excluded due to the tremendous computational effort even for a small
sample. In the example a numerical approximation solution was determined with the aid of systematic and
random-oriented simulations. The effect of the number of fuzzy realizations on the interaction relationship
becomes apparent when only the first seven sample elements from Table 3 are considered; see Fig. 4. Not
only the position but also the shape of the fuzzy set{x̃, s̃x} shows a deviation from the illustration in Fig. 3.
As a consequence of the same support widths of the fuzzy realizations x̃i the minimum and maximum sample
means are, in each case, coupled with the same standard deviation of the sample. This property is lost in the
general case. As demonstrated forx̃ and s̃x, interaction generally exists between all empirical parameters
including the distribution type. The fact that the fuzzy realizations themselves may also be interactive
may even lead to non-connected sets for the empirical parameters. Due to the numerical complications
in the determination of the interaction, an approximation may be pursued. Or, the interaction may even
be neglected; see Fig. 3. Although this means that non-justified parameter combinations are included and
thus enter subsequent computations, the ”exact” solution is completely contained in this approximation. The
negligence of interaction leads to an envelope curve of those parameter combinations, which can actually
appear.

sx [N/mm2]

x [N/mm2]
_

6.54

4.75

3.22

25.97 27.97 28.04 29.97

With interaction
Without interaction

Figure 3. Numerical approximation of the interaction between the fuzzy sample meañx and the fuzzy standard deviation s̃x for the
20 fuzzy realizations from Table 3

The fuzzy parameters computed from the sample are the basis for the specification of the fuzzy prob-
ability distribution function needed for further processing of fuzzy random quantities in engineering com-
putations. In the example, a normal distribution is assumedfor the fuzzy random quantity. The functional
parameters are then estimated by the fuzzy sample meanx̃ as fuzzy expected value m̃x, and by the fuzzy
standard deviation s̃x of the sample as fuzzy standard deviationσ̃x of the fuzzy random quantity. The
obtained fuzzy probability density functioñf(x) and the fuzzy probability distribution functioñF(x) are
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Figure 4. Numerical approximation of the interaction betweenx̃ and s̃x for the first seven fuzzy realizations from Table 3

shown in Figs. 5 and 6, respectively. The illustrations showthe functions with and without the consideration
of the interaction between m̃x andσ̃x. Negligence of the interaction between m̃x andσ̃x leads to envelope
curves enclosing the exact fuzzy functionsf̃(x) andF̃(x). The interaction between m̃x andσ̃x excludes the
simultaneous occurrence of extrema of the expected value and standard deviation; see Fig. 3. This influences,
in particular, the tails of the fuzzy functionsf̃(x) andF̃(x). The probability mass in the tails is higher if the
interaction is neglected. This leads to an overestimation of failure probabilities in a subsequent structural
safety assessment. This overestimation is, however, not tremendous and leads to a slightly conservative
safety assessment, which is rather welcome.
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Figure 5. Fuzzy probability density functioñf(x) with and without consideration of the interaction between ˜mx andσ̃x
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Figure 6. Fuzzy probability distribution functioñF(x) with and without consideration of the interaction between ˜mx andσ̃x

4. Inconsistent Environmental Conditions and Expert Knowledge

This situation appears if the sample has been generated under varying environmental conditions. It then
defies a traditional statistical evaluation and needs special treatment. The varying environmental conditions
may include, for example, involvement of different manufacturers, changes in the type of aggregates /
additives from different suppliers, varying hardening conditions (temperature, humidity), and variations in
the motivation of the personnel. In those cases, expert knowledge is usually available to separate fuzziness
and randomness present in the statistical data material. This separation can be realized by characterizing
the environmental conditions with attributes such as a specific supplier for aggregates or a certain team of
employees in the production process. Observed realizations with the same attributes are lumped together
in a singlegroup. These groups are subsets of the population. Each group of realizations with the same
attributes is treated as a separate sample. These samples can then be evaluated using statistical methods as
they comply with the preconditions in form of constant environmental conditions. The statistical evaluation
yields empirical parameter values including a distribution type for each group. For all groups the setS of
statistical propositions is obtained. Each element ofSis assigned to a subset of the population. Hence, the set
Sdescribes the set of real random quantities contained in theobserved realizations. The differences between
the elements of the setS represent imprecision, which may be modeled as fuzziness ofthe population. The
elements contained inSand, thus, the associated real random quantities may be assessed with membership
values. This results in the fuzzy setS̃. The real random quantities together with their membershipvalues
form a fuzzy random quantity, which is described byS̃.

