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Abstract. In this paper options for a realistic evaluation of engilmegdata characterized by inconsistency
regarding uncertainty and imprecision are discussed. Ttygoged methods are linked to the generalized
uncertainty model fuzzy randomness. This enables a quaatiifih of uncertainty and imprecision simulta-
neously with a smooth transition between fuzziness andoranéss. Statistical information is exploited with
traditional statistical methods, whereas imprecisioreslidwith using fuzzy methods. Statistical uncertainty
and imprecision are considered within the same model buniratd with one another. In this manner, both
components are reflected separately in the computatiosaltsefrom a subsequent structural or safety
analysis. Quantification techniques are elucidated faehypical engineering cases of inconsistent infor-
mation; (i) small sample size and expert knowledge, (i) riegse sample elements, and (iii) inconsistent
environmental conditions and expert knowledge. The usefd of the proposed quantification methods for
a subsequent structural analysis and safety assessmemadnstrated by way of engineering examples.

Keywords: Inconsistent data; Imprecise data; Fuzzy methods; Fuzalamilities; Uncertain structural
analysis; Safety assessment.

1. Introduction

The usefulness of the results from an engineering analggierdls significantly on the realistic modeling
of the input parameters. Shortcomings, in this regard, reag lto biased computational results, wrong
decisions, and serious consequences [18]. This appligsrircular, if the data are characterized by un-
certainty and imprecision. A variety of mathematical msdahve been formulated to take account of the
available information as realistically as possible [3, 617, 13, 14, 15, 17, 23, 24, 28, 29]. The usefulness
and capabilities of these models have already been deratetsin the solution of practical problems, for
example, in civil/mechanical engineering [1, 4, 5, 8, 9,13, 14, 16, 19, 21, 22, 25].

In engineering practice the available information fredlyeappears as partly stochastic and partly
imprecise — in a mixed stochastic/non-stochastic formhbs¢ cases the model fuzzy randomness [19]
provides a proper basis to utilize traditional statisticedthods together with quantification methods from
fuzzy set theory. In this manner, a broad spectrum of typécajineering cases can be covered; and the
introduction of unwarranted information is avoided. Thisdemonstrated in the sequel with proposals of
guantification techniques for three typical engineerirtgaions. First, the quantification of data from a
small sample together with expert knowledge is considefads is associated with the problem of weak
statistical information from estimations and tests. A Soluis obtained by utilizing the statistical impre-
cision in the specification of fuzzy parameters and fuzzyrifiistion types of a fuzzy random quantity.
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Second, samples with imprecise elements are evaluatedhwéquires the application of statistics with
fuzzy quantities. For this purpose, fuzzy arithmetic is liempented in statistical estimations and tests. Third,
inconsistent environmental conditions are dealt with togewith expert knowledge. This leads to critical
conditions for statistical estimations and tests. Fortimiy a separation of fuzziness and randomness is
applied in the quantification procedure by constructingugseoof consistent data.

In all three cases fuzzy random quantities are obtainedhwigiftect the stochastic uncertainty and the
imprecision of the underlying information simultaneouahd separately. The fuzzy probability distributions
are described as a bunch of distributions that cover aliplesstochastic models within the range of impreci-
sion. Bunch parameters are fuzzy quantitigsahich include distribution parameters as well as pararaete
for the specification of the distribution type. Then, eadsipoint from the pspecifies one real-valued
random quantity associated with a certain membership dempeording to fuzzy set theory. For a detailed
description see [19]. This enables the utilization and doatibn of sophisticated and numerically efficient
methods from stochastic mechanics [26, 27] and from intdB2] and fuzzy structural analysis [20] in
subseguent engineering computations. The respectivathlgs of fuzzy stochastic structural analysis and
safety assessment are discussed in [19].

