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Abstract: Validation is the assessment of the match between a model’s predictions and any 
empirical observations relevant to those predictions. This comparison is straightforward when the 
data and predictions are deterministic, but is complicated when either or both are expressed in 
terms of uncertain numbers (i.e., intervals, probability distributions, p-boxes, or more general 
imprecise probability structures). There are two obvious ways such comparisons might be 
conceptualized. Validation could measure the discrepancy between the shapes of the uncertain 
numbers representing prediction and data, or it could characterize the differences between 
realizations drawn from the respective uncertain numbers. When both prediction and data are 
represented with probability distributions, comparing shapes would seem to be the most intuitive 
choice because it sidesteps the issue of stochastic dependence between the prediction and the data 
values which would accompany a comparison between realizations. However, when prediction 
and observation are represented as intervals, comparing their shapes seems overly strict as a 
measure for validation. Intuition demands that the measure of mismatch between two intervals be 
zero whenever the intervals overlap at all. Thus, intervals are in perfect agreement even though 
they may have very different shapes. The unification between these two concepts relies on 
defining the validation measure between prediction and data as the shortest possible distance 
given the imprecision about the distributions and their dependencies. 
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1. Introduction 
 
Validation is the comparison of the predictions of a theory or model against empirical data 
(AIAA 1998; ASME 2006; Oberkampf and Truncano 2002; Oberkampf et al. 2004; Oberkampf 
and Barone 2006; Hills 2006; Trucano et al. 2006; Romero 2007; Ferson et al. 2008). It is often 
contrasted with verification, which is the checking of a model’s implementation against the 
intended specification (Oberkampf et al. 2004; Oberkampf and Trucano 2007). We also contrast 
validation with calibration, which is the adjustment of the model’s parameters or its structure for 
the purpose of improving the match between its predictions and empirical reality (Kennedy and 
O’Hagan 2001; Trucano et al. 2006). Measures of validation might be useful in a calibration, but 
the processes are entirely different in their goals. Calibration seeks to correct a model, and 
validation seeks only to measure how correct the model is.  
 Several approaches to validation have recently been suggested based on simple comparisons 
of trends in means (e.g., Oberkampf and Barone 2006), more elaborate hypothesis testing (e.g., 
Hills and Trucano 2002; Hills and Leslie 2003; Rutherford and Dowding 2003; Chen et al. 2004; 
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Dowding et al. 2004), or still more comprehensive Bayesian schemes (e.g., Hanson 1999; 
Kennedy and O’Hagan 2001; Hazelrigg 2003; Zhang and Mahadevan 2003; O’Hagan 2006; Chen 
et al. 2006; 2007). This paper concerns only the basic question of how we should summarize and 
measure the discrepancies between a model’s predictions and relevant empirical data. Oberkampf 
and Truncano (2007) called this problem the ‘validation assessment’. Other important issues such 
as how such the measure could be used to inform or quantify the predictive capability of a model 
or deciding whether the model is adequate for some intended use are out of our present scope. 
 We consider validation assessment in a context where non-negligible uncertainty is present in 
the prediction or the data, or both. This uncertainty can come in different forms. It may arise from 
natural stochasticity or randomness in the world, perhaps owing to fluctuations in processes 
across space or through time, heterogeneity of individuals, or variability among engineered 
components. This uncertainty is objective in the sense that it exists irrespective of observation by 
humans and it is irreducible in the sense that empirical study does not necessarily reduce it. We 
call it aleatory uncertainty and recognize traditional probability theory as the primary calculus for 
addressing it. Aleatory uncertainty is often contrasted with epistemic uncertainty which is the 
partial ignorance, incertitude or imprecision that arises from incomplete or imperfect scientific 
study and comes from small sample sizes, missing data or data censoring or other measurement 
uncertainties, and perhaps doubt about the proper form of a model. Epistemic uncertainty is 
sometimes called subjective or reducible uncertainty because it’s a function of the observer rather 
than physical reality and because it can in principle be reduced by empirical effort. Although 
probability theory has often been used to address epistemic uncertainty, other approaches are also 
employed, notably including interval analysis. 
 Recently, several researchers have suggested that methods beyond traditional probability 
theory might be necessary for models that must distinguish aleatory and epistemic uncertainty 
(Shafer 1976; Walley 1991; Klir and Wierman 1999; Oberkampf et al. 2001; Nikolaidis and 
Haftka 2001; Ferson et al. 2003; Helton and Oberkampf 2004; inter alia). We use the phrase 
‘uncertain number’ (Ferson et al. 2003) to denote a varying or imperfectly known quantity that is 
mathematically characterized by an interval, probability distribution, p-box (Ferson et al. 2003), 
Dempster-Shafer structure (Shafer 1976; Oberkampf et al. 2001; Oberkampf and Helton 2005), 
random set (Matheron 1975; Molchanov 2006), set of probability measures or ‘credal set’ (Levi 
1980), or similar structure from the theory of imprecise probabilities (Walley 1991). In general, 
an uncertain number can express both aleatory uncertainty and epistemic uncertainty. One might 
hold that a probability distribution, as a special case of an uncertain number, expresses purely 
aleatory uncertainty and an interval, also a special case, expresses purely epistemic uncertainty. 
 The engineering value of a model’s quantitative prediction is a function of both its accuracy 
and its precision. The precision of a prediction expressed as an uncertain number is inversely 
related to the epistemic uncertainty encoded in the uncertain number. This uncertainty is 
sometimes called ‘non-specificity’ (Klir and Wierman 1999) and might be quantified as the width 
of an interval or the breadth between the left and right bounds of a p-box. A validation assessment 
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lets us quantify the second essential component determining the worth of the prediction: its 
accuracy in the face of empirical evidence. 
 Section 2 considers validation for the case where both prediction and data are represented by 
probability distributions. Section 3 considers the more elementary problem of validation when 
they are both intervals. Section 4 tries to harmonize the measures developed for these two special 
cases. Section 5 considers some alternative solutions, and section 6 offers some conclusions. 
 

