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Abstract. In the past, communications were much slower than computations. As a result, re-
searchers and practitioners collected different data into huge databases located at a single location
such as NASA and US Geological Survey. At present, communications are so much faster that it
is possible to keep different databases at different locations, and automatically select, transform,
and collect relevant data when necessary. The corresponding cyberinfrastructure is actively used in
many applications. It drastically enhances scientists’ ability to discover, reuse and combine a large
number of resources, e.g., data and services.

Because of this importance, it is desirable to be able to gauge the the uncertainty of the results
obtained by using cyberinfrastructure. This problem is made more urgent by the fact that the level
of uncertainty associated with cyberinfrastructure resources can vary greatly – and that scientists
have much less control over the quality of different resources than in the centralized database. Thus,
with the cyberinfrastructure promise comes the need to analyze how data uncertainty propagates
via this cyberinfrastructure.

When the resulting accuracy is too low, it is desirable to produce the provenance of this inac-
curacy: to find out which data points contributed most to it, and how an improved accuracy of
these data points will improve the accuracy of the result. In this paper, we describe algorithms for
propagating uncertainty and for finding the provenance for this uncertainty.

Keywords: cyberinfrastructure, uncertainty, interval uncertainty, probabilistic uncertainty, prove-
nance

1. Cyberinfrastructure: A Brief Overview

Practical problem: need to combine geographically separate computational resources.
In different knowledge domains in science and engineering, there is a large amount of data stored
in different locations, and there are many software tools for processing this data, also implemented
at different locations. Users may be interested in different information about this domain.

Sometimes, the information required by the user is already stored in one of the databases. For
example, if we want to know the geological structure of a certain region in Texas, we can get this
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information from the geological map stored in Austin. In this case, all we need to do to get an
appropriate response from the query is to get this data from the corresponding database.

In other cases, different pieces of the information requested by the user are stored at different
locations. For example, if we are interested in the geological structure of the Rio Grande Region,
then we need to combine data from the geological maps of Texas, New Mexico, and the Mexican
state of Chihuahua. In such situations, a correct response to the user’s query requires that we access
these pieces of information from different databases located at different geographic locations.

In many other situations, the appropriate answer to the user’s request requires that we not
only collect the relevant data x1, . . . , xn, but that we also use some data processing algorithms
f(x1, . . . , xn) to process this data. For example, if we are interested in the large-scale geological
structure of a geographical region, we may also use the gravity measurements from the gravity
databases. For that, we need special algorithms to transform the values of gravity at different
locations into a map that describes how the density changes with location. The corresponding
data processing programs often require a lot of computational resources; as a result, many such
programs reside on computers located at supercomputer centers, i.e., on computers which are
physically separated from the places where the data is stored.

The need to combine computational resources (data and programs) located at different geo-
graphic locations seriously complicates research.

Centralization of computational resources – traditional approach to combining com-
putational resources; its advantages and limitations. Traditionally, a widely used way to
make these computational resources more accessible was to move all these resources to a central
location. For example, in the geosciences, the US Geological Survey (USGS) was trying to become
a central repository of all relevant geophysical data. However, this centralization requires a large
amount of efforts: data is presented in different formats, the existing programs use specific formats,
etc. To make the central data repository efficient, it is necessary:

− to reformat all the data,

− to rewrite all the data processing programs – so that they become fully compatible with the
selected formats and with each other, etc.

The amount of work that is needed for this reformatting and rewriting is so large that none of these
central repositories really succeeded in becoming an easy-to-use centralized database.

Cyberinfrastructure – a more efficient approach to combining computational resources.
Cyberinfrastructure technique is a new approach that provides the users with the efficient way
to submit requests without worrying about the geographic locations of different computational
resources – and at the same time avoid centralization with its excessive workloads. The main idea
behind this approach is that we keep all (or at least most) the computational resources

− at their current locations,

− in their current formats.

To expedite the use of these resources:
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− we supplement the local computational resources with the “metadata”, i.e., with the informa-
tion about the formats, algorithms, etc.,

− we “wrap up” the programs and databases with auxiliary programs that provide data compat-
ibility into web services,

and, in general, we provide a cyberinfrastructure that uses the metadata to automatically combine
different computational resources.

For example, if a user is interested in using the gravity data to uncover the geological structure
of the Rio Grande region, then the system should automatically:

− get the gravity data from the UTEP and USGS gravity databases,

− convert them to a single format (if necessary),

− forward this data to the program located at San Diego Supercomputer Center, and

− move the results back to the user.

This example is exactly what we have been designing under the NSF-sponsored Cyberinfrastructure
for the Geosciences (GEON) project; see, e.g., (Aguiar et al., 2004; Aldouri et al., 2004; Averill et
al., 2005; Ceberio et al., 2006; Ceberio et al., 2005; Keller et al., 2006; Platon et al., 2005; Schiek
et al., 2007; Sinha, 2006; Torres et al., 2004; Wen et al., 2001; Xie et al., 2003), and what we
are currently doing under the NSF-sponsored Cyber-Share project. This is similar to what other
cyberinfrastructure projects are trying to achieve.

Technical advantages of cyberinfrastructure: a brief summary. In different knowledge
domains, there is a large amount of data stored in different locations; algorithms for processing
this data are also implemented at different locations. Web services – and, more generally, cy-
berinfrastructure – provide the users with an efficient way to submit requests without worrying
about the geographic locations of different computational resources (databases and programs) –
and avoid centralization with its excessive workloads (Gates at el., 2006). Web services enable the
user to receive the desired data x1, . . . , xn and the results y = f(x1, . . . , xn) of processing this data.