2. Small Sample size and Expert Knowledge

Assume that a concrete sample of small size is available.s@h&ple elements are random realizations.
The available information on the sample is insufficient, beer, to describe a real-valued random variable
free of doubt. The type of the distribution function and trergmeters cannot be determined uniquely;
additional uncertainty exists. Expert knowledge and arpee are available from similar cases in the
past. This uncertainty is rather non-stochastic and maycbeuamted for with the aid of fuzzy set theory
[2, 30]. Statistical methods may be used as a basis for dicatiton, which are supplemented by fuzzy
methods to finalize the modeling. Depending on the availaiftermation it is possible to formulate an
imprecise parametric or nonparametric estimation probl®mthis basis, the type and the parameters of
the sought distribution are determined in as imprecise tifies) namely, as fuzzy quantities. These fuzzy
guantities are, subsequently, lumped together as fuzanpsters f()~(), in which X represents a fuzzy
random quantity — for convenience, limited to the one-disiamal case. Thet@?) may be determined from
imprecise empirical statistical information extracteshfrthe sample together with expert knowledge.

If, for example, the type of distribution is known with suféat certainty, this implies an imprecise,
parametric estimation problem. The sample functions egph statistical methods yield more or less ac-
ceptable estimation values for the parameters of a disiwitouln order to take account of the imprecision of
the estimator, confidence intervals may be determined &estimator in question. The probabilistic propo-
sitions for confidence intervals applied in statistical noets may then serve as additional information for
the specification of the membership functiqngx (X)) of the ﬁ(f() in the present case. Expert knowledge
is brought in with regard to

— the specification of the distribution type,
— the choice of the estimator,

— the construction of confidence intervals (type and levels),
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— the assignment of membership degrees to the selected aw#it/els, and

— the subsequent modification of the initial draft of the mership functionsu (p;(X)).

Table I. Sample of the cylinder compressive strengthf fa concrete

Number i of realization ~ Compressive strength Number i of realization =~ Compressive strength
X; = fei[N/mn?] xi = fei[N/mm?]
1 28.3 11 26.8
2 315 12 35.3
3 35.2 13 26.3
4 29.8 14 23.1
5 27.6 15 20.2
6 30.7 16 29.2
7 25.2 17 25.7
8 34.6 18 34.2
9 28.9 19 24.8
10 19.2 20 22.8

Table Il. Statistical estimation and assignment of mentbprsalues for i} and

Ox
Estimation  Confidence level m Ox a-level
Point -— 27.97 4.75 1.00
Interval 0.50 [27.24,28.70] [4.35,5.43] 0.75
0.75 [26.71,29.23] [4.05,5.92] 0.50
0.90 [26.13,29.81] [3.77,6.52] 0.25
0.99 [24.93,31.01] [3.34,7.92] 0.00

Suppose that a sample of size 20 is available for the cylioderpressive strength bf a concrete
according to Table 2. A normal distribution is assumed basedxpert knowledge, and the parametegs m
and gy are determined as fuzzy values @nd dy. For this purpose interval estimations are applied. From
the 20 measured values of the compressive strength thekeotifidence intervals for the confidence levels
0.50, 0.75, 0.90, and 0.99 are determined. Dependencieedethe parameters are not taken into account.
Additionally, common point estimations are used to specifyp values for the expected value (as the mean
value of the sample) and the standard deviation (based @athple variance). The results (Table 2) are then
taken as a basis for the specification of the parameters ag fumntities. Membership values are assigned
to the estimation results by subjective assessment. Thiwei€onfidence intervals are interpreted as being
a-level sets of the fuzzy valuesyiand dy; see Table 2. The mean values of the fuzzy numbers are taken
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from the point estimations. Eventually, the fuzzy quaesitity and 6y are obtained according to Fig?. As
dependencies between the parameters in the interval éisttha@re neglected, interaction betweepahd
Oy is not obtained.

Fuzzy expected value my w(oy) 4 Fuzzy standard deviation oy

p(my)

1.00 1.00

0.75 0.75

0.50 0.50

0.25 i 0.25

ool LN o goodn Ll ‘>
2493 2797 3101 334 475 7.92

my [N/mm?] ox [N/mm?]

Figure 1. Fuzzy expected value yfand fuzzy standard deviatiady

3. Imprecise Sample Elements

Imprecision of sample elements may occur, for example, dusprecise readings of (analog) measuring
devices or as a reflection of imprecise individual care ofpenel in tests. This imprecision can be expressed
in form of fuzzy numbers for the measured values represgritia sample elements. It is then possible to
construct a fuzzy random quanti¥ directly from the imprecise data material. The correspogduzzy
parameters tibf() for the description of the fuzzy random quantfycan be estimated based on statistical
estimations and tests extended to deal with fuzzy argumehis requires a proper application of fuzzy
arithmetic in these algorithms. For a numerical evaluatibe fuzzy analysis based orlevel optimization
according to [20] may be utilized. This framework enablemaplementation of algorithms of mathematical
statistics as the mapping model of a fuzzy analysis. Eactyfaample element is then treated as a fuzzy
input quantity of the mapping model. The fuzzy result reprngs the sought parametq()f{)).