2. Validation Metric for Comparing Probability Distributions 
 
The difference between two probability distributions can be characterized in many ways. The 
comparison could be conceived in terms of differences of their realizations (i.e., real numbers) or 
in terms of the discrepancies between their distribution shapes. In other words, if X and Y are 
random numbers distributed according to their respective cumulative distribution functions F and 
G, then we could talk about the distribution or average of X − Y, or we could focus on the 
difference between the shapes of F and G. The characterization that seems to be most useful in 
the context of validation of engineering models is based on comparing the shapes of the 
distributions of the random variables representing the prediction and relevant observations. 
Random variables whose distribution functions are identical are said to be ‘equal in distribution’. 
If the distributions are not quite identical in shape, the discrepancy can be measured with any of 
many possible measures that have been proposed for various purposes in fields including 
statistical goodness of fit (e.g., Stephens 1974; Feller 1948; Kolmogorov 1941; Smirnov 1939), 
probability scoring rules (Winkler 1996; Lindley et al. 1979; de Finetti 1962; Brier 1950), 
information theory (Song 2002; Kullback 1959; Kullback and Leibler 1951), and texture analysis 
(e.g., Mathiassen et al. 2002). 
 Ferson et al. (2008) proposed to quantify the mismatch between prediction and observation 
with the area between the prediction’s probability distribution and the empirical distribution of 
observations. This area is the Minkowski L1 metric 
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∞
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where F is the cumulative distribution representing the model’s prediction for the random 
variable and Sn is the empirical distribution function for relevant observations Xi, i = 1,…,n, of 
that random variable. The empirical distribution function is 
 

Sn(x) = 
{ }

n
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where # denotes the cardinality of the set, so Sn(x) is the fraction of values in the data set that are 
at or below each magnitude x. The validation metric is thus computed solely from the prediction 
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F provided by the modeler and observations Xi provided by the empiricist. A small area means 
there is a good match, and a large area means that prediction and data disagree.  
 Figure 1 illustrates an example prediction distribution for rainfall as the smooth curve drawn 
in gray, together with the empirical distribution functions Sn for a hypothetical data set consisting 
of the values 770, 790, 820, 865 in millimeters of rain. The prediction distribution is 
approximately normal, with mean about 810 mm and variance of about 1700. The area of the 
shaded region between the two functions which measures their disagreement is almost 40 mm. 
Note that the empirical distribution function is zero for all values smaller than the minimum of 
the data and one for all values larger than the maximum of the data. Likewise, beyond the range 
of the prediction distribution, the value of F(x) is either zero or one extending to infinity in both 
directions. For graphical clarity, however, these flat portions at probability zero or one are not 
depicted when the distributions are plotted. 
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Figure 1. Area (shaded) between a prediction distribution (gray) and an empirical distribution function (black). 
 
 This metric can be computed for small data sets or even a single data value, in which case the 
Sn function would be the unit step function at that value. The approach can also be used even 
when the model is so complex and computationally expensive that it can only generate a small 
number of realizations for its prediction distribution. In such situations, the prediction distribution 
is modeled with an ‘empirical’ distribution formed from the sample realizations. 
 The area between the prediction distribution and the empirical distribution summarizing 
observations has several desirable properties as a formal validation measure of the mismatch 
between a model and evidence (Ferson et al. 2008). Most importantly, the area metric is an 
objective measure. Given a collection of observations and a prediction distribution, the area will 
be the same no matter who computes it because it does not depend on any judgments or 
parameters chosen by the analyst. Another important property is that the area metric generalizes 
deterministic comparisons between scalar values that have no uncertainty; if the prediction and 
the observation are both scalar point values, the area is equal to their difference. The area will 
tend not to be overly sensitive to minor discrepancies in the distribution tails (assuming the area is 
finite), but it obviously reflects the full distributions in assessing performance. In particular, it is 
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clearly not merely a measure of the difference in the means or even the means and variances, but 
takes account of any differences between the prediction and observation distributions. Because 
probability is dimensionless, the units of the area are the same as those of the system response 
quantity in which the prediction and data are expressed. This property is very important in 
making the measure intuitively meaningful to engineers. Its units are the same as one would 
expect for the result of a subtraction. If it were some dimensionless index or, worse, had some 
complex or esoteric statistical units, its physical interpretation would be difficult. The area 
measure is also unbounded in the sense that, if the prediction is completely off the mark of the 
observations, the area characterizing this discrepancy can in principle grow to be an arbitrarily 
large value, which is also an intuitive feature of distances. Finally, the area measure is 
mathematically well behaved and well understood. So long as the area converges to a finite value, 
it is a true metric in the mathematical sense, which means it has the essential features of a 
distance function. By definition, a mathematical metric d has four properties (Fréchet 1906): 
 