Main advantage of cyberinfrastructure: the official NSF viewpoint. Up to now, we con-
centrated on the technical advantages of cyberinfrastructure. However, its advantages (real and
potential) go beyond technical. According to the final report of the National Science Foundation
(NSF) Blue Ribbon Advisory Panel on Cyberinfrastructure, “a new age has dawned in scientific and
engineering research, pushed by continuing progress in computing, information, and communication
technology, and pulled by the expanding complexity, scope, and scale of today’s challenges. The
capacity of this technology has crossed thresholds that now make possible a comprehensive ‘cyber-
infrastructure’ on which to build new types of scientific and engineering knowledge environments
and organizations and to pursue research in new ways and with increased efficacy.

Such environments and organizations, enabled by cyberinfrastructure, are increasingly required
to address national and global priorities, such as understanding global climate change, protecting

REC 2008 - Paulo Pinheiro da Silva et al.



4 Paulo Pinheiro da Silva et al.

our natural environment, applying genomics-proteomics to human health, maintaining national
security, mastering the world of nanotechnology, and predicting and protecting against natural and
human disasters, as well as to address some of our most fundamental intellectual questions such as
the formation of the universe and the fundamental character of matter.”

Main advantage of cyberinfrastructure: in short. Cyberinfrastructure greatly enhances the
ability of scientists to discover, reuse and combine a large number of resources, including data and
services.

2. Data Processing vs. Data Fusion

Practically important situation: it is difficult to directly measure the desired quantity
with a given accuracy. In practice, we are often interested in a quantity y which is difficult (or
even impossible) to directly measure with the desired accuracy.

In this situation, there are two ways to estimate the value of the desired quantity y with the
desired accuracy:

− measuring other (related) easier-to-measure quantities and then extracting the value y from
these measurements; this is called data processing; and

− measuring the same quantity y many times and combining the results of these measurements;
this is called data fusion.

Important terminological comment. To avoid confusion, we would like to emphasize that sometimes,
the term “data processing” refers to all possible processing of data by computers. In this more
general sense, data fusion can be viewed as a particular case of data processing. In this paper, we
limit ourselves to the narrow sense of the term “data processing”.

First idea: data processing. One possible way of estimating the desired quantity y with a given
accuracy is to look for easier-to-measure quantities x1, . . . , xn which are related to the desired y by
a known dependence y = f(x1, . . . , xn). Based on the results x̃1, . . . , x̃n of measuring these auxiliary
quantities, we can then compute an estimate ỹ = f(x̃1, . . . , x̃n) for the quantity y.

The entire process of measurement followed by estimation is called an indirect measurement of
y; see, e.g., (Rabinovich, 2005). The actual computation of ỹ = f(x̃1, . . . , x̃n) is known as data
processing.

Comment. Data processing is one of the main reasons why computers were invented in the first
place, and it is still one of the major uses of computers.

Data processing: example from the geosciences. In geosciences, we want to know the structure
at different depth. To determine this structure, we need to know the density y of the material at
different depths. It is very difficult (and very expensive) to directly measure this density. Therefore,
geoscientists measure this density indirectly.

For example, during an earthquake, geoscientists record the seismic waves at sensors located
at different points on the Earth surface. As a result, we obtain the travel times x1, . . . , xn of the
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seismic signal from the earthquake location to the sensor location. Based on these travel times, we
determine the structure of the Earth along the paths of the corresponding seismic waves.

The main limitations of this analysis is that earthquakes are unpredictable, they occur only
at some locations and as a result, several important areas of the earth are not well covered by
the corresponding paths. Thus, in addition to such passive (earthquake-related) seismic analysis,
geoscientists also perform active seismic experiments, in which they start small-scale explosions
in specially allocated areas and measure the travel times of the generated seismic waves. Based
on these travel times, we can also determine the desired Earth structure, i.e., to be more precise,
the values of the density at different depths and different locations; see, e.g., (Averill, 2007; Hole,
1992; Parker, 1994).

Specifics of data processing in cyberinfrastructure. In traditional data processing, when we
want to know the value of a difficult-to-measure quantity y, and we know the relation between this
quantity and easier-to-measure quantities xi, we then measure the values xi and use the results x̃i

of these measurements to compute the estimate ỹ = f(x̃1, . . . , x̃n) for the desired quantity y.
As we have mentioned earlier, the main idea of a cyberinfrastructure is to keep all the existing

measurement results readily available. Thus, with cyberinfrastructure in place, first we look for the
results x̃i of measuring xi in the existing databases. Only when we do not find these results x̃i – or
when these results are not accurate enough – only then we actually start measuring.

Specifics of data processing in cyberinfrastructure: example from the geosciences. For
example, if we want to know the geophysical structure in a certain area, instead of performing active
seismic experiments we first try to combine all the known results of active seismic experiments which
are related to this area. If this information is not sufficient, then we will, of course, have to perform
new experiments.

Second idea: data fusion. The second idea is also very straightforward: since we cannot achieve
the desired accuracy in the desired quantity y by a single measurement, we perform several indepen-
dent measurements of this same quantity, and then combine (“fuse”) the resulting (less accurate)
values ỹ1, . . . , ỹn into a single (more accurate) estimate ỹ for y.

This combination can be as simple as taking an arithmetic average ỹ =
1
n
· (ỹ1 + . . . + ỹn), or it

can be more complicated: e.g., taking a weighted average or applying some non-linear combination
technique. Several such techniques will be described and analyzed later in this paper.

Data fusion: examples. Data fusion is, in effect, a standard procedure that is routinely done in
engineering and scientific practice (see, e.g., (Rabinovich, 2005)):

− the super-precise time is obtained by using three (or more) independent precise clocks and
combining the results of these measurements;

− in medical practice, important quantities such as high blood pressure are often performed at
least twice, etc.

Specifics of data processing in cyberinfrastructure. In the traditional engineering and scien-
tific practice, we actually measure the desired quantity y several times. With cyberinfrastructure in
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place, we first look for the existing results of measuring the desired quantity, and try to fuse them
into a single estimate.

Only if the accuracy of the resulting estimate is not good enough, then we perform additional
measurements.

Combination of data processing and data fusion. In real life, to achieve the desired accuracy,
it is often necessary both to use multiple measurement and to perform indirect measurements. In
other words, in many situations, we need to combine data processing and data fusion.