As an example, the sample elements from Table 2 are assurpeddess an imprecision 42 N/mn?
due to imprecise readings of the measuring device. Thisigevinformation for a modeling of the sample
elements as fuzzy triangular numbers denoted by <X X; ,—o1, X y—1, Xiu—or >. The values from Table 2
are assessed with= 1, from where the linear branches of the membership funci@mmease downto =0
at the points of the maximum deviatia? N/mn12; see Table 3.

In order to compute the empirical parameters, common statissample functions) are applied with
the fuzzy values Xas arguments. The fuzzy sample mean is then obtained with

EPAL ®

in which n is the sample size. The linearity of this mappingdeideads to a fuzzy triangular number for
the fuzzy sample mean, which is completely specified by thebeeship levelst = 1 andu = 0 as shown

Xt

REC 2008 - Michael Beer



Evaluation of Inconsistent Engineering data 485

in Fig. 2, X =< 25.97,27.97,29.97 > N/mmn?. In contrast to this, the mapping model for computing the
standard deviation of the sample is nonlinear and even namatonic,

n n 2
= | 1s i;xiz_% (;x) . o)

This requires a more sophisticated evaluation techniguibel exampleg -level optimization [20] is applied

Table lll. Fuzzy sample elements of the cylinder compresstvength § of a concrete

Number i of Fuzzy compressive strength Number i of Fuzzy compressive strength
fuzzy realization % = f¢i[N/mn?] fuzzy realization % = f¢i[N/mmn?]
1 < 26.3,283,303 > 11 < 24.8,26.8,288 >
2 < 295,315,335 > 12 < 333,353,37.3 >
3 <332,352,37.2> 13 < 243,263,283 >
4 < 278,298,318 > 14 <211,231,251 >
5 < 256,27.6,29.6 > 15 < 182,202,222 >
6 < 287,307,327 > 16 < 272,292,312 >
7 <232,252,27.2 > 17 <237,257,27.7 >
8 < 326,34.6,36.6 > 18 <322,34.2,36.2 >
9 < 26.9,289,30.9 > 19 < 228,24.8,26.8 >
10 <17.2,192,21.2 > 20 < 208,228,248 >
u(x) Fuzzy sample mean x u(s,) A Fuzzy standard deviation §,
1.00
0.75
0.50
0.25
0.00 J | - .
25.97 27.97 29.97 3.22 3.95 4.75 5.63 6.54
X [N/mm?] s, [N/mm?]

Figure 2. Fuzzy mearx and fuzzy standard deviatiop &f the sample from Table 3
to evaluate Eqg. (2). The membership functjofs,) is obtained with nonlinear branches; see Fig. 2.

The fuzzy sample elements énter Eq. (1) and Eq.(2), simultaneously. Thus, a relalignsxists be-
tween the fuzzy sample mean and the fuzzy standard deviattbe sample. This is referred to as interaction
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between the fuzzy quantitiésand §. This interaction is shown in Fig. 3 for the membership lavet 0.
Certain combinations of crisp values fronand § cannot appear. An analytical or numerical determination
of this interaction is, however, virtually excluded duehe tremendous computational effort even for a small
sample. In the example a numerical approximation solutiar determined with the aid of systematic and
random-oriented simulations. The effect of the number pzjurealizations on the interaction relationship
becomes apparent when only the first seven sample elemenisTable 3 are considered; see Fig. 4. Not
only the position but also the shape of the fuzzy{s:e’éx} shows a deviation from the illustration in Fig. 3.
As a consequence of the same support widths of the fuzzyadialis ¥the minimum and maximum sample
means are, in each case, coupled with the same standartiatewifithe sample. This property is lost in the
general case. As demonstrated %oand §, interaction generally exists between all empirical paters
including the distribution type. The fact that the fuzzy lizgtions themselves may also be interactive
may even lead to non-connected sets for the empirical paeasnéDue to the numerical complications
in the determination of the interaction, an approximatioayrbe pursued. Or, the interaction may even
be neglected; see Fig. 3. Although this means that norfiptstpbarameter combinations are included and
thus enter subsequent computations, the "exact” solusicorpletely contained in this approximation. The
negligence of interaction leads to an envelope curve ofetlmasameter combinations, which can actually
appear.

