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Abstract: Static analysis is an essential procedure to design a structure. Using static analysis, the 
structure’s response to the applied external forces is obtained. This response includes internal 
forces/moments and internal stresses that is used in the design process. However, the mechanical 
characteristics of the structure possess uncertainties which alter the structure’s response. One 
method to quantify the presence of these uncertainties is interval or unknown-but-bounded 
variables.  
 
In this work a new method is developed to obtain the bounds on structure’s static response using 
interval eigenvalue decomposition of the stiffness matrix. The bounds of eigenvalues are obtained 
using monotonic behavior of eigenvalues for a symmetric matrix subjected to non-negative 
definite perturbations. Moreover, the bounds of eigenvectors are obtained using perturbation of 
invariant subspaces for symmetric matrices. Comparisons with other interval finite element 
solution methods are presented. Using this method, it has shown that obtaining the bound on 
static response of an uncertain structure does not require a combinatorial or Monte-Carlo 
simulation procedure. 
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1. Introduction 
 
In design of structures, the performance of the structure must be guaranteed over its lifetime. 
Moreover, static analysis is a fundamental procedure for designing reliable structure that are 
subjected to static or quasi-static forces induced by various loading conditions and patterns.  
 

However, in current procedures for static analysis of structural systems, the existence of 
uncertainty in either mechanical properties of the system or the characteristics of forcing function 
is generally not considered. These uncertainties can be attributed to physical imperfections, 
modeling inaccuracies and system complexities.  
 

Although, in a design process, uncertainty is accounted for by a combination of load 
amplification and strength reduction factors that are based on probabilistic models of historic 
data, consideration of the effects of uncertainty has been removed from current static analysis of 
structural systems.  

 
 In this work, a new method is developed to perform static analysis of a structural system in 
the presence of uncertainty in the system’s mechanical properties as well as uncertainty in the 
magnitude of loads. The presence of these uncertainties is quantified using interval or unknown-
but-bounded variables.  
 

 This method obtains the bounds on structure’s static response using interval eigenvalue 
decomposition of the stiffness matrix. The bounds of eigenvalues are obtained using the concept 
of monotonic behavior of eigenvalues for a symmetric matrix subjected to non-negative definite 
perturbations. Furthermore, the bounds of eigenvectors are obtained using perturbation of 
invariant subspaces for symmetric matrices. Using this method, it has shown that obtaining the 
bound on static response of an uncertain structure does not require a combinatorial or Monte-
Carlo simulation procedure. 
 

2. Deterministic Static Analysis 
 

The equation of equilibrium for a multiple degree of freedom structure is defined as a linear 
system of equations as:   
 }{}]{[ PUK =            (1) 
 

where, ][K is the stiffness matrix, }{U is the vector of unknown nodal displacements, and 
}{P  is the vector of nodal forces. The solution to this system of equation is: 

 
 }{][}{ 1 PKU −=            (2) 
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3. Interval Variables 
 
The concept of interval numbers has been originally applied in the error analysis associated with 
digital computing.  Quantification of the uncertainties introduced by truncation of real numbers in 
numerical methods was the primary application of interval methods (Moore 1966).  
 

A real interval is a closed set defined by extreme values as (Figure 1): 
 
 }|{],[~ ulul zzzzzzZ ≤≤ℜ∈==  (3) 

 

 
 

 
 

Figure 1. An interval variable. 
 
 

In this work, the symbol (~) represents an interval quantity. One interpretation of an interval 
number is a random variable whose probability density function is unknown but non-zero only in 
the range of interval.  
 

Another interpretation of an interval number includes intervals of confidence for α -cuts of 
fuzzy sets. The interval representation transforms the point values in the deterministic system to 
inclusive set values in the system with bounded uncertainty. 
 
 

3. Interval Static Analysis 
 

Considering the presence of interval uncertainty in stiffness and force properties, the system of 
equilibrium equations, Eq.(1), is modified as an interval system of equilibrium equation as: 

 
 }~{}]{~[ PUK =            (4) 
 

where, ]~[K is the interval stiffness matrix, }{U is the vector of unknown nodal 
displacements, and }{P  is the vector of interval nodal forces. In development of interval stiffness 
matrix, the physical and mathematical characteristics of the stiffness matrix must be preserves. 
  
 

],[~ bax =
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This system of interval equations is mainly solved using computationally iterative procedures 
(Muhanna et al 2007) and (Neumaier and Pownuk 2007). The present method proposes a 
computationally efficient procedure with nearly sharp results using interval eigenvalue 
decomposition of stiffness matrix. 