For example, for many geological regions, we already have several density distributions obtained
by processing different seismic data. To get a more accurate picture, it is reasonable to combine
(fuse) the resulting approximate values of density, i.e., to fuse the existing data processing results.

3. Need for Uncertainty Propagation, and for Provenance of Uncertainty

Need for uncertainty propagation. As we have mentioned, one of the main reasons why we
need data processing (i.e., indirect measurements) and data fusion (i.e., multiple measurements)
in the first place is that the accuracy of the original direct measurement is not high enough. It is
therefore important to make sure that after the proposed data processing and/or data fusion, we
get the desired accuracy. In other words, we must find out how the uncertainty (inaccuracy) of the
direct measurement results propagates via the infrastructure.

The need for uncertainty propagation is enhanced by the fact that the level of uncertainty
associated with cyberinfrastructure resources can vary greatly – as well as the level of uncer-
tainty of any response derived from such resources. Also, in contrast to the centralized platform,
in cyberinfrastructure, scientists have less control about the quality of different resources. Thus,
the cyberinfrastructure promise comes along with the need to support the associated uncertainty
analysis uncertainty propagation.

Need for the provenance of uncertainty. When the resulting accuracy is sufficient, we get the
desired estimate ỹ. However, sometimes, the resulting accuracy is still too low. In this situation, it
is desirable to produce the provenance of this inaccuracy: to find out which data points contributed
most to it, and how an improved accuracy of these data points will improve the accuracy of the
result.

Comment. In this paper, we mainly deal with the provenance of uncertainty. It is worth mentioning
that in general, other aspects of provenance are also very important: e.g., to be able to adequately
gauge the reliability of different measurement results (and thus, to form a decision on how much we
trust these results), we must take into account the provenance of these results – i.e., which team
performed these measurements, what auxiliary data was used in pre-processing these measurement
results, etc.
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4. Uncertainty of the Results of Direct Measurements: Probabilistic and Interval
Approaches

Measurement uncertainty: general description. To find out how the inaccuracies ∆xi = x̃i−xi

of direct measurements (= measurement errors) propagate through the cyberinfrastructure, we need
to recall how these inaccuracies ∆xi are usually described.

The manufacturer of the measuring instrument must supply us with an upper bound ∆i on the
measurement error. If no such upper bound is supplied, this means that no accuracy is guaranteed,
and the corresponding “measuring instrument” is practically useless. In this case, once we performed
a measurement and got a measurement result x̃i, we know that the actual (unknown) value xi of
the measured quantity belongs to the interval xi = [xi, xi], where xi = x̃i −∆i and xi = x̃i + ∆i.

Probabilistic uncertainty. In many practical situations, we not only know the interval [−∆i,∆i]
of possible values of the measurement error; we also know the probability of different values ∆xi

within this interval. This knowledge underlies the traditional engineering approach to estimating
the error of indirect measurement, in which we assume that we know the probability distributions
for measurement errors ∆xi.

These probabilities are often described by a normal distribution, so in standard engineering
textbook on measurement, it is usually assumed that the distribution of ∆xi is normal, with 0
average and known standard deviation σi; see, e.g. (Fuller, 1987; Rabinovich, 2005).

In general, we can determine the desired probabilities of different values of ∆xi by comparing
the results of measuring with this instrument with the results of measuring the same quantity by
a standard (much more accurate) measuring instrument. Since the standard measuring instrument
is much more accurate than the one use, the difference between these two measurement results
is practically equal to the measurement error; thus, the empirical distribution of this difference is
close to the desired probability distribution for measurement error.

Interval uncertainty. There are two cases, however, when in practice, we do not determine the
probabilities:

− First is the case of cutting-edge measurements, e.g., measurements in fundamental science.
When a Hubble telescope detects the light from a distant galaxy, there is no “standard” (much
more accurate) telescope floating nearby that we can use to calibrate the Hubble: the Hubble
telescope is the best we have.

− The second case is the case of measurements on the shop floor. In this case, in principle, every
sensor can be thoroughly calibrated, but sensor calibration is so costly – usually costing ten
times more than the sensor itself – that manufacturers rarely do it.

In both cases, we have no information about the probabilities of ∆xi; the only information we have
is the upper bound on the measurement error.

In this case, after we performed a measurement and got a measurement result x̃i, the only
information that we have about the actual value xi of the measured quantity is that it belongs to
the interval xi = [x̃i −∆i, x̃i + ∆i].

What we consider in this paper. For each of the 2 techniques for improving accuracy (data
processing and data fusion), we must therefore consider 2 possible situations:
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− when we know the probabilities of inaccuracies of direct measurements, and

− when we only know upper bounds (intervals) for these inaccuracies.

So, we have 2×2 = 4 possible situations. In this paper, we will consider all four situations. We start
with data processing under probabilistic and interval uncertainty, and then we cover data fusion
under both types of uncertainty.

For three of these four situations, the answer is reasonably straightforward; for the fourth one,
we will come up with new formulas.

5. Typical Situation: Measurement Errors are Reasonably Small

Before we start analyzing different situations, let us mention that in this paper, we will only
consider a typical situation in which the direct measurements are accurate enough, so that the
resulting approximation errors ∆xi are small, and terms which are quadratic (or of higher order) in
∆xi can be safely neglected. In such situations, for data processing, the dependence of the desired
value y = f(x1, . . . , xn) = f(x̃1 −∆x1, . . . , x̃n −∆xn) on ∆xi can be safely assumed to be linear.

When approximation errors are small, we can simplify the expression for ∆y = ỹ − y =
f(x̃1, . . . , x̃n)−f(x1, . . . , xn), if we expand the function f in Taylor series around the point (x̃1, . . . , x̃n)
and restrict ourselves only to linear terms in this expansion. As a result, we get the expression

∆y = c1 ·∆x1 + . . . + cn ·∆xn,

where by ci we denoted the value of the partial derivative
∂f

∂xi
at the point (x̃1, . . . , x̃n).