The fuzzy set̃Scan be constructed in parametric or in a non-parametric manner. The parametric con-
struction ofS̃ involves a distribution assumption from expert knowledge.Then, the membership functions of
the empirical distribution parameters may be constructed using histograms. In the non-parametric construc-
tion of S̃empirical distribution functions are used, and a direct fuzzification of the probability distribution
function curve is pursued.
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Parametric Quantification It is presumed that the groups of sample elements with same attributes and
their corresponding empirical parameters are known. The parameter values constitute a sample for which
a histogram is constructed. The parameter value is plotted along the abscissa, which is subdivided into
subsets. In the normal manner the number of sample elements,which is the number of empirical parameter
values, per subset is plotted on the ordinate. Then, the histogram can be used as a basis for constructing the
membership function of the respective fuzzy parameter.

As an example, let specimens of a concrete be available from different concrete plants. Tests are carried
out to measure the cylinder compressive strength fc. The specimens are labeled, and the concrete plant and
work team are registered. Specimens with the same identification (same attributes) are each lumped together
in a group. In the example, twelve groups with a different number of specimens (sample size) are identified.
By this means, randomness and fuzziness are separated. The statistical evaluation of the measured cylinder
compressive strength fc yields empirical parameters for each group. The sample meanx and the standard
deviation sx of the samples are computed; see Table 4.

Table IV. Sample meanx and standard deviation sx of the cylinder compressive strength fc of the concrete for twelve groups
of specimens (twelve samples)

Label of group Sample size Sample meanx[N/mm2] Standard deviation sx[N/mm2]

1 54 27.3 5.3

2 48 26.6 4.9

3 42 29.2 4.2

4 38 31.4 3.8

5 44 28.3 5.6

6 48 29.4 3.2

7 55 26.4 5.0

8 47 30.1 4.6

9 64 28.3 5.9

10 53 27.9 3.8

11 75 29.6 6.3

12 52 27.8 4.7

The values listed in Table 4 are used to construct histogramsfor the sample meanx and the standard
deviation sx of the samples; see Fig. 7. The chosen subset widths are 1.0N/mm2 for x and 0.75N/mm2

for sx. Each of the empirical parameters is modeled using fuzzy triangular numbers. The method of least
squares is applied to determine the linear membership functions. The derived fuzzification suggestions are
shown in Fig. 7.

Due to the fact that the valuesx and sx for each group originate from the same sample, interaction exists
between the fuzzy quantities̃x and s̃x. Analog to the analysis of stochastic dependencies betweenrandom
variables, the interaction relationship may be determinedby evaluating the value pairs(x,sx) obtained.
These pairs are plotted in a coordinate system, and the interaction relationship is estimated for different
membership levels. This procedure is illustrated in Fig. 8 for the membership levelα = 0. Assuming a
normal distribution, the empirical fuzzy parametersx̃ and s̃x are adopted as the fuzzy distribution parameters
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m̃x andσ̃x, respectively, of the fuzzy probability distribution. If the assumed distribution type is different for
the individual groups, this may be accounted for with a compound distribution and fuzzy parameter for the
mixing ratio.
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Figure 7. Histograms and fuzzification of the sample meanx and the standard deviation sx assigned to the groups (samples) of the
cylinder compressive strength fc

Non-parametric Quantification The starting point is again the separation of randomness andfuzziness by
constructing groups of observed realizations. Then, empirical distribution functions are constructed for the
individual groups. The set of empirical distribution functions for all groups is then taken as the basis to
determine fuzzy quantities for the functional values of an overall empirical distribution function.

The example from the parametric quantification is reused fordemonstration. For each group, a his-
togram is constructed from the realizations to determine anempirical distribution function. The subset
widths and the subset positioning on the abscissa must be thesame for all histograms for all groups.
The subsets are defined as half-closed intervals[xl ,xr) on the real number line. The number of observed
realizations in the subsets is generally different for the individual groups. The histograms for the first two
groups from Table 4 are shown in Fig. 9.
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Figure 8. Estimation of the interaction betweenx̃ and s̃x

x = fc [N/mm²]
0

0

5

10

12 20 30 42

Number of sample elements

x = fc [N/mm²]
0

0

5

10

16 20 30 38

Number of sample elements

Realizations of group 1 Realizations of group 2

Figure 9. Histograms for the realizations of groups 1 and 2 from Table 4

For each group the empirical probability distribution function

Fe
i (x) =

ni,k(x)

ni
(3)

is developed from the corresponding histogram. In the above, i denotes the group number, ni is the number
of all elements (realizations) in group i, and ni,k(x) is the number of those elements k (in group i), whose
values xk are smaller than x. The values x of the observed realizationsare determined by the left-hand subset
boundaries (that is, by the xl of the half-closed intervals[xl ,xr)) in the histograms; these mark discrete
positions on the abscissa. The evaluation of all groups yields a bunch of discrete empirical distribution
functions. The functional values Fe

i (x = fc) are listed in Table 4.
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Table V. Functional values of the empirical distribution functions Fei (x = fc) for all groups i of specimens

Group i

x = fc

[N/mm2]