 
While the external force can also have uncertainties, in this work only problems with interval 

stiffness properties are addressed. However, for functional independent variations for both 
stiffness matrix and external force vector, the extension of the proposed work is straightforward. 
 
 
3.1. DETERMINISTIC EIGENVALUE DECOMPOSITION 
 
The deterministic symmetric stiffness matrix can be decomposed using matrix eigenvalue 
decomposition as: 
 TK ]][][[][ ΦΛΦ=            (5) 

 
where, ][Φ  is the matrix of eigenvectors, and ][Λ  is the diagonal matrix of eigenvalues. 

Equivalently, 

 ∑
=

=
N

i

T
iiiK

1

}}{{][ ϕϕλ            (6) 

 
where, the values of iλ  is the eigenvalues and the vectors }{ iϕ are their corresponding 

eigenvectors.  Therefore, the eigenvalue decomposition of the inverse of the stiffness matrix is: 
 
 TK ][]][[][ 11 ΦΛΦ= −−            (7) 

 
equivalently, 

 ∑
=

− =
N

i

T
ii

i

K
1

1 }}{{1][ ϕϕ
λ

          (8) 

 
Substituting Eq.(8) in the solution for the deterministic linear system of equation, Eq.(2), the 

solution for response is shown as: 
 

 }){}}{{1(}{
1

PU
N

i

T
ii

i
∑
=

= ϕϕ
λ

           (9) 
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3.2. INTERVAL EIGENVALUE DECOMPOSITION 
 
Similarly, the solution to interval system of equilibrium equations, Eq.(4), is: 
 

 }){}~}{~{~
1(}~{

1

PU
N

i

T
ii

i
∑
=

= ϕϕ
λ

           (10) 

 
where, the values of iλ

~
 is the interval eigenvalues and, the vectors }~{ iϕ  are their 

corresponding interval eigenvectors that are to be determined. 
 
 

4. Interval Eigenvalue Problem 
 
 
4.1. BACKGROUND 
 
The research in interval eigenvalue problem began to emerge as its applicability in science and 
engineering was realized. Hollot and Bartlett (1987) studied the spectra of eigenvalues of an 
interval matrix family which are found to depend on the spectrum of its extreme sets. Dief (1991) 
presented a method for computing interval eigenvalues of an interval matrix based on an 
assumption of invariance properties of eigenvectors.  
 

In structural dynamics, Modares and Mullen (2004) have introduced a method for the 
solution of the interval eigenvalue problem which determines the exact bounds of the natural 
frequencies of a system using Interval Finite Element formulation. 
 
 
4.2. DEFINITION 
 
The eigenvalue problems for matrices containing interval values are known as the interval 
eigenvalue problems. If ]~[A  is an interval real matrix )~( nnA ×ℜ∈  and ][A  is a member of the 

interval matrix ])~[]([ AA ∈ , the interval eigenvalue problem is shown as:  
 
 ])~[]([,0}]){[]([ AAxIA ∈=− λ  (11) 
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4.2.1. Solution for Eigenvalues 
 
The solution of interest to the real interval eigenvalue problem for bounds on each eigenvalue is 
defined as an inclusive set of real values )~(λ  such that for any member of the interval matrix, the 
eigenvalue solution to the problem is a member of the solution set. Therefore, the solution to the 
interval eigenvalue problem for each eigenvalue can be mathematically expressed as: 
 
 }0}]){[]([:]~[][|],[~{ =−∈∀=∈ xIAAAul λλλλλ  (12) 
 
4.2.2. Solution for Eigenvectors: 
 
The solution of interest to the real interval eigenvalue problem for bounds on each eigenvector is 
defined as an inclusive set of real values of vector }~{x  such that for any member of the interval 
matrix, the eigenvector solution to the problem is a member of the solution set. Thus, the solution 
to the interval eigenvalue problem for each eigenvector is: 
 
 }0}]){[]([:],~[][|}~{}{{ =−∈∀∈ xIAAAxx λλ  (13) 
 
 
4.3. INTERVAL STIFFNESS MATRIX 
 
The system’s global stiffness can be viewed as a summation of the element contributions to the 
global stiffness matrix:  

 ∑
=

=
n

i

T
iii LKLK

1

]][][[][  (14) 

 
where [ iL ] is the element Boolean connectivity matrix and ][ iK  is the element stiffness 

matrix in the global coordinate system. Considering the presence of uncertainty in the stiffness 
properties, the non-deterministic element elastic stiffness matrix is expressed as: 

 
 ]])[,([]~[ iiii KulK =  (15) 
 

in which, ],[ ii ul  is an interval number that pre-multiplies the deterministic element stiffness 
matrix. This procedure preserves the physical and mathematical characteristics of the stiffness 
matrix. 
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Therefore, the system’s global stiffness matrix in the presence of any uncertainty is the linear 
summation of the contributions of non-deterministic interval element stiffness matrices: 

  

 ∑∑
==

==
n

i
iii

n

i

T
iiiii KulLKLulK

11

]])[,([]][][])[,([]~[  (16) 

 

in which, ][ iK  is the deterministic element elastic stiffness contribution to the global stiffness 
matrix.  