In the linear approximation, for small h > 0, we have f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n) ≈
f(x̃1, . . . , x̃i−1, x̃i, x̃i+1, . . . , x̃n) + ci · h, hence we can determine ci as

ci =
1
h
· (f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ).

Comment. There are practical situations when the accuracy of the direct measurements is not
high enough, and hence, quadratic terms cannot be safely neglected (see, e.g., (Jaulin, 2001) and
references therein). In this case, the problem of error estimation for indirect measurements becomes
computationally difficult (NP-hard) even when the function f(x1, . . . , xn) is quadratic (Kreinovich
et al., 1998; Vavasis, 1991). However, in most real-life situations, the possibility to ignore quadratic
terms is a reasonable assumption, because, e.g., for an error of 1% its square is a negligible 0.01%.

6. Case of Data Processing

Propagation of uncertainty through data processing: case of probabilistic uncertainty.
In the statistical setting, the desired measurement error ∆y is a linear combination of independent
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Gaussian variables ∆xi. Therefore, ∆y is also normally distributed, with 0 average and the standard
deviation

σ =
√

c2
1 · σ2

1 + . . . + c2
n · σ2

n.

Comment. A similar formula holds if we do not assume that ∆xi are normally distributed: it
is sufficient to assume that they are independent variables with 0 average and known standard
deviations σi.

Uncertainty provenance in data processing: case of probabilistic uncertainty. The above
formula not only describes the propagation of uncertainty, it also describes the provenance of

uncertainty. Indeed, for every i, since σ2 =
n∑

i=1
c2
i · σ2

i , we know which component of the resulting

variance σ2 comes from the inaccuracy σi of the i-th measurement. We can therefore easily predict
how replacing the i-th measurement with a more accurate one (with σnew

i ¿ σi) will affect the
resulting variance σ2.

Propagation of uncertainty through data processing: case of interval uncertainty. In
the interval setting, we do not know the probability of different errors ∆xi; instead, we only know

that |∆xi| ≤ ∆i. In this case, the sum
n∑

i=1
ci · ∆xi attains its largest possible value if each term

ci ·∆xi in this sum attains the largest possible value:

− If ci ≥ 0, then this term is a monotonically non-decreasing function of ∆xi, so it attains its
largest value at the largest possible value ∆xi = ∆i; the corresponding largest value of this
term is ci ·∆i.

− If ci < 0, then this term is a decreasing function of ∆xi, so it attains its largest value at the
smallest possible value ∆xi = −∆i; the corresponding largest value of this term is −ci ·∆i =
|ci| ·∆i.

In both cases, the largest possible value of this term is |ci| ·∆i, so, the largest possible value of the
sum ∆y is

∆ = |c1| ·∆1 + . . . + |cn| ·∆n.

Similarly, the smallest possible value of ∆y is −∆.
Hence, the interval of possible values of ∆y is [−∆,∆], and the interval of possible values of the

actual value y is [ỹ −∆, ỹ + ∆].

Uncertainty provenance in data processing: case of interval uncertainty. The above
formula not only describes the propagation of uncertainty, it also describes the provenance of

uncertainty. Indeed, for every i, since ∆ =
n∑

i=1
|ci| ·∆i, we know which component of the resulting

approximation error ∆ comes from the inaccuracy ∆i of the i-th measurement. We can therefore
easily predict how replacing the i-th measurement with a more accurate one (with ∆new

i ¿ ∆i)
will affect the resulting approximation error ∆.
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7. Case of Data Fusion

Propagation of uncertainty through data fusion: case of probabilistic uncertainty. In
data fusion, we know several results ỹ1, . . . , ỹn of measuring the same quantity y. Under probabilistic
uncertainty, we assume that the corresponding n measurements errors are independent normally
distributed random variables with 0 mean and known standard deviations σi. In this case, for each
possible value y, the probability density ρi of getting ỹi is equal to

ρi(y) =
1√

2π · σi

· exp

(
−(y − ỹi)2

2σ2
i

)
,

and thus, the probability density ρ(y) of having the given n measurements is equal to

ρ(y) = ρ1(y) · . . . · ρn(y) = const · exp

(
−

n∑

i=1

(y − ỹi)2

2σ2
i

)
.

As a resulting estimate ỹ for the desired (unknown) quantity y, it is then reasonable to select the
most probable value, i.e., the value for which the probability density ρ(y) is the largest.

Maximizing ρ(y) is equivalent to minimizing the quadratic function − ln(ρ(y)); differentiating
this quadratic expression with respect to y and equating the derivative to 0, we conclude that

ỹ =
1

n∑
i=1

1
σ2

i

·
n∑

i=1

ỹi

σ2
i

.

This estimate is a linear combination of normally distributed estimates ỹi with mean y and standard

deviation σi, with coefficients ci = σ−1
i /

(
n∑

j=1
σ−2

j

)
. Thus, ỹ is also normally distributed, with the

same mean y and the standard deviation σ2 =
n∑

i=1
c2
i · σ2

i , i.e., with standard deviation

σ2 =
1

n∑
i=1

1
σ2

i

.

This formula can also be rewritten as
1
σ2

=
n∑

i=1

1
σ2

i

.

Uncertainty provenance in data fusion: case of probabilistic uncertainty. The above
formula not only describes the propagation of uncertainty, it also describes the provenance of

uncertainty. Indeed, for every i, since σ−2 =
n∑

i=1
σ−2

i , we know which component of the resulting

variance σ2 comes from the inaccuracy σi of the i-th measurement.
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We can therefore easily predict how replacing the i-th measurement with a more accurate one
(with σnew

i ¿ σi) will affect the resulting variance σ2. Good news is we can predict this accuracy
beforehand, without actually performing the measurements – since the resulting accuracy σ depends
only on the accuracies σi of individual measurements and not on the results of these measurements.