non-negativity,    d(x, y) ≥ 0, 
symmetry,     d(x, y) = d(y, x), 
triangle inequality,    d(x, y) + d(y, z) ≥ d(x, z), and 
identity of indiscernibles,   d(x, y) = 0 if and only if x = y. 

 

All of these properties suggest that the area metric will be more comprehensive and easier to 
interpret than any of several alternative statistical measures or some distance measure based on 
merely matching prediction and observation distributions in the mean or in both mean and 
variance.  
 Ferson et al. (2008) also showed how the area metric could be extended to synthesize 
evidence of the conformance between model and data into a single measure when observations 
are to be compared to different prediction distributions. The trick is to transform each observation 
Xi to ui = Fi(Xi) where Fi is the prediction distribution against which Xi is to be compared. The ui 
express all the available evidence on a universal scale of probability. By the probability integral 
transform theorem (Angus 1994), the ui will be uniformly distributed over the unit interval [0,1] 
so long as the original Xi are distributed according to their respective prediction distributions Fi, 
which is to say, so long as the model is predicting the observations well. Statistical tests and 
diagnostics are straightforward to define for this synthesis. The model’s performance can be 
assessed directly in terms of the ui, or the values may first be back-transformed to a common axis 
that re-expresses the evidence in physical units. The back-transformation can be chosen so as to 
maximize the relevance of the assessment for a particular regulatory or performance question. 
This strategey can even be used to combine evidence about model-data conformance collected in 
entirely different dimensions (such as, for instance, rainfall and temperature). This synthesis 
abandons the interpretation of the area in original units of course, but it does allow analysts to 
compare the relative performance of the model for different system response quantities in a 
meaningful way. 
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2.1. WHY NOT BASE THE METRIC ON DIFFERENCES OF VALUES FROM THE TWO DISTRIBUTIONS? 
 