s, [N/mm?] A Without interaction
With interaction
6.54 — 4 — —E ....................................................................................... :
475 — —
322 4J4 — — _]. ...............................................
| Il |
T !! .'

25.97 27.97 28.04 29.97 X [N/mm?]

Figure 3. Numerical approximation of the interaction between thejtsample mear and the fuzzy standard deviatiopfér the
20 fuzzy realizations from Table 3

The fuzzy parameters computed from the sample are the lwadisef specification of the fuzzy prob-
ability distribution function needed for further processiof fuzzy random quantities in engineering com-
putations. In the example, a normal distribution is assufoethe fuzzy random quantity. The functional
parameters are then estimated by the fuzzy sample mearfuzzy expected value,and by the fuzzy
standard deviationy3of the sample as fuzzy standard deviatigp of the fuzzy random quantity. The
obtained fuzzy probability density functicfmx) and the fuzzy probability distribution functiof(x) are
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s, [N/mm?]

506 +—————————=

319 + ——

o
-

|
|
|
174 +——4———————= |
|
|

27.76 30.00 30.04 31.76 x [N/mm?

Figure 4. Numerical approximation of the interaction betwéeand % for the first seven fuzzy realizations from Table 3

shown in Figs. 5 and 6, respectively. The illustrations stifunctions with and without the consideration
of the interaction between Jfand &y. Negligence of the interaction between @nd &y leads to envelope
curves enclosing the exact fuzzy functidigs) andF(x). The interaction betweenfand &, excludes the
simultaneous occurrence of extrema of the expected vallistandard deviation; see Fig. 3. This influences,
in particular, the tails of the fuzzy functiorﬁ(sx) and f:(x). The probability mass in the tails is higher if the
interaction is neglected. This leads to an overestimatidiailure probabilities in a subsequent structural
safety assessment. This overestimation is, however, aoteindous and leads to a slightly conservative
safety assessment, which is rather welcome.

f(x) A Wit . .
012 + ,—-l_\ _——— |.t o'ut mter.actlon
s | 3 With interaction
0.06 T
0.00 o | | | R, .
0 20 25.97‘ 29.97 40 60 x [N/mm?]

27.97

Figure 5. Fuzzy probability density functiof(x) with and without consideration of the interaction betwegnaid dy
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F(x) A
100 f————————————

/

F
00 r+————————— ;'F . — — — Without interaction

£ :: ---------------- With interaction
2
0.00 B2’ || = -
0 20 25.97| 29.97 40 60 x[N/mmZ]

27.97

Figure 6. Fuzzy probability distribution functioﬁ(x) with and without consideration of the interaction betwegnand dy

4. Inconsistent Environmental Conditions and Expert Knowledge

This situation appears if the sample has been generated uagéng environmental conditions. It then
defies a traditional statistical evaluation and needs apteatment. The varying environmental conditions
may include, for example, involvement of different mantdizers, changes in the type of aggregates /
additives from different suppliers, varying hardening ditions (temperature, humidity), and variations in
the motivation of the personnel. In those cases, expert latge is usually available to separate fuzziness
and randomness present in the statistical data material. sEjparation can be realized by characterizing
the environmental conditions with attributes such as aiBpeupplier for aggregates or a certain team of
employees in the production process. Observed realizatioth the same attributes are lumped together
in a singlegroup. These groups are subsets of the population. Each groumlidatons with the same
attributes is treated as a separate sample. These sampldgensbe evaluated using statistical methods as
they comply with the preconditions in form of constant eomimental conditions. The statistical evaluation
yields empirical parameter values including a distributigpe for each group. For all groups the Saif
statistical propositions is obtained. Each elemer@isfassigned to a subset of the population. Hence, the set
Sdescribes the set of real random quantities contained ioliberved realizations. The differences between
the elements of the s&represent imprecision, which may be modeled as fuzzinegeqgfopulation. The
elements contained iBand, thus, the associated real random quantities may bgsasseith membership
values. This results in the fuzzy st The real random quantities together with their membershlpes
form a fuzzy random quantity, which is described®y