Case of unknown probabilistic uncertainty. Sometimes, we do not know the accuracy of the
fused measurements. In this case, we can use the differences between the measurement results
ỹ1, . . . , ỹn to estimate the standard deviation σ1 = . . . = σn of the corresponding measurements by

using the usual statistical formula σ2
1 =

1
n− 1

·
n∑

i=1

(∆yi − E)2, where E
def=

1
n
·

n∑

i=1

∆yi.

Propagation of uncertainty through data fusion: case of interval uncertainty. Under
interval uncertainty, we know n results ỹ1, . . . , ỹn of measuring the same quantity y, and we know
the accuracy ∆i of each measurement. Thus, for each i, we know that the actual (unknown) value
y of the desired quantity must belong to the interval yi

def= [ỹi −∆i, ỹi + ∆i].
Fusion here is straightforward: the set of all the values y which belong to all n intervals is equal to

the intersection y = [y, y] = y1∩ . . .∩yn of these intervals. Here, y = max(ỹ1−∆y1, . . . , ỹn−∆yn),

y = min(ỹ1 + ∆y1, . . . , ỹn + ∆yn), and the accuracy ∆ =
y − y

2
of the fused estimate can be

computed as

∆ =
1
2
· (min(ỹ1 + ∆y1, . . . , ỹn + ∆yn)−max(ỹ1 −∆y1, . . . , ỹn −∆yn)).

Case of unknown interval uncertainty: a reasonable approach. Sometimes, we do not know
the accuracy ∆i of the fused measurements. In this case, it is reasonable to get a single estimate
for ∆1 = . . . = ∆n for all these measurements. We know that the intervals [ỹi −∆1, ỹ1 + ∆1] must
intersect – since they all contain the actual (unknown) value of the desired quantity y.

For the intersection to be non-empty, every lower bound ỹi −∆1 must be smaller than or equal
to every upper bound ∆yj + ∆1. Thus, we must have ỹi − ỹj ≤ 2∆1. So, we can conclude that

∆1 ≥ 1
2
· (max

i
∆yi −min

i
∆yi).

Case of unknown interval uncertainty: seemingly reasonable proposal and its limita-
tions. The actual value ∆1 can be larger than this half-difference, but as a first approximation, it

may be reasonable to take ∆1 ≈ 1
2
· (max

i
∆yi −min

i
∆yi). This particular choice may not be the

most adequate, since in this case, the intersection of the corresponding intervals [ỹi −∆1, ỹ1 + ∆1]

consists of a single point – the midpoint ymid
def=

1
2
·(max

i
∆yi+min

i
∆yi). This conclusion is somewhat

misleading because it erroneously suggests that we know the exact value of the estimated quantity.
In the following text, we will return to this problem and show how to get a somewhat more

adequate estimate.

Uncertainty provenance in data fusion: case of interval uncertainty. The above formula
describes the propagation of uncertainty. From the viewpoint of uncertainty propagation, this for-
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mula is even simpler than in the probabilistic case. So, from the computational viewpoint, we can
say that as far as propagation of uncertainty is concerned, the situation with interval uncertainty
is easier-to-handle than the situation with probabilistic uncertainty.

With provenance, however, the situation is exactly opposite. For probabilistic uncertainty, we
can predict the resulting accuracy beforehand, without actually performing the measurements –
since the resulting accuracy σ depends only on the accuracies σi of individual measurements and
not on the results of these measurements. In contrast, for the interval uncertainty, for the same
accuracies ∆1, . . . , ∆n of the individual measurements, we can get different accuracy ∆ of the fusion
result – depending on the actual measurement results.

Let us illustrate this problem on the simplest example, when the actual (unknown) value is
y = 0, and we fuse two measurements with the exact same accuracy ∆1 = ∆2 = 1. All we know
about the results of these two measurements is that the resulting intervals contain the actual value
y. Since this is the only restriction, we can two radically different extreme situations:

− It is possible that in both measurements, we get the same interval [−1, 1] containing 0. In this
case, the intersection is exactly the same interval, so the resulting accuracy is ∆ = 1, the same
accuracy with which we started.

− It is also possible that in the first measurement, we get the interval [−1, 0] and in the second
measurement, we get the interval [0, 1]. In this case, as a result of data fusion, we get the exact
value of the measured quantity, with ∆ = 0.

We can also have all possible values in between. In general, if we have n measurements with
accuracies ∆1, . . . ,∆n, then the half-width ∆ of the intersection of the corresponding intervals can
take any values from 0 to min(∆1, . . . , ∆n).

Planning data fusion under interval uncertainty: formulation of the problem. If the
accuracy of the result of data fusion is not sufficient, we should then supplement the existing
measurements with one or several more accurate ones. How accurate should these new measurement
be? how many of these more accurate measurements should we make? It is desirable to have some
answers to these questions before we go into the time- and resources-consuming process of actually
buying the corresponding sensors and performing the measurements – because if we do not get the
desired accuracy again, this time-consuming process will be mostly wasting time.

In other words, it is desirable to produce an estimate for the accuracy ∆ of the result of fusing
measurements with accuracies ∆1, . . . , ∆n, an estimate that we can obtain before we start the
actual measurements. How can we solve this problem?

Planning data fusion under interval uncertainty: main idea. Our main idea of solving the
above problem is as follows. We know that the i-th measurement has accuracy ∆i. This means that
the only information that we have about the possible values of the i-th measurement error ∆yi is
that this error belongs to the interval [−∆i, ∆i].

We have no information about the probabilities of different values of ∆yi within this interval.
According to Laplace’s principle of indifference, in this situation, it is reasonable to assume that all
possible values have the same probability, i.e., that the distribution of ∆yi on the interval [−∆i,∆i]
is uniform.
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For each combinations of choices of ∆yi, we get different measurement results ỹi = y + ∆yi

and thus, different intersections y = [y, y] = y1 ∩ . . . ∩ yn of the corresponding intervals yi =
[ỹi −∆i, ỹi + ∆i] = [y + ∆yi −∆i, y + ∆yi + ∆i].