 
4.4. INTERVAL EIGENVALUE PROBLEM FOR STATICS 
 
The interval eigenvalue problem for a structure with stiffness properties expressed as interval 
values is: 
 }~){~(}~]{~[ ϕλϕ =K  (17) 
 
Substituting Eq.(16) in Eq.(17): 
 

 }~){~(}~){]])[,([(
1

ϕλϕ =∑
=

n

i
iii Kul  (18) 

 
This interval eigenvalue problem can be transformed to a pseudo-deterministic eigenvalue 

problem subjected to a matrix perturbation. Introducing the central and radial (perturbation) 
stiffness matrices as: 

 ∑
=

+
=

n

i
i

ii
C K

ul
K

1
])[

2
(][  (19) 

 ∑
=

−
=

n

i
i

ii
iR K

lu
K

1
])[

2
)((]~[ ε    ,    ]1,1[−=iε               (20) 

 
Using Eqs. (19,20), the non-deterministic interval eigenpair problem, Eq.(18),  becomes:  

 
 }~){~(}~]){~[]([ ϕλϕ =+ RC KK  (21) 

 
Hence, the determination of bounds on eigenvalues and bounds on eigenvectors of a stiffness 

matrix in the presence of uncertainty is mathematically interpreted as an eigenvalue problem on a 
central stiffness matrix ( ][ CK ) that is subjected to a radial perturbation stiffness matrix ( ]~[ RK ). 
This perturbation is in fact, a linear summation of non-negative definite deterministic element 
stiffness contribution matrices that are scaled with bounded real numbers )( iε . 
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5. Solution 
 
5.1. BOUNDS ON EIGENVALUES 

 
The following concepts must be considered in order to bound the non-deterministic interval 
eigenvalue problem, Eq.(21). The classical linear eigenpair problem for a symmetric matrix is: 
 
 }{}]{[ xxA λ=  (22) 
 

with the solution of real eigenvalues ( nλλλ ≤≤≤ ...21 ) and corresponding eigenvectors 
( nxxx ,...,, 21 ). This equation can be transformed into a ratio of quadratics known as the Rayleigh 
quotient: 

 
}{}{

}]{[}{)(
xx

xAxxR T

T

=                       (23) 

 
The Rayleigh quotient for a symmetric matrix is bounded between the smallest and the 

largest eigenvalues (Bellman 1960 and Strang 1976). 
 

 nT

T

xx
xAxxR λλ ≤=≤

}{}{
}]{[}{)(1  (24) 

 
Thus, the first eigenvalue ( 1λ ) can be obtained by performing an unconstrained minimization 

on the scalar-valued function of Rayleigh quotient:   
 

 1)
}{}{

}]{[}{(min)(min λ==
∈∈ xx

xAxxR T

T

RxRx nn
 (25) 

 
For finding the next eigenvalues, the concept of maximin characterization can be used. This 

concept obtains the kth eigenvalue by imposing (k-1) constraints on the minimization of the 
Rayleigh quotient (Bellman 1960 and Strang 1976):  

 
)](max[min xRk =λ  

 (subject to constrains 2,1,...1),0( ≥−== kkizx i
T ) (26) 
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5.1.1. Bounding the Eigenvalues for Statics 
 
Using the concepts of minimum and maximin characterizations of eigenvalues for symmetric 
matrices, the solution to the interval eigenvalue problem for the eigenvalues of a system with 
uncertainty in the stiffness characteristics (Eq.(21)) for the first eigenvalue can be shown as: 
 

 )
}{}{

}){]])[,([(}{
(min)

}{}{
}]{~[}{(min~ 1

1 xx

xKulx

xx
xKx

T

n

i
iii

T

RxT

T

Rx nn

∑
=

∈∈
==λ  (27) 

 
for the next eigenvalues: 
 

 )]
}]{[}{

}]){~[]([}{(minmax[]
}{}{

}]{~[}{minmax[~
1,...,1,0.1,...,1,0. xMx

xKKx
xx

xKx
T

RC
T

kizxT

T

kizxk
ii

+
==

−==−==
λ  (28) 

 
 