The fuzzy setScan be constructed in parametric or in a non-parametric Braiiine parametric con-
struction ofSinvolves a distribution assumption from expert knowledeen, the membership functions of
the empirical distribution parameters may be constructeggLhistograms. In the non-parametric construc-
tion of Sempirical distribution functions are used, and a directfization of the probability distribution
function curve is pursued.
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Parametric Quantification It is presumed that the groups of sample elements with satribués and
their corresponding empirical parameters are known. Thanpeter values constitute a sample for which
a histogram is constructed. The parameter value is plotimiyahe abscissa, which is subdivided into
subsets. In the normal manner the number of sample elenvenitd) is the number of empirical parameter
values, per subset is plotted on the ordinate. Then, thednat can be used as a basis for constructing the
membership function of the respective fuzzy parameter.

As an example, let specimens of a concrete be available fitbenaht concrete plants. Tests are carried
out to measure the cylinder compressive strengtfitie specimens are labeled, and the concrete plant and
work team are registered. Specimens with the same idetitificgsame attributes) are each lumped together
in a group. In the example, twelve groups with a different banof specimens (sample size) are identified.
By this means, randomness and fuzziness are separatedalibtical evaluation of the measured cylinder
compressive strength fields empirical parameters for each group. The sample meard the standard
deviation g of the samples are computed; see Table 4.

Table IV. Sample meaxnand standard deviation sf the cylinder compressive strengtof the concrete for twelve groups
of specimens (twelve samples)

Label of group Sample size Sample me&N /mn?] Standard deviation &N /mn?)
1 54 27.3 53
2 48 26.6 4.9
3 42 29.2 4.2
4 38 314 3.8
5 44 28.3 5.6
6 48 294 3.2
7 55 26.4 5.0
8 47 30.1 4.6
9 64 28.3 5.9
10 53 27.9 3.8
11 75 29.6 6.3
12 52 27.8 4.7

The values listed in Table 4 are used to construct histogfanthe sample mear and the standard
deviation § of the samples; see Fig. 7. The chosen subset widths.ai/@n? for x and 075N/mnv
for s.. Each of the empirical parameters is modeled using fuzapgular numbers. The method of least
squares is applied to determine the linear membershipitngctThe derived fuzzification suggestions are
shown in Fig. 7.

Due to the fact that the valu&sand § for each group originate from the same sample, interactisise
between the fuzzy quantitié&sand §. Analog to the analysis of stochastic dependencies betvaefom
variables, the interaction relationship may be determibgdevaluating the value pairX,sy) obtained.
These pairs are plotted in a coordinate system, and theagtten relationship is estimated for different
membership levels. This procedure is illustrated in Figo8the membership levet = 0. Assuming a
normal distribution, the empirical fuzzy parametgmnd % are adopted as the fuzzy distribution parameters
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My anddy, respectively, of the fuzzy probability distribution. ¢ assumed distribution type is different for
the individual groups, this may be accounted for with a conmglodistribution and fuzzy parameter for the
mixing ratio.

Number of sample elements

k(x) Fuzzy triangular number X
4 — 1.00
/.
3 / \ 0.75
2 i AN 0.50
/17N
oA 025 ;
oL N~ 000 ‘ -

0 25,5 275 285 31.5 2543 2791 32.00
X [N/mm?] X [N/mm?]
Number of Sample elements

1(s,) Fuzzy triangular number s,
4 e 1.00
/\
2 / \ 0.50
N
0 [N  ~ 000 i -

0 3.00 4.50 5.25 6.75 2.79 488 6.96
s, [N/mm?] s, [N/mm?]

Figure 7. Histograms and fuzzification of the sample m&aamnd the standard deviatiop assigned to the groups (samples) of the
cylinder compressive strength f

Non-parametric Quantification The starting point is again the separation of randomnes$uadhess by
constructing groups of observed realizations. Then, aogpidistribution functions are constructed for the
individual groups. The set of empirical distribution fuiocts for all groups is then taken as the basis to
determine fuzzy quantities for the functional values of @erall empirical distribution function.