We are interested in the accuracy of the fused results. This accuracy can be gauged by the
largest possible absolute value ∆ of the different between the actual value y and values from the
fused interval y.

As we have mentioned, in principle, this accuracy ∆ can be as small as large as min(∆1, . . . , ∆n).
However, the probability of such a large inaccuracy ∆ is reasonably small; in our estimates of ∆, we
would like to ignore small-probability events. In other words, we would like to select an allowable
small probability p0 of mis-estimation, and estimate ∆ as the smallest value for which the probability
to have y ≤ y + ∆ is at least 1− p0 and the probability to have y ≥ y −∆ is also ≥ 1− p0.

Thus, we arrive at the following precise problem.

Planning data fusion under interval uncertainty: precise formulation of the problem.
Let p0 > 0 be a fixed real number. We start with an arbitrary value y. Let ∆y1, . . . ,∆yn be n
independent random variables such that each variable ∆yi is uniformly distributed on the interval
[−∆i, ∆i]. By ∆, we mean that smallest value for which the probability that for the intersection
y = [y, y] = y1 ∩ . . . ∩ yn of the intervals yi = [ỹi −∆i, ỹi + ∆i], where ỹi = y + ∆yi, the following
two properties hold:

− the probability to have y ≤ y + ∆ is at least 1− p0, and

− the probability to have y ≥ y −∆ is also ≥ 1− p0.

Towards an estimate for ∆. The condition that y ≤ y + ∆ means that

min(y + ∆y1 + ∆1, . . . , y + ∆yn + ∆n) ≤ y + ∆.

Which number is smaller and which is larger does not change when we shift all these numbers by
the same shift y. Thus, min(y + ∆y1 + ∆1, . . . , y + ∆yn + ∆n) = y + min(∆y1 + ∆1, . . . ,∆yn + ∆n)
and hence, the above inequality takes the form

min(∆y1 + ∆1, . . . , ∆yn + ∆n) ≤ ∆.

The probability popp for the opposite inequality

min(∆y1 + ∆1, . . . ,∆yn + ∆n) > ∆

should be ≤ p0.
The minimum of several sums is > ∆ if and only if each of these sums is > ∆. Thus, the

above opposite inequality holds if all n inequalities ∆yi + ∆i > ∆ hold. Since the variables ∆yi

are independent, we thus conclude that popp = p1 · . . . · pn, where pi
def= Prob(∆yi + ∆i > ∆) =

Prob(∆yi > ∆−∆i). Since ∆yi is uniformly distributed on the interval [−∆i,∆i], the probability
pi is equal to the ratio of

− the size of the set (∆−∆i, ∆i] where the corresponding inequality holds to
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− the size of the overall set [−∆i,∆i] on which the distribution is defined,

i.e., to pi =
∆i − (∆−∆i)

2∆i
=

2∆i −∆
2∆i

= 1− ∆
2∆i

. Thus,

popp =
n∏

i=1

(
1− ∆

2∆i

)
.

This product decreases with ∆; thus, the smallest possible value ∆ for which popp ≤ p0 can be

determined from the condition popp = p0, i.e.,
n∏

i=1

(
1− ∆

2∆i

)
= p0.

Taking logarithms of both sides, we get
n∑

i=1

ln
(

1− ∆
2∆i

)
= ln(p0).

We are interested in the case when data fusion is efficient, i.e., when ∆ ¿ ∆i. In this case,
∆

2∆i
¿ 1,

and we can use an approximate linearized formula ln(1− x) ≈ −x which is true for small x. This

formula leads to
n∑

i=1

∆
∆i

= 2| ln(p0)|, i.e., to ∆ ·
(

n∑
i=1

1
∆i

)
= 2| ln(p0)| and

∆ =
const
n∑

i=1

1
∆i

,

or, equivalently,
1
∆

= const ·
n∑

i=1

1
∆i

.

The second inequality leads to the exact same formula for ∆.

Data fusion under interval uncertainty: result. When we fuse n measurement results with
accuracies ∆i, the accuracy ∆ of the fused estimate can be estimated based on the formula

1
∆

= const ·
n∑

i=1

1
∆i

,

in which the constant const = 2| ln(p0)| depends on the allowed probability p0 that the actual
inaccuracy of the fused value is higher than this estimate.

Case of unknown interval uncertainty: revisited. Let us recall that in the case of data fusion
under unknown interval uncertainty, a reasonable choice for the accuracy ∆1 = . . . = ∆n of the
fused measurements is the smallest value ∆1 for which the corresponding intervals [ỹi−∆1, ỹi +∆1]
intersect. The problem with this approach is that for this smallest value, the intersection consists
of a single point ymid – making it sound as if we knew the exact value of the estimated quantity y.

To avoid this erroneous impression, a reasonable idea is to estimate the accuracy ∆ of the fused
result – for ∆1 = . . . = ∆n we get ∆ = ∆1/n – and “add” this accuracy ∆ to this point, i.e., return
the interval [ymid −∆, ymid + ∆] as the interval estimate for the desired quantity y.
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Comparison between data fusion under probabilistic and interval uncertainty. The above

formula for ∆ is similar to the formula
1
σ2

= const ·
n∑

i=1

1
σ2

i

which describes the accuracy σ of data

fusion under probabilistic uncertainty. The main difference is that instead of the variances σ2
i and

σ2 we now have upper bounds ∆i and ∆.
In practical terms, this formal difference can be described as follows.

− If we apply data fusion to n results known with the same probabilistic uncertainty σ1 = . . . =
σn, then we result of data fusion is known with the uncertainty σ =

σi√
n

.

− On the other hand, if we we apply data fusion to n results known with the same interval
uncertainty ∆1 = . . . = ∆n, then we result of data fusion is known with the uncertainty
∆ =

σi

n
.