One could imagine developing an alternative validation measure based on the absolute difference 
between a random value realized from the prediction distribution and a random value drawn from 
the data distribution. There would of course be a distribution of such differences. It might seem 
preferable to use this distribution of differences to characterize the disagreement between 
probability distributions (Menger 1942). A distribution could be more informative than the area 
metric which is a crude scalar summary that could not capture the information embodied in an 
entire distribution. The distribution of differences could be used itself as a characterization of the 
disagreement between the two distributions, or it might be summarized in various ways that 
might highlight aspects of the disagreement of special interest. But such a notion would need to 
consider the stochastic dependence between random values from the two distributions. Specifying 
an assumption about the dependence is necessary to define the distribution of differences X – Y 
from specified distributions for X and Y. Are the values statistically independent? Do they have 
some correlation or a nonlinear dependence? Different assumptions can lead to starkly different 
distributions for the random difference.  
 Consider, for example, a weather model that predicts daily temperatures and, by aggregating 
these values, also predicts a distribution of daily temperatures over the course of a year. Suppose 
that relevant daily temperature observations are available. It may be the case that the predicted 
distribution of temperatures over the year matches the observed distribution of temperatures very 
well and yet the correlation between predicted and observed daily temperatures is markedly poor. 
For instance, if the model is out of phase with respect to seasons, it may be predicting summer 
temperatures during the winter and vice versa, which would lead to a correlation close to −1, even 
though it gets the distributions exactly right. The performance of such a model would have to be 
considered very poor in any sensible validation assessment. But note that this poor performance is 
really associated with the deterministic results from the model rather than the probabilistic ones 
per se. If the model had not made the deterministic predictions and confined itself to purely 
probabilistic forecasts, this problem would not have arisen. 
 Contrast the weather model with another model that does not predict individual daily 
temperatures, but only the summary distribution of daily temperatures. Essentially, this retreat 
changes the weather model into a climate model that does not make predictions about the 
temperature for any particular day, except to assert that, considered as a group over the course of 
many days, these temperatures will converge in distribution to the prediction. And it is certainly 
not making any predictions about the dependence between values that might be drawn from the 
prediction distribution and observed temperature values. The model is not even saying that such 
temperature pairs are independent. In fact, actual temperatures have strong autocorrelation from 
day to day, so supposing that temperatures should be drawn independently from the predicted 
distribution would obviously be empirically incorrect too. It is possible, of course, to construct a 
probabilistic weather model of daily temperatures. Such a model might predict a probability 
distribution for each and every day’s temperature. But these predictions would not be saying 
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anything about dependence or even about randomness; they are asserting only that Fi(Xi) are 
uniformly distributed, where Fi is the probability prediction for day i and Xi is the observed 
temperature for that day. In any case, if the model refrains from making deterministic forecasts 
and makes only purely probabilistic predictions about distributions without characterizing 
dependence, then the model would have excellent performance in a validation assessment. 
 If the model asserts nothing about the possible dependence between predicted and observed 
values of a system response quantity, then the distribution of differences between predictions and 
data cannot be uniquely defined. Thus, it would be seem to be impossible to base a validation 
metric on the distribution differences. It is possible, however, to bound the distribution of 
absolute differences even without specifying anything about the dependence between the 
subtrahend and the minuend. Elementary probability bounds analysis (Frank et al. 1987; 
Williamson and Downs 1990; Ferson 2002; Ferson et al. 2003) can be used to compute these 
bounds, which may be informative. Figure 2 depicts four examples of validation as characterized 
by the area metric and bounds on the distribution of differences. In the upper panel of graphs, 
prediction distributions F are depicted as gray curves, and data distributions Sn are depicted as 
black step functions. Under each of these four graphs, the corresponding area metric is plotted as 
a dotted spike. On the same graph, bounds on the distribution of absolute differences between 
random values from the prediction and data distributions are shown as thin lines. In each of the 
four comparisons, the prediction is a normal distribution with mean 2 and standard deviation 0.2, 
truncated at the 0.5th and 99.5th percentiles. In the first comparison, the data consists of a single 
observed value at 4, so the empirical distribution is degenerate. The validation metric in this case 
is 2 units, which is the area between the truncated normal and this degenerate step function. The 
distribution of absolute differences between random values drawn from the prediction distribution 
and the observed value 4 ranges between 1.5 and 2.5. The data forming the empirical distribution 
in the second comparison comes from 8 measurements scattered between roughly 2.2 and 3.2. 
The area validation metric in the second comparison is almost 0.6 units. Without specifying the 
stochastic dependence between the prediction and data distributions, it is impossible to define the 
distribution of their differences, but probability bounds analysis can bound the distribution 
(Ferson 2002). The thin lines in the second graph of the lower panel of Figure 2 represent the 
best-possible bounds on the distribution of absolute differences between predicted values and 
observed values. The breadth of the bounds comes from not making any assumption about the 
dependence between the two distributions. In the third comparison, the empirical data have a 
larger dispersion and the resulting area metric is somewhat larger. In the fourth comparison, the 
data values come much closer to the prediction distribution, so the area metric is much closer to 
zero. Note, however, that the distribution of differences could nevertheless include values close to 
one. 
 These few examples convey an idea for how the area metric and the bounds on the 
distribution of differences compare to each other. The bounds tell us how wrong we might be if 
dependence matters, but they do not contain the information needed to compute the area metric, 
so, insofar as the area metric is important or informative, the bounds on differences are 
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incomplete as a summarization of the disagreement. Likewise, the bounds contain information not 
encapsulated in the area metric as well, although engineering judgment does not seem to 
recognize the information in the bounds as particularly relevant to the question of whether the 
distributions match well. 
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Figure 2. Predictions (gray) and data (black) yielding area metrics (dotted) and difference distributions (thin p-boxes). 