The example from the parametric quantification is reuseddénonstration. For each group, a his-
togram is constructed from the realizations to determinesrapirical distribution function. The subset
widths and the subset positioning on the abscissa must beatime for all histograms for all groups.
The subsets are defined as half-closed interfigls;) on the real number line. The number of observed
realizations in the subsets is generally different for tidiviidual groups. The histograms for the first two
groups from Table 4 are shown in Fig. 9.
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s, [Nmm?q A ° Observed parameter Without interaction
x combinations With interaction
6.96 1 . |
2.79 T

25.43 32.00 X [N/mm?]

Figure 8. Estimation of the interaction betwe&and %

Realizations of group 1 Realizations of group 2
A Number of sample elements A Number of sample elements
10+ 10+
5 51
0+ EENIENETNNEN . ol NY am R
0 12 20 30 42 0 16 20 30 38
x = f, [N/mm?] x = f, [N/mm?]

Figure 9. Histograms for the realizations of groups 1 and 2 from Table 4

For each group the empirical probability distribution ftion

() = Tk ®3)
|

is developed from the corresponding histogram. In the ghiclenotes the group numbet,ia the number
of all elements (realizations) in group i, ang(x) is the number of those elements k (in group i), whose
values x are smaller than x. The values x of the observed realizaiongetermined by the left-hand subset
boundaries (that is, by theg »f the half-closed interval$x,x;)) in the histograms; these mark discrete
positions on the abscissa. The evaluation of all groupgiyial bunch of discrete empirical distribution
functions. The functional values’f = f;) are listed in Table 4.
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Table V. Functional values of the empirical distributiomdtions F(x = f.) for all groups i of specimens

Group i

x=fc 1 2 3 4 5 6 7 8 9 10 11 12
[N/mm?]

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 .0000  0.000
14 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 .0000  0.000
16 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 .0000 0.000
18 0.019 0.021 0.000 0.000 0.000 0.000 0.036 0.000 0.016 0.000 .0130  0.000
20 0.074 0.083 0.000 0.000 0.023 0.000 0.091 0.000 0.063 0.000 .0670 0.000
22 0.167 0.250 0.000 0.000 0.114 0.000 0.273 0.043 0.172 0.094 .1200  0.096
24 0.296 0.333 0.071 0.026 0.295 0.042 0.327 0.064 0.266 0.170 .2270 0.231
26 0.407 0.479 0.262 0.105 0.409 0.167 0.436 0.191 0.328 0.283 .3200  0.346
28 0.556 0.604 0.476 0.184 0.523 0.354 0.655 0.340 0.422 0.509 .4000 0.577
30 0.759 0.708 0.595 0.395 0.705 0.563 0.764 0.532 0.625 0.717 5070  0.731
32 0.815 0.813 0.786 0.632 0.750 0.833 0.855 0.702 0.766 0.887 .6530 0.788
34 0.907 0.979 0.810 0.711 0.795 0.917 0.927 0.766 0.844 0.962 .7330  0.904
36 0.926 1.000 0.905 0.816 0.909 0.979 0.964 0.830 0.922 0.981 .8270  0.923
38 0.944 1.000 1.000 1.000 0.932 1.000 1.000 0.979 0.969 0.981 .9330 0.962
40 0.981 1.000 1.000 1.000 0.977 1.000 1.000 0.979 0.969 1.000 .9470  1.000
42 1.000 1.000 1.000 1.000 0.977 1.000 1.000 1.000 0.969 1.000 .9730 1.000
44 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984 1.000 .9870  1.000
46 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .9870 1.000
48 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .0001  1.000

For each discrete value x from Table 4 the functional valfég)Fare taken as a basis to model fuzzy
functional valuesf:e(x) to cover all groups at once. At each (discrete) position xsgéogram is constructed
using the functional values of the empirical distributiemdétions. The abscissa is subdivided into suitable
subsets in the intervaD, 1); and the number of functional values assigned to each sigopkitted on the
ordinate. Than, fuzzy numbers are generated from the hmatugy by simple approximation schemes such
as least squares algorithm. In this generation processrtpenpies of the probability measure must be
observed. In the present case fuzzy triangular numberswuaay inumbers with a polygonal membership
function are chosen. The fuzzification process is shown g E0 for three selected values=d.. The
fuzzification results for all x=f. are listed in Table 4. The interval bounds of the support df agethe
mean value are indicated for each fuzzy probabiiftgx). The obtained fuzzy probabilitié®(x) for discrete
x = f¢ are functional values of the sought fuzzy probability disttion functionf:(x).