1 2 3 4 5 6 7 8 9 10 11 12

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

14 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000

16 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000

18 0.019 0.021 0.000 0.000 0.000 0.000 0.036 0.000 0.016 0.000 0.013 0.000

20 0.074 0.083 0.000 0.000 0.023 0.000 0.091 0.000 0.063 0.000 0.067 0.000

22 0.167 0.250 0.000 0.000 0.114 0.000 0.273 0.043 0.172 0.094 0.120 0.096

24 0.296 0.333 0.071 0.026 0.295 0.042 0.327 0.064 0.266 0.170 0.227 0.231

26 0.407 0.479 0.262 0.105 0.409 0.167 0.436 0.191 0.328 0.283 0.320 0.346

28 0.556 0.604 0.476 0.184 0.523 0.354 0.655 0.340 0.422 0.509 0.400 0.577

30 0.759 0.708 0.595 0.395 0.705 0.563 0.764 0.532 0.625 0.717 0.507 0.731

32 0.815 0.813 0.786 0.632 0.750 0.833 0.855 0.702 0.766 0.887 0.653 0.788

34 0.907 0.979 0.810 0.711 0.795 0.917 0.927 0.766 0.844 0.962 0.733 0.904

36 0.926 1.000 0.905 0.816 0.909 0.979 0.964 0.830 0.922 0.981 0.827 0.923

38 0.944 1.000 1.000 1.000 0.932 1.000 1.000 0.979 0.969 0.981 0.933 0.962

40 0.981 1.000 1.000 1.000 0.977 1.000 1.000 0.979 0.969 1.000 0.947 1.000

42 1.000 1.000 1.000 1.000 0.977 1.000 1.000 1.000 0.969 1.000 0.973 1.000

44 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984 1.000 0.987 1.000

46 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.987 1.000

48 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

For each discrete value x from Table 4 the functional values Fe(x) are taken as a basis to model fuzzy
functional values̃Fe(x) to cover all groups at once. At each (discrete) position x a histogram is constructed
using the functional values of the empirical distribution functions. The abscissa is subdivided into suitable
subsets in the interval[0,1); and the number of functional values assigned to each subsetis plotted on the
ordinate. Than, fuzzy numbers are generated from the histograms by simple approximation schemes such
as least squares algorithm. In this generation process the properties of the probability measure must be
observed. In the present case fuzzy triangular numbers and fuzzy numbers with a polygonal membership
function are chosen. The fuzzification process is shown in Fig. 10 for three selected values x= fc. The
fuzzification results for all x= fc are listed in Table 4. The interval bounds of the support as well as the
mean value are indicated for each fuzzy probabilityF̃e(x). The obtained fuzzy probabilities̃Fe(x) for discrete
x = fc are functional values of the sought fuzzy probability distribution functionF̃(x).

This non-parametric representation can finally be replacedby a parametric fuzzy probabilistic model in
the form of an envelope. For this purpose, different membership levelsα are considered for the determination
of fuzzy parameters of the fuzzy probability distribution and for the description of the distribution type. The
aim is to determine bounding distribution functions of the fuzzy random variable for each membership level.
The entirety of all included probabilistic models then reflects the sought fuzzy probability distribution.
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Figure 10. Histograms and membership functions of the functional values of the empirical distribution function Fe(x) for
x = fc = 20N/mm2, x = fc = 28N/mm2, and x= fc = 36N/mm2

In this example a compound distribution comprised of a normal distribution (ND) and a logarithmic
normal distribution (LND) with a constant ratio of components is adopted. It is assumed that the expected
value and standard deviation are the same for both distributions; the minimum value of the component
logarithmic normal distribution is specified to be x0 = 5N/mm2. The expected value, standard deviation,
and ratio of components are chosen to be free fuzzy parameters of the compound distribution

F̃(x) = ã· F̃NV(x)+ (1− ã) · F̃LNV(x) . (4)

The subsequent evaluation is restricted to the membership levelsα = 0 andα = 1. The free parameters
required for approximating the distribution functions of the originals are determined by the method of least
squares. The distribution function F1(x) for the membership levelα = 1 is obtained from the values of
Fe

1(x). The boundaries of the membership levelα = 0 are obtained in each case from all values of Fe
0l(x)

and Fe
0r(x), respectively. The following constraints are taken into account:

− All Fe
0l(x) > 0 lie above the approximation function F0l(x)

− All Fe
0r(x) < 1 lie below the approximation function F0r(x)
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Table VI. Support bounds Fe0l(x) and Fe0r(x), and mean values Fe
1(x)

of the fuzzy probabilitỹFe(x) for all x = fc[N/mm2] from Table 4

x Fe
0l(x) Fe

l (x) Fe
0r(x) x Fe

0l(x) Fe
l (x) Fe

0r(x)