 
3. Validation Measure for Comparing Intervals 

 
Predictions should include epistemic uncertainty if it exists in our knowledge about the modeled 
physical process. Indeed, except in rare situations, precise predictions are not reasonable in real-
world problems, or they only result from assumptions that modelers themselves do not 
unequivocally believe. Although a model may give point predictions, there is almost always an 
implied precision associated with each quantity. Modern notions of best practice argue that these 
implicit considerations be made explicit, and more and more modelers are accepting this and 
incorporating uncertainty analyses into their models. The simplest quantitative expression of 
epistemic uncertainty is an interval. Giving an interval as the representation of an estimated 
quantity is asserting that the value (or values) of the quantity lie somewhere within the interval. 
Intervals can arise in both predictions and observations. When a prediction is an interval, its 
width relates the modeler’s inability to nail down the prediction precisely. The modeler is saying 
the quantity in question is within a particular range, but not saying any more than this. In 
particular, the modeler is not making any assertion about which possible values might be more 
likely than which other possible values. If there is such extra information available about a 
prediction, but too little to justify the selection of a particular probability distribution, the 
information can be expressed in a more general uncertain number such as a p-box, Dempster-
Shafer structure or credal set. 
 Empirical observations can also contain epistemic uncertainty. Again, the simplest form of 
this is an interval. Uncertainty about measurements that is appropriately characterized by 
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intervals is called incertitude, and it arises naturally in a variety of circumstances, including plus-
or-minus reports, significant digits, intermittent measurement, non-detects, censoring, data 
binning, rounding or bit compression in data transmission, missing data and gross structural 
ignorance (Ferson et al. 2007; 2004). When a collection of such intervals comprise a data set, one 
can think of the breadths of the intervals as representing epistemic uncertainty while the scatter 
among the intervals represents variability or aleatory uncertainty. Recent reviews (Manski 2003; 
Gioia and Lauro 2005; Ferson et al. 2007) have described how interval uncertainty in data sets 
produces uncertain numbers containing epistemic uncertainty. When empirical observations have 
uncertainty of this form that is too large to simply ignore, these elementary techniques can be 
used to characterize it is a straightforward way. 
 The comparison between two fixed real numbers reduces to the scalar difference between the 
two. Suppose that, instead of both numbers being reals, at least one of them is an interval range 
representing acknowledged uncertainty. If the prediction and the observation overlap, then we 
should say that the prediction is correct, in an important sense, relative to the observation. If the 
prediction is an interval, this means that the model, or perhaps one would say the modeler, is 
being modest about what is being claimed. For example, the assertion that a regional maximum 
temperature will be between 20 and 40 °C is a weaker claim than saying it will be exactly 30. 
And it is a stronger claim than saying the temperature will be between 10 and 60. In the extreme 
case, a vacuous prediction, while not very useful, is certainly true, if just because it isn’t claiming 
anything that might be false. For example, predicting that some probability will be between zero 
and one doesn’t require any bravery, but at least it is free from contradiction. It is proper that a 
prediction’s express uncertainty be counted toward reducing any measure of mismatch between 
theory and data in this way because the model(er) is admitting doubt. If it were not so, an 
uncertainty analysis could otherwise have no epistemological value. From the perspective of 
validation, when the uncertainty of prediction encompasses the actual observation, the prediction 
ought to be regarded as true, because validity is distinct from precision. Both are important in 
determining the usefulness of a model, but it is reasonable to distinguish them and give credit 
where it is due. 
 A reciprocal consideration applies, by the same token, if the datum is an interval to be 
compared against a prediction that’s a real number. Validation has to give to the model whatever 
benefit of the doubt that arises because of the uncertainty about the datum. For instance, if the 
prediction is, say, 30% and the observation tells us that it was somewhere between 20% and 50%, 
then we would have to admit that the prediction might be perfectly correct. If on the other hand 
the evidence was that it was between 35% and 75%, then we would have to say that the 
disagreement between the prediction and the observation might be as low as 5%. We could also 
be interested in how bad the comparison might be, but a validation metric shouldn’t penalize the 
model for the empiricist’s imprecision. In most conceptions of the word, the ‘distance’ between 
two things is the length of the shortest path between them. The distance between England and 
France is the breadth of the English Channel between Dover and Calais; it doesn’t matter that 
Newcastle and Marseilles are much further apart. Similarly, the validation measure between a 
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point prediction and an interval datum, or vice versa, should be the shortest difference between 
the characterizations of the quantities. Likewise, the validation measure between an interval 
prediction and an interval datum is the shortest distance between the two intervals, which will be 
zero if they overlap. Symbolically, the validation measure for comparing intervals A with B is 
 

.inf YX
BY
AX

−
∈
∈

 

 

where inf denotes the infimum (which just generalizes minimum for intervals that might be open 
or partially open). Although this choice for the validation measure shares a similar graphical 
intuition with the area metric discussed in section 2, this measure is quite different from it. Note, 
for instance, that this measure is not a mathematical metric. It violates the property of identity of 
indiscernibles, because a value of zero for the measure does not imply that the intervals are 
identical. Mathematicians call a non-negative, symmetric function that satisfies the triangle 
inequality but not identity of indiscernibles a ‘pseudometric’. More fundamentally, this measure 
is not based on the shapes of the intervals like the area metric was based on the shapes of the 
probability distributions. Indeed, the shape of the intervals could be wildly different yet still yield 
a value of zero for the validation measure if they overlap at all. In fact, the formula above 
suggests that the measure is based instead on considering possible realizations of values X and Y 
from the respective intervals. 
 

4. Unification of the Two Conceptualizations for General Uncertain Numbers 
 
The key to harmonizing the shape-based comparison described in section 2 with the realization-
based comparison described in section 3 is to recognize that both are essentially special cases of 
the Wasserstein distance (Vallender 1973; Dobrushin 1970) 
 

YX
SnY
FX

−Einf
~
~

, 

 