5.1.2. Deterministic Eigenvalue Problems for Bounding Eigenvalues in Statics 
 
Substituting and expanding the right-hand side terms of Eqs. (27,28): 
 
 

)
}{}{

}]{[}{
)(

2
)(~()

}{}{
}]{[}{

)(
2

()
}{}{

}]{~[}{
}{}{

}]{[}{
(

11 xx
xKxlu

xx
xKxul

xx
xKx

xx
xKx

T
i

Tn

i

ii
i

n

i
T

i
T

ii
T

R
T

T
C

T

∑∑
==

−
+

+
=+ ε

 
(29) 

   

Since the matrix ][ iK  is non-negative definite, the term )
}{}{

}]{[}{(
xx

xKx
T

i
T

 is non-negative.  

 
Therefore, using the monotonic behavior of eigenvalues for symmetric matrices, the upper 

bounds on the eigenvalues in Eqs.(19,20) are obtained by considering maximum values of 
interval coefficients of uncertainty ])1,1[~( −=iε , )1)(( max =iε , for all elements in the radial 
perturbation matrix.  
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Similarly, the lower bounds on the eigenvalues are obtained by considering minimum values 
of those coefficients, )1)(( min −=iε , for all elements in the radial perturbation matrix. Also, it 
can be observed that any other element stiffness selected from the interval set will yield 
eigenvalues between the upper and lower bounds. This imonotonic behavior of eigenvalues can 
also be used for parameterization purposes.  

 
Using these concepts, the deterministic eigenvalue problems corresponding to the maximum 

and minimum eigenvalues are obtained (Modares and Mullen 2004) as:  
 

 }){(}){])[(( max
1

ϕλϕ =∑
=

n

i
ii Ku  (30) 

 }){(}){])[(( min
1

ϕλϕ =∑
=

n

i
ii Kl  (31) 

 
 
 
5.2. BOUNDS ON EIGENVECTORS 
 
5.2.1. Invariant Subspace 
 
The subspace χ  is defined to be an invariant subspace of matrix ][A  if: 
 
 χχ ⊂A     (32) 
 

Equivalently,  if χ  is an invariant subspace of nnA ×][  and also, columns of mnX ×][ 1  form a 
basis for χ , then there is a unique matrix mmL ×][ 1  such that: 
 
 ]][[]][[ 111 LXXA =  (33) 
 

The matrix ][ 1L  is the representation of ][A  on χ  with respect to the basis ][ 1X  and the 
eigenvalues of ][ 1L  are a subset of eigenvalues of ][A . Therefore, for the invariant subspace, 

)},({ λv  is an eigenpair of ][ 1L  if and only if )}},]{({[ 1 λvX  is an eigenpair of ][A .  
 
 
 



 Static Analysis of Uncertain Structures Using Interval Eigenvalue Decomposition 11 
 

 

5.2.2. Theorem of Invariant Subspaces 
 
For a real symmetric matrix ][A , considering the subspace χ  with the linearly independent 
columns of ][ 1X  forming a basis for χ  and the linearly independent columns of ][ 2X  spanning 
the complementary subspace ⊥χ , then,  χ  is an invariant subspace of ][A  iff: 
 
 ]0[]][[][ 12 =XAX T  (34) 
  

Therefore, invoking this condition and postulating the definition of invariant subspaces, the 
symmetric matrix ][A  can be reduced to a diagonalized form using a unitary similarity 
transformation as: 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

][]0[
]0[][

]][[][]][[][
]][[][]][[][

]][[][
2

1

2212

2111
2121 L

L
XAXXAX
XAXXAX

XXAXX TT

TT
T  (35) 

 
where .2,1],][[][][ == iXAXL i

T
ii  

 
5.2.3. Simple Invariant Subspace 
 
An invariant subspace is simple if the eigenvalues of its representation ][ 1L  are distinct from 
other eigenvalues of ][A . Thus, using the reduced form of ][A  with respect to the unitary matrix 

]]][[[ 21 XX , χ  is a simple invariant subspace if the eigenvalues of ][ 1L  and ][ 2L  are distinct: 
 
 ∅=])([])([ 21 LL λλ I  (36) 
 
5.2.4. Perturbed Eigenvector 
 
Considering the column spaces of ][ 1X  and ][ 2X   to span two complementary simple invariant 
subspaces, the perturbed orthogonal subspaces are defined as: 
 
 ]][[][]ˆ[ 211 PXXX +=  (37) 