This non-parametric representation can finally be replagesiparametric fuzzy probabilistic model in
the form of an envelope. For this purpose, different mentbeisvelsa are considered for the determination
of fuzzy parameters of the fuzzy probability distributiamdefor the description of the distribution type. The
aim is to determine bounding distribution functions of thedy random variable for each membership level.
The entirety of all included probabilistic models then reffethe sought fuzzy probability distribution.
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Functional values F®(x)
for x =20 N/mm? for x = 28 N/mm? for x = 36 N/mm?

Number of sample Number of sample Number of sample

[

elements } elements elements
4+ [ | 8
R4\
2r 7/ 4 AN
Ty S
u’/BEEE 2
L ol Z N o L
0.00 0.05 0.10 F%(x) 0.0 0.2 04 0.6 0.8 F%x) 0.8 0.9 1.0 F¥(x)
Fuzzy triangular Fuzzy triangular -
number Fé(x) number F&(x) Fuzzy number F°(x)
b 1(Fe(x)) A p(Fo(x) H(F(x))
1.0 1 1.0 1 1.0
0.81
0.5+ 0.5 1 0.5
0.0 0.0 4— Vw00
0.00 0.113 F°(x) 0.0 0.128 0.557 0.750 0.742 0.958 1.0

Fe(x) Fo(x)

Figure 10. Histograms and membership functions of the functional eslof the empirical distribution function®gx) for
x = fe = 20N/mn?, x = fc = 28 N/mn?, and x= fc = 36 N/mn?

In this example a compound distribution comprised of a nbwlisribution (ND) and a logarithmic
normal distribution (LND) with a constant ratio of compoteis adopted. It is assumed that the expected
value and standard deviation are the same for both distriigjt the minimum value of the component
logarithmic normal distribution is specified to bgx 5N/mn?. The expected value, standard deviation,
and ratio of components are chosen to be free fuzzy parasmatédne compound distribution

Fox)=a- AV +@1-3) FWV(x). 4)

The subsequent evaluation is restricted to the membembhitslr = 0 anda = 1. The free parameters
required for approximating the distribution functions loétoriginals are determined by the method of least
squares. The distribution functiony () for the membership levalr = 1 is obtained from the values of
F$(x). The boundaries of the membership leaet= 0 are obtained in each case from all values {6
and F,(x), respectively. The following constraints are taken intocamt:

— AllF§,(x) > 0 lie above the approximation functiorFx)

— AllF§,(x) < 1 lie below the approximation functiorpKx)
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Table VI. Support boundsgf{x) and F§,(x), and mean values{Fx)
of the fuzzy probability~e(x) for all x = fc[N/mn?] from Table 4

xR0 FRX) RS0 | x  F§(x) X)) FE(X)
12 0.000 0.000 0.000| 32 0.603 0.799 0.975
14 0.000 0.000 0.018| 34 0.652 0.925 1.000
16 0.000 0.000 0.018| 36 0.742 0.958 1.000
18 0.000 0.000 0.035 38 0.913 1.000 1.000
20 0.000 0.000 0.113]| 40 0.949 1.000 1.000
22 0000 0.000 0.369| 42 0.966 1.000 1.000
24 0.000 0.283 0.417| 44 0.983 1.000 1.000
26 0.025 0.358 0.492| 46 0.984 1.000 1.000
28 0.128 0.557 0.750| 48 1.000 1.000 1.000
30 0.331 0.763 0.825| — - - -

The following values are obtained for the free distributgarameters and the functional parametef the
implemented distribution function:

— Approximation of E(x): my = 27.66N/mn?, oy = 4.34N/mn?, a = 0.00

— Approximation of F§,(x): my = 34.29N/mn? , ox = 4.8IN/mn?, a= 0.00

— Approximation of F,(x): my = 23.30N/mn?, oy = 4.44N/mn?, a = 1.00

F(x) A ® F<(x), F%(x), F%(x)

1.00 ~

0.50 -

| [

0.00
0

hed

23.30 27.66 34.29 40

Figure 11. Functional values of the empirical probability distritarti functions §(x), F§,(x), and F(x), as well as the
approximation functions fx), Fp(x), and Fy(x)

1 Lt

60  x [N/mm?]