where the E denotes the expectation operator, and the infimum is taken over all possible random 
variables X and Y that are distributed according to F and Sn respectively. When the prediction F 
and the data distribution Sn are probability distributions, the infimum searches over all possible 
stochastic dependencies between the random variables X and Y (constrained by the fact that they 
must respect their marginal distributions F and Sn). The Wasserstein distance is a metric for any 
distributions for which the infimum is finite (Dobrushin 1970). When the random variables are 
univariate, then it equals the area metric (Vallender 1973). The infimum occurs when the X and Y 
are comonotonic, that is, when the dependence between X and Y is perfect, and the correlation 
between them is a large as is possible given their marginal distributions. It is this fact that creates 
the graphical interpretation as the area between the distributions. 
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 When the prediction and data are intervals, we interpret the tilda to mean ‘is an element of’ 
and ignore the E operator (because intervals do not have probability measures defined over them) 
so that the Wasserstein distance is the same as our intuitive formula for the validation measure for 
intervals described in section 3. 
 The generalization of the Wasserstein distance for uncertain numbers is now clear: it should 
be the infimum expectation of the absolute value of the difference between the variates, where the 
infimum is taken over all possible distribution with respective uncertain numbers and under all 
possible dependencies between those distributions. The computational task of identifying this 
infimum may be challenging for some uncertain numbers such as credal sets, but it turns out to be 
rather simple for p-boxes. The area measuring mismatch for general p-boxes is the integral  
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where F and Sn denote the prediction and the data distributions, respectively, and the subscripts L 
and R denote the left and right bounds for those distributions, and  
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is the shortest distance between two intervals, or zero if the intervals touch or overlap. This 
measure integrates the regions of non-overlap between the two sets of bounds, for every value 
along the probability axis. 
 The thin p-boxes in the lower panel of graphs in Figure 2 are bounds on all possible 
distributions of the difference between the two random values. Instead of all possible 
distributions, we want the mean of the precise distribution of differences assuming perfect 
dependence between the prediction F and data distribution Sn. We might therefore characterize 
this measure as the mean perfect absolute difference of deviates, but perhaps it will suffice to 
continue to call it the ‘area measure’. It is important to keep in mind that we’re not selecting 
perfect dependence as our model of how the prediction and observation distributions are expected 
to be related to each other. Perfect dependence would mean that locally large observations would 
always be associated with locally large predicted values, and small with small, in a very strict 
fashion. We certainly do not believe that they would be related in this way in reality. Perfect 
dependence just falls out of the formula because it is the dependence that leads to the smallest 
possible value of the mean of the absolute differences. The smallest area is the one of interest 
because the distance between two things is the length of the shortest connection between them. At 
least for p-boxes, this also has the happy graphical interpretation as the area between the 
prediction and the observation. 
 Figure 3 depicts four more examples. As before, predictions are depicted in the upper panel in 
gray, and data are depicted in black, but now they are p-boxes rather than precise distributions. 
Under each of these four graphs, the corresponding area measure is shown as a dotted spike and 
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bounds on the all distribution of differences between random values from the prediction and 
observation p-boxes are shown as thin lines. In each of the four comparisons, the prediction is a 
p-box of normal distributions whose means are in the interval [1.75, 2.25] with standard deviation 
0.2, truncated at the 0.5th and 99.5th percentiles. In the first comparison, the data consists of a 
single interval [4,5], so the resulting area measure is 1.75. It is the area between the rightmost 
normal distribution inside the gray p-box and the leftmost scalar inside the black interval. It 
seems reasonable that the discrepancy between the prediction and data in this case is only 1.75 
units even though the difference between a predicted value and an observed data value could be 
larger than 3.5 units. The wide breadth of the bounds on the differences comes from the epistemic 
uncertainty about the prediction distribution and the data distribution within their respective p-
boxes and also from not making any assumption about the dependence between them. The data in 
the second comparison comes from 8 measurements for which measurement incertitude was 
±0.25. The 8 intervals implied by this incertitude were cumulated into a p-box describing 
epistemic uncertainty about the empirical distribution function (Ferson et al. 2007). The area in 
the second comparison is about 0.34, which is the between the right edge of the graph prediction 
and left edge of the black data p-box. In the third comparison, the empirical data had the same 
sample size and the same incertitude as in the second comparison, but the values happened to 
have a larger dispersion. In this case, the area is the sum of the two areas where the gray 
prediction p-box and the black data p-box do not overlap. In the fourth comparison, the data 
values had the same measurement uncertainty but a smaller dispersion and central tendency so the 
area measure is zero because there exist distributions that lie within both the prediction and data 
p-boxes. 
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Figure 3. Predictions (gray) and data (black) yielding area measures (dotted) and difference p-boxes (thin). 
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5. ‘Same Shape’ versus ‘Possibly Equal’ 
 
Although we think that using the area distance when the prediction and observations are uncertain 
numbers as described in the previous section is appropriate both mathematically and in practical 
engineering terms, we acknowledge that there are several other ways this generalization could be 
conceived. This section introduces three alternative generalizations of the area metric for use 
when uncertain numbers are used to characterize predictions or observations. 
 The area metric proposed in section 2 is based on the distribution functions of the predictions 
and the data, as distinguished from the random variables those distributions summarize. Although 
we chose to compare the shapes of the probability distributions when the quantities had only 
aleatory uncertainty, this choice does not seem satisfactory when there is epistemic uncertainty 
present as well. The area measure between the prediction and data in the general case as 
described in section 4, is no longer a mathematical metric when at least one is an interval or a 
more general uncertain number because the area can fall to zero without the prediction and data 
becoming identical (as in the rightmost graph of Figure 3). In section 4, the application of the area 
measure when prediction and data are characterized as uncertain numbers was based on the 
conventional idea that distance between two things is the length of the shortest line between 
them. There are, however, different ways to look at the question. A standard mathematical way to 
construct a metric between two potentially overlapping sets is to define  
 

⎟
⎠

⎞
⎜
⎝

⎛
∈∈∈∈

),(infsup),,(infsupmax FGdGFd
xFyGyGxF

 