Thus, with interval uncertainty, we get a much faster (∼ 1/n) decrease in approximation error than
for the probabilistic uncertainty (∼ 1/

√
n). This fact is in line with similar estimates from (Walster,

1988; Walster and Kreinovich, 1996).

Comment. It is worth mentioning that there is a similar difference for data processing: in the interval

case, we have ∆ =
n∑

i=1
|ci| ·∆i, whereas in the probabilistic case, we have σ2 =

n∑
i=1

|ci|2 · σ2
i .

The difference between the formulas for data fusion and data processing is similar to the formulas
for the resistance R of of an electric circuit consisting of resistances R1, . . . , Rn: when the resistances
are placed sequentially, we get R = R1 + . . . + Rn (as for data processing); when the resistance are

placed in parallel to each other, we get
1
R

=
1

R1
+ . . . +

1
Rn

(as for data fusion).

8. Propagation of Uncertainty When We Have Both Data Processing and Data
Fusion

Motivations. As we have mentioned earlier, in many real-life situations, to get the desired accuracy,
we must apply both data fusion and data processing.

Example. For example, we can fuse several values y1, . . . , yn each of which is obtained by data
processing.

Main idea. In this case, to find the accuracy of the final result, we propagate the uncertainty
through all these data fusion/data processing steps.

Example. In the above example,

− we first use the formulas for propagating uncertainty under data processing to come up with
accuracy values (∆i or σi) for yi, and then

− we use the formulas for uncertainty propagation under data fusion to combine these values ∆i

(correspondingly, σi) into a single estimate ∆ (corr., σ).
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9. Towards Optimal Data Processing and Data Fusion

Motivations. Up to now, we concentrated on the analysis of given data processing and data fusion
scenarios. However, since we have explicit (and simple) formulas for the propagation of uncertainty
under data processing and data fusion, we can actually solve the problem of finding the least
expensive way to guarantee the given accuracy.

To perform this optimization, we must know how the cost of measuring related quantities with
different accuracies.

Towards optimal data fusion: preliminary description. For data fusion, let cprob(σ) denote
the cost of measuring the desired quantity with standard deviation σ, and let cint(∆) denote the
cost of measuring the desired quantity with the guaranteed upper bound ∆ on the measurement

error. Typically, cprob(σ) =
C

σα
and cint(∆) =

C

∆α
for some constants C and α > 0; see, e.g.,

(Nguyen et al., 2008; Nguyen and Kreinovich, 2008) and references therein.

Towards optimal data fusion: probabilistic case. In the probabilistic case, we must find the

values σi for which
n∑

i=1
cprob(σi) → min under the constraint that the sum

n∑
i=1

σ−2
i is equal to the

given value σ−2. By applying Lagrange multiplier method to this constraint optimization problem,

we get an unconstraint optimization problem
n∑

i=1
cprob(σi) + λ ·

n∑
i=1

σ−2
i → min. Differentiating

w.r.t. σi and equating the derivative to 0, we conclude that c′(σi) · σ3
i = const = 2λ.

For a function cprob(σ) =
C

σα
, the expression c′(σi) ·σ3

i is monotonic in σi and thus, the equality
occurs only for one value σi – hence in the optimal plan, σ1 = . . . = σn. To get the desired value σ,
we must have σi =

√
n · σ.

Towards optimal data fusion: interval case. Similarly, in the interval case, the problem of

minimizing
n∑

i=1
cint(∆i) under the constraint

n∑
i=1

∆−1
i = ∆−1 leads to the equation c′(∆i) · ∆2

i =

const = λ.
For a function cint(∆) =

C

∆α
, the expression c′(∆i) ·∆2

i is monotonic in ∆i and thus, the equality
occurs only for one value ∆i – hence in the optimal plan, ∆1 = . . . = ∆n. To get the desired value
∆, we must have ∆i = n ·∆.

Towards optimal data processing: preliminary description. For data processing, let cprob
i (σi)

denote the cost of measuring the i-th quantity with standard deviation σi, and let cint
i (∆i) denote

the cost of measuring the i-th quantity with the guaranteed upper bound ∆i on the measurement

error. Just like in the case data fusion, typically, we have cprob
i (σi) =

Ci

σαi
i

and cint
i (∆i) =

Ci

∆αi
for

some constants Ci and αi.

Towards optimal data processing: probabilistic case. In the probabilistic case, the problem

of minimizing
n∑

i=1
cprob
i (σi) under the constraint

n∑
i=1

c2
i · σ2

i = σ2 leads to the equation
c′(σi)
c2
i · σi

=

const = −2λ.
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For cprob
i (σi) =

Ci

σαi
i

, we get σi =

(
αi · Ci

2λ · c2
i

)1/(2+αi)

, where λ can be determined from the equation

n∑

i=1

c2
i ·

(
αi · Ci

2λ · c2
i

)2/(2+αi)

= σ2.

Towards optimal data processing: interval case. In the interval case, the problem of mini-

mizing
n∑

i=1
cint
i (∆i) under the constraint

n∑
i=1

|ci| · ∆i = ∆ leads to the equation
c′(∆i)
|ci| = const =

−λ.

For cint
i (∆i) =

Ci

∆αi
i

, we get ∆i =
(

αi · Ci

λ · |ci|
)1/(1+αi)

, where λ can be determined from the equation

n∑

i=1

|ci| ·
(

αi · Ci

λ · |ci|
)2/(2+αi)

= ∆.

10. Combining Probabilistic and Interval Uncertainty

Motivations. In the previous sections, we assumed that in data processing an in data fusion, either
all measurement results are known with probabilistic uncertainty, or all measurement results are
known with interval uncertainty.

In practice, some measurement results are known with probabilistic uncertainty (i.e., we know
the probabilities of the corresponding measurement errors), and some are only known with interval
uncertainty (i.e., we only know the upper bounds on the corresponding measurement errors). In
this case, how can we estimate the accuracy of the result of data processing or data fusion?