REC 2008 - Michael Beer



Evaluation of Inconsistent Engineering data 495

The computed distribution functiong (x), Fo(x), and k() are shown in Fig. 11 together with the adopted
functional values of the empirical distribution functiaoi Table 4.

The fuzzy distribution parameters and the fuzzy functiggabmeter a of the sought fuzzy probability
distribution according to Eq. (4) may be expressed as fudapgular numbers (confined = 0 and
a=1):

— My =< 2330,27.66,34.29 > N/mnr?,
— Oy =<4.344.34 481> N/mn?, and
— 3=<0.00,0.00,1.00 >.

The interaction relationship between fioy, and & may be determined numerically (Sect. 3), or may be
approximately estimated on the basis of the available im&tion. A possible estimation of the interaction
is shown in Fig. 12.

In the example, the interaction betweenp, @ and a has only a very slight effect, and may be neglected
without a significant effect. The fuzzy probability densitinctions and the fuzzy probability distribution
functions are compared in Figs. 13 and 14, with and withoositteration of interaction. The approximation
functions k|(x) and Fp(x) as well as the corresponding probability density functifyp&) and b,(x) are
also shown in the figures.

.............. Without interaction

e Computed parameter combinations _____ Withinteraction

Aa
1.0+ g
0.2 +
| i - 0.0 A f——=
23.30 ‘28.00 34.29 25.00 27.66  34.29
27.66 33.00 m, [N/mm?| 23.30 m, [N/mm?]

Figure 12. Estimation of the interaction between /iy and a

5. Conclusions
Inconsistent data represent a common case of availablenafmn in civil engineering practice. These data

must be properly evaluated and described numerically taimlealistic results in a subsequent structural
analysis, safety assessment or structural design. Theagiaad of inconsistent data is, however, problematic.
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f(x) & — — — Without interaction
0.12 +
---------------- With interaction
0.06 T
0.00 Zal — - =, -
0 23.30 27.66 34.29 60 x [N/mm?]

Figure 13. Fuzzy probability density functioﬁx) with and without consideration of interaction betweeg Gk and &; probability
density functionsdi(x) and f(x) belonging to kg (x) and R (X)

F(x) &
10+—————-———-— T T T —
| 7
: p= 1
Fo(x) \‘\, pn=0
0.50 + / — — — Without interaction
j : ................ With interaction
7
f‘f. | 7 j\L Foi(x)
0.00 LA -
0 23.30 27.66 34.29 60 x [N/mmz]

Figure 14. Fuzzy probability distribution functiorfF(x) with and without consideration of interaction betweeg, ffiy and 3&;
probability distribution functions §(x) and Fy(x)

Stochastic uncertainty and imprecision appear simultagsigaand in various configurations. For a proper
treatment of this type of information, the model fuzzy ramhe@ss is proposed. This enables a separate and
simultaneous treatment of statistical uncertainty andr@oigion. Due to the variety of possible forms of
available information, a general quantification algoritbemnot be formulated. The quantification has to
be realized according to the conditions in each particudesecIn the paper quantification guidelines for
three selected typical cases of inconsistent data in angireering were presented by way of examples.
Algorithms from traditional statistics have been utilizzatd combined with fuzzy methods for the inclusion
of expert knowledge. The quantification results reflect tloelsstic uncertainty and the imprecision of
the available information in form of a fuzzy probability. iShrepresents an envelope of all real-valued
probabilistic models which meet the available information
Further developments are focused on the development ofradrgdmntification algorithm for inconsis-

tent data, which includes, simultaneously, more comparieeyond traditional statistics and fuzzy methods
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to extend the spectrum of cases covered and to further irafih@vquality of the quantification results. This
leads, eventually, to a minimization of risks due to modglerrors and associated misinterpretations of
structural behavior and safety.
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