 

where F is an element of the first set x and G is an element of the second set y and d is a metric on 
the space containing the sets (Pompieu 1905), which is our case would just be the area metric. 
The elements F and G are possible distribution functions taken from the respective prediction and 
data uncertain numbers x and y. This function is zero if and only if the set of distributions 
representing the prediction is the same as the set of distributions representing the data, that is, if 
their respective uncertain numbers had identical shapes. This function constitutes a much stricter 
view about agreement between prediction and data. It holds that perfect agreement involves not 
only overlapping but having exactly the same imprecision. Generalizing the area distance using 
this function would mean that our measure would remain a true mathematical metric, but it seems 
overly strict about what constitutes perfect agreement. For instance, suppose that the theoretical 
prediction is a simple interval and is to be compared with an observation that is also an interval 
and that the prediction interval is a subset of the observation interval. In other words, the 
prediction and observation agree in that they overlap, but the imprecision about the observation is 
wider than that of the prediction. It doesn’t seem reasonable to insist that the theory and data are 
somehow not in perfect agreement in this situation, nor to require that the theory somehow inflate 
the uncertainty of its prediction simply to match the poorer precision associated with the 
observation. 



14 Scott Ferson, William L. Oberkampf and Lev Ginzburg 

 Another way to generalize the area metric for uncertain numbers considers comparisons 
between distributions realized from the uncertain numbers, rather than the shapes of the uncertain 
numbers. For example, it might be natural to find upper and lower bounds on the areas between 
distributions that are consistent with the two uncertain numbers. Rather than differences between 
pairs of bounds, this would be bounds on differences between pairs of distributions. In this case, 
the measure would be the smallest and largest possible values of the underlying metric 
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,,
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where F and G are distribution functions within (consistent with) the respective uncertain 
numbers x and y. The range would be degenerate, i.e., the infimum and supremum would be the 
same if the two uncertain numbers are actually particular probability distributions, neither having 
any epistemic uncertainty. The range being double-zero would mean that the prediction and the 
data distribution are identical, and that neither has any epistemic uncertainty. This generalization 
is not a metric because it does not have the property of identity of indiscernibles; x and y could be 
identical and not yield a double-zero. 
 Note that this scheme, like the Pompieu scheme, can be very difficult computationally 
because there are infinitely many distributions within the uncertain numbers to be compared. It 
obviously does not suffice to compare extreme distributions corresponding to the edges of the 
uncertain numbers. For example, consider the leftmost graph of Figure 4. It is intuitively clear 
that that the smallest possible value of the area between a distribution inside the prediction 
bounds and a distribution inside the observation bounds corresponds to the shaded area. This area 
corresponds to a prediction distribution that follows the left edge of the prediction bounds 
(smooth gray bounds) for small probability levels and follows the right edge of the prediction 
bounds for large probabilities. The corresponding distribution consistent with the observation 
bounds (black step bounds) conversely follows the right edge of those bounds for small 
probabilities and the left edge for large probabilities. For intermediate probabilities, the prediction 
distribution and the empirical distribution are coincident monotone curves in the region where the 
bounds overlap. The largest possible area, however, is not so easy to discern from the graph. The 
two distributions that lead to the largest possible area are depicted on the rightmost graph of 
Figure 4. The distribution from within the prediction bounds is shown as a dashed line;  the 
distribution from within the observation bounds is shown as a dotted line. The area between these 
two distributions is shaded in the middle graph of the figure. The non-intuitive shape of the 
shading gives a hint at the computational complexity of bounding the area metric. This scheme of 
bounding the area is not itself a mathematical metric. Firstly, it produces two numbers rather than 
a single scalar. Secondly, it does not satisfy the property of identity of indiscernibles. Even if the 
prediction uncertain number is identical to the data uncertain number, the upper bound will not be 
zero (unless there is no epistemic uncertainty). 
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Figure 4. Smallest (left) and largest (middle and right) possible areas between a distribution inside the uncertain 

predictions (gray bounds) and a distribution inside the uncertain empirical observations (black step functions). The 
extremal distributions yielding the largest area are depicted in the right graph. 

 
 As yet another alternative, we could generalize our validation metric as the two-dimensional 
vector Д(x,y) = (d(xL, yL), d(xR, yR)) where the subscript L denotes the left side of a p-box and the 
subscript R denotes the right side, and d is our regular area metric for distributions. The left value 
of the pair reflects the difference between the left side of the prediction and the left side of the 
observations. Likewise, the right side of the distance pair reflects the difference between the right 
side of the prediction and the right side of the observations. This pair would constitute what we 
might call a double metric, Д: B × B → ℜ+ × ℜ+, where B is the set of all p-boxes (which 
includes intervals, probability distributions and scalars as special cases), and ℜ+ is the set of all 
positive real numbers, satisfying the following generalizations of the four metric properties: 
 

  Д(x, y) = (a, b)  implies both  a ≥ 0 and b ≥ 0         (non-negativity),       
   

  Д(x, y)  =  Д(y, x)                                                                       (symmetry),       
  

  Д(x, y) = (0,0)  if and only if  x = y                                     (identity of indiscernibles), and 
 

  ⎧  Д(x, y) = (a1, b1)  ⎫ 
  ⎨  Д(y, z) = (a2, b2)  ⎬ imply a1 + a2 ≥ a3 and b1 + b2 ≥ b3             (triangle inequality). 
  ⎩  Д(x, z) = (a3, b3)  ⎭ 
 