 TPXXX ]][[][]ˆ[ 122 −=  (38) 
 

in which ][P  is a matrix to be determined.  
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Thus, each perturbed subspace is defined as a summation of the exact subspace and the 
contribution of the complementary subspace. Considering a symmetric perturbation ][E , the 
perturbed matrix is defined as: 
 ][][]ˆ[ EAA +=  (39) 
 

Applying the theorem of invariant subspaces for perturbed matrix and perturbed subspaces, 
and linearizing due to a small perturbation compared to the unperturbed matrix, Eq.(34) is 
rewritten as: 
 ]][[][]][[]][[ 1221 XEXPLLP T=−  (40) 
 

This perturbation problem is an equation for unknown ][P  in the form of a Sylvester’s 
equation in which, the uniqueness of the solution is guaranteed by the existence of simple 
perturbed invariant subspaces. 
 

Finally, specializing the result for one eigenvector and solving the above equation, the 
perturbed eigenvector is (Stewart and Sun 1990): 
 
 }]{[][])[][]([}{}ˆ{ 12

1
21211 xEXLIXxx T−−+= λ  (41) 

 
5.2.5 Bounding Eigenvectors for Statics 
 
For the perturbed eigenvalue problem for statics, Eq.(21),  the error matrix is:  
 

 ∑
=

−
==

n

i
i

ii
iR KluKE

1

]))[
2

)(((]~[][ ε  (42)        

 
Using the error matrix in eigenvector perturbation equation for the first eigenvector, Eq.(33) 

the perturbed eigenvector is:  
 

 })){])[
2

)(((][])[][](([}{}~{ 1
1

2
1

21211 ϕελϕϕ ∑
=

− −
ΦΛ−Φ+=

n

i
i

ii
i

T KluI  (43) 

 
in which, }{ 1ϕ is the first eigenvector, )( 1λ  is the first eigenvalue, ][ 2Φ  is the matrix of 

remaining eigenvectors and ][ 2Λ  is the diagonal matrix of remaining eigenvalues obtained from 
the deterministic eigenvalue problem. Eq.(30,31 and 43) is used to calculate the bounds on 
interval eigenvalues and interval eigenvectors in the response equation, Eq.(9).  
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In order to attain sharper results, the functional dependency of intervals in direct interval 
multiplications in Eq.(9) is considered. Also, input intervals are subdivided and the union of 
responses of subset results is obtained. 
 
 

6. Numerical Example Problem 
 
The bounds on the static response for a 2-D statically indeterminate truss with interval uncertainty 
present in the modulus of elasticity of each element are determined (Figure 2). The cross-
sectional area A , the length for horizontal and vertical members L , the Young’s moduli E for all 
elements are EE ])01.1,99.0([~ = . 

 
Figure 2.  The structure of 2-D truss 

 
The problem is solved using the method presented in this work. The functional dependency of 

intervals in the response equation is considered. A hundred-segment subdivision of input intervals 
is performed and the union of responses is obtained. For comparison, an exact combinatorial 
analysis has performed which considers lower and upper values of uncertainty for each element 
i.e. solving ( 102422 10 ==n ) deterministic problems.  
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The static analysis results obtained by the present method and the brute force combination 
solution for the vertical displacement of the top nodes in are summarized Table (1). 

 
 

  

Lower Bound 
Present Method 

 

Lower Bound 
Combination 

Method 
 

 

Upper Bound 
Combination 

Method 

 

Upper Bound 
Present Method 

 

Error 
% 

⎟
⎠
⎞

⎜
⎝
⎛

AE
PL
U

 
-1.6265 -1.6244 -1.5859 -1.5838 % 0.12 

 
Table1. Bounds on Vertical Displacement of Top Nodes 

 
 

The results show that the proposed robust method yields nearly sharp results in a 
computationally efficient manner as well as preserving the system’s physics. 
 
 
 

4. Conclusions 
 
A finite-element based method for static analysis of structural systems with interval uncertainty in 
mechanical properties is presented.  
 

This method proposes an interval eigenvalue decomposition of stiffness matrix. By obtaining 
the exact bounds on the eigenvalues and nearly sharp bounds on the eigenvectors, the proposed 
method is capable to obtain the nearly sharp bounds on the structure’s static response.  
 

Some conservative overestimation in response occurs that can be attributed to the 
linearization in formation of bounds of eigenvectors and also, the functional dependency of 
intervals in the dynamic response formulation.  
 

This method is computationally feasible and it shows that the bounds on the static response 
can be obtained without combinatorial or Monte-Carlo simulation procedures. 
 

This computational efficiency of the proposed method makes it attractive to introduce 
uncertainty into structural static analysis and design. While this methodology is shown for 
structural systems, its extension to various mechanics problems is straightforward. 
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