12 0.000 0.000 0.000 32 0.603 0.799 0.975

14 0.000 0.000 0.018 34 0.652 0.925 1.000

16 0.000 0.000 0.018 36 0.742 0.958 1.000

18 0.000 0.000 0.035 38 0.913 1.000 1.000

20 0.000 0.000 0.113 40 0.949 1.000 1.000

22 0.000 0.000 0.369 42 0.966 1.000 1.000

24 0.000 0.283 0.417 44 0.983 1.000 1.000

26 0.025 0.358 0.492 46 0.984 1.000 1.000

28 0.128 0.557 0.750 48 1.000 1.000 1.000

30 0.331 0.763 0.825 – – – –

The following values are obtained for the free distributionparameters and the functional parametera of the
implemented distribution function:

− Approximation of Fe1(x): mx = 27.66N/mm2, σx = 4.34N/mm2, a = 0.00

− Approximation of Fe0l(x): mx = 34.29N/mm2 , σx = 4.81N/mm2, a = 0.00

− Approximation of Fe0r(x): mx = 23.30N/mm2, σx = 4.44N/mm2, a = 1.00

1.00

0.50

0.00

0 40 60

F(x)

x [N/mm2]23.30 27.66 34.29

F0 l(x)

F0 r(x)

F1(x)

Fe
0 l(x), Fe

1(x), Fe
0 r(x)

Figure 11. Functional values of the empirical probability distribution functions Fe1(x), Fe
0l(x), and Fe0r(x), as well as the

approximation functions F1(x), F0l(x), and F0r(x)
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The computed distribution functions F1(x), F0l(x), and F0r(x) are shown in Fig. 11 together with the adopted
functional values of the empirical distribution function from Table 4.

The fuzzy distribution parameters and the fuzzy functionalparameter ã of the sought fuzzy probability
distribution according to Eq. (4) may be expressed as fuzzy triangular numbers (confined toα = 0 and
α = 1):

− m̃x =< 23.30,27.66,34.29 > N/mm2,

− σ̃x =< 4.34,4.34,4.81 > N/mm2, and

− ã=< 0.00,0.00,1.00 >.

The interaction relationship between m̃x, σ̃x and ã may be determined numerically (Sect. 3), or may be
approximately estimated on the basis of the available information. A possible estimation of the interaction
is shown in Fig. 12.

In the example, the interaction between m̃x, σ̃x and ã has only a very slight effect, and may be neglected
without a significant effect. The fuzzy probability densityfunctions and the fuzzy probability distribution
functions are compared in Figs. 13 and 14, with and without consideration of interaction. The approximation
functions F0l(x) and F0r(x) as well as the corresponding probability density functionsf0l(x) and f0r(x) are
also shown in the figures.

4.81

23.30 34.29

mx [N/mm²]

�x [N/mm²]

4.54
4.50

4.34
4.44

27.66

28.00

33.00

Without interaction
With interactionComputed parameter combinations

1.0

23.30

34.29
mx [N/mm²]

a

0.0

27.66

0.2

25.00

Figure 12. Estimation of the interaction between m̃x, σ̃x and ã

5. Conclusions

Inconsistent data represent a common case of available information in civil engineering practice. These data
must be properly evaluated and described numerically to obtain realistic results in a subsequent structural
analysis, safety assessment or structural design. The evaluation of inconsistent data is, however, problematic.
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Figure 13. Fuzzy probability density functioñf(x) with and without consideration of interaction between m̃x, σ̃x and ã; probability
density functions f0l(x) and f0r(x) belonging to F0l(x) and F0r(x)
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Figure 14. Fuzzy probability distribution functioñF(x) with and without consideration of interaction between m̃x, σ̃x and ã;
probability distribution functions F0l(x) and F0r(x)

Stochastic uncertainty and imprecision appear simultaneously and in various configurations. For a proper
treatment of this type of information, the model fuzzy randomness is proposed. This enables a separate and
simultaneous treatment of statistical uncertainty and imprecision. Due to the variety of possible forms of
available information, a general quantification algorithmcannot be formulated. The quantification has to
be realized according to the conditions in each particular case. In the paper quantification guidelines for
three selected typical cases of inconsistent data in civil engineering were presented by way of examples.
Algorithms from traditional statistics have been utilizedand combined with fuzzy methods for the inclusion
of expert knowledge. The quantification results reflect the stochastic uncertainty and the imprecision of
the available information in form of a fuzzy probability. This represents an envelope of all real-valued
probabilistic models which meet the available information.

Further developments are focused on the development of a hybrid quantification algorithm for inconsis-
tent data, which includes, simultaneously, more components beyond traditional statistics and fuzzy methods
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to extend the spectrum of cases covered and to further improve the quality of the quantification results. This
leads, eventually, to a minimization of risks due to modeling errors and associated misinterpretations of
structural behavior and safety.
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