Figure 5 shows three examples of this double metric. In the leftmost graph, a scalar prediction at 
x = 7, depicted as a gray spike, is compared to an interval observation y = [14, 19] shown in 
black. The value 7 is compared against both sides of the interval to yield Д(x, y) = (|14−7|, |19−7|) 
= (7, 12). In the middle graph, the comparison is between two intervals, and the two-dimensional 
difference is Д([4, 9], [13, 18]) = (|13−4|, |18−9|) = (9, 9). In the rightmost graph of Figure 5 the 
black observation interval overlaps with the gray prediction interval. The double metric is Д([3, 
11], [8, 17]) = (|8−3|, |17−11|) = (5, 6). The value of the double metric would be (0,0) when the 
corresponding edges coincide exactly. Being double-zero would not mean that the uncertainty in 
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either the evidence or prediction has gone to zero, but only that they match in both location and 
imprecision. 
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Figure 5. A generalized, two-dimensional metric between uncertain numbers (intervals). 
 
 Four possible generalizations of the area metric for epistemic uncertainty in predictions or 
observations have been discussed in this and the previous section. None has all the properties one 
might desire. Neither the shortest distance nor the range of possible areas is a true mathematical 
metric because they do not have the property of identity of indiscernibles. In the case of the 
shortest distance, the distance being zero does not guarantee that the representation of the 
prediction is identical to the representation of the observations. In the case of the range of 
possible areas, if the prediction and observation representations are identical, the value will not 
generally be zero. The double metric and Pompieu’s max-sup-inf both have formal metric 
properties (or at least generalizations of them), but they seem to be overly strict in that predictions 
must match observations in their uncertainties even though there’s no physical or engineering 
reason to demand this. The double metric is the easiest to compute, followed by the shortest 
distance. Pompieu’s max-sup-inf and the range of possible areas are hardest to compute. The 
shortest distance measure and the double metric are both based on the comparing the shapes of 
the representations of the prediction and observations, whereas the other two measures are based 
on comparing individual elements (i.e., distribution functions consistent with those 
representations). The table below summarizes these observations. 
 

 Measure Scheme Metric Compute Strictness 
 Shortest distance Shape No Medium Reasonable 
 Pompieu’s max-sup-inf Element Yes Hard Too strict 
 Range of possible areas Element No Hard Reasonable 
 Double metric Shape Yes Easy Too strict 
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We expect that the shortest distance will be most useful in many practical applications. In some 
situations, the range of possible areas will be most informative. 
 The comparison between random numbers characterized by probability distributions could be 
understood in terms of their difference as real numbers that are realizations from those 
distributions or in terms of the discrepancies between the shapes of those distributions. When 
there is only aleatory uncertainty associated with the prediction and observations, it seems 
reasonable to use the latter comparison based on distribution shapes for the purposes of 
validation. The analogous comparison between uncertain numbers, i.e., characterizations of 
numerical quantities that express both aleatory and epistemic uncertainty, can also be considered 
in these two senses. But comparing the shapes of distributions does not seem completely 
satisfactory when there is epistemic uncertainty present as well. There are several approaches 
possible for handling epistemic uncertainty based on the area metric. Two of these approaches 
seem most promising. The first is based on comparing shapes and considers the measure of the 
disagreement to the smallest possible value of the area metric that would be consistent with 
distributions from within the express uncertainty. The second approach, based on realizations, 
considers the range of possible values of the area metric consistent with distributions within the 
uncertainty. 

6. Conclusions 
 
The comparison between random numbers that are characterized by probability distributions can 
be understood in terms of their difference as real numbers that are realizations from those 
distributions, or in terms of the discrepancies between the shapes of their distributions. It seems 
reasonable to use the latter comparison based on distribution shapes for the purposes of validation 
for (precise) probabilistic models. The analogous comparison between uncertain numbers, i.e., 
characterizations of numerical quantities that simultaneously express both aleatory and epistemic 
uncertainty, can also be considered in these two senses. But, whereas we chose to compare the 
shapes of the probability distributions when the quantities had only aleatory uncertainty, this 
choice does not seem satisfactory when there is epistemic uncertainty present as well. In the case 
of comparing two simple intervals which contain only epistemic uncertainty, if the prediction 
interval overlaps with the datum interval, then the prediction is perfectly correct from the 
perspective of a validation assessment. The shapes of the two intervals could be quite different, 
and indeed, their overlap could be very small, yet the validation measure of their mismatch is zero 
if they overlap at all. 
 There are several ways to unify and extend these apparently disparate notions of validation 
for the case of general uncertain numbers that include both epistemic and aleatory uncertainty. 
Perhaps the most workable is the smallest area between the uncertain numbers. This is the 
smallest possible area between probability distributions contained in the respective uncertain 
numbers under any possible dependence. For many situations in which p-boxes are used to 
characterize the prediction and the data, the smallest area is easy to compute when the edges of 



18 Scott Ferson, William L. Oberkampf and Lev Ginzburg 

REC 2008 – Ferson et al. 

the p-boxes represent admissible distributions. In these cases, the smallest area is the mean of the 
distribution of differences of the extremal distributions computed under the assumption of perfect 
dependence. 
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