Case of data processing. For data processing, it is possible to provide an answer to the above
question. Indeed, suppose that we produce an estimate ỹ = f(x̃1, . . . , x̃n) for the desired quantity
y which is based on the results x̃i of directly measuring n related quantities x1, . . . , xn.

We are interested in situations in which some of the measurement errors are known with proba-
bilistic uncertainty, and some with interval uncertainty. Without losing generality, we can assume
that the values x1, . . . , xk are known with probabilistic uncertainty and the values xk+1, . . . , xn are
known with interval uncertainty. In other words, we know the standard deviations σ1, . . . , σk of
the first k measurements, and we know the upper bounds ∆k+1, . . . , ∆n of the others. In this case,

the above linearized formula ∆y =
n∑

i=1
ci · ∆xi can be rewritten as ∆y = ∆yprob + ∆yint, where

∆yprob =
k∑

i=1
ci ·∆xi and ∆yint =

n∑
i=k+1

ci ·∆xi.
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As we already know, ∆yprob is a normally distributed random variable with 0 mean and standard

deviation σ =

√
k∑

i=1
c2
i · σ2

i and ∆yint is a variable about which we only know that it belongs to the

interval [−∆, ∆], where ∆ =
n∑

i=k+1
|ci| ·∆i.

So, we conclude that the approximation error ∆y is the sum of two error components: a random
one with a known σ and an interval one with a known ∆.

The resulting two-component description of measurement and approximation error is
in line with the measurement practice. The above two-component description of an approx-
imation error is in line with the standard practice in measurement theory (see, e.g., (Rabinovich,
2005)), where a measurement error ∆x is often described by its two component:

− a random error component ∆rx
def= ∆x − E[∆x] with 0 mean (E[∆rx] = 0), for which we

usually know the standard deviation σ, and

− a systematic error component ∆sx
def= E[∆x] for which we only know the upper bound ∆ on

its absolute value.

The situation in which we only know the upper bound ∆ on the (absolute value of) the total
measurement error can be viewed as a degenerate case of this two-component description, with
σ = 0.

Data processing: case when we have a two-component description of all the measure-
ment errors. In view of the prevalence of the two-component error description in measurement
practice, it is reasonable to consider the following situation.

We want to estimate the value of the desired difficult-to-measure quantity y. We know the
relation y = f(x1, . . . , xn) between this quantity y and easier-to-measure quantities x1, . . . , xn. For
each of these auxiliary quantities xi, we know the measurement result x̃i and we know that the
corresponding measurement error ∆xi

def= x̃i − xi can be represented as a sum of two components
∆xi = ∆sxi + ∆rxi, where:

− the component ∆sxi is a random variable with 0 mean and known standard deviation σi;

− about the component ∆rxi, we only know the upper bound ∆i on the (absolute value of the)
measurement error, i.e., we know that |∆rxi| ≤ ∆i.

Based on the measurement results x̃1, . . . , x̃n, we compute an estimate ỹ = f(x̃1, . . . , x̃n) for y.
What can we say about the approximation error ∆y

def= ỹ − y of this estimate?

In the linearization case, we can conclude that ∆y =
n∑

i=1
ci ·∆xi. Since ∆xi = ∆sxi + ∆rxi, we

can conclude that ∆y = ∆sy + ∆ry, where ∆ry =
n∑

i=1
ci ·∆rxi and ∆sy =

n∑
i=1

ci ·∆sxi. We already

know how to handle each of these two sums, so we conclude that the approximation error ∆y also
consists of two components:
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− the component ∆sy is a random variable with 0 mean and known standard deviation

σ =

√√√√
n∑

i=1

c2
i · σ2

i ;

− about the component ∆ry, we only know the upper bound ∆ =
n∑

i=1
|ci| ·∆i on the (absolute

value of the) measurement error, i.e., we know that |∆ry| ≤ ∆.

Case of data fusion. In data fusion, we have n results ỹ1, . . . , ỹn of measuring the same quantity
y. In the previous sections, we assume that either all of these measurement errors are known with
probabilistic uncertainty, or that all of them are know with interval uncertainty.

Let us now consider the case when some of the measurement errors are known with probabilistic
uncertainty, and some with interval uncertainty. Without losing generality, we can assume that the
values y1, . . . , yk are known with probabilistic uncertainty and the values yk+1, . . . , yn are known
with interval uncertainty. In other words, we know the standard deviations σ1, . . . , σk of the first k
measurements, and we know the upper bounds ∆k+1, . . . ,∆n of the others. In this case,

− we can use the data fusion formula for the probabilistic uncertainty to fuse the measurement
ỹ1, . . . , ỹk into a single result ỹ with a standard deviation σ, and

− we can fuse the interval-valued measurements by taking the intersection

[y, y] def= [ỹk+1 −∆k+1, ỹk+1 + ∆k+1] ∩ . . . ∩ [ỹn −∆n, ỹn + ∆n]

of the corresponding intervals.

It is therefore important to fuse the interval estimate with accuracy ∆ and the probabilistic estimate
with the accuracy σ The result of the fusion depends on the relation between ∆ and σ:

− If ∆ À σ, this means that the interval estimate is much much wider than what we can simply
conclude based on the probabilistic information. Thus, in this case, the fused information
consists simply of the probabilistic estimate.

− If σ À ∆, this means that the probabilistic estimate is much worse than the interval one. In
this case, the fused information consists simply of the interval estimate.

− If the estimates σ and ∆ are approximately of the same order, this means that we can keep
either one of them.

Comment. Our recommendation for the case when the estimates σ and ∆ are approximately of the
same order is somewhat vague. For this case, it would be nice to come up with a better answer to
the fusion question.
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11. Adding Reliability and Trust: Results and Open Problems

Formulation of the problem. In the previous sections, we concentrated on the measurement
uncertainty, i.e., on the difference between the measurement result and the actual value of the
corresponding quantity. We also assumed that these differences are relatively small.

This smallness assumption holds in many practical situations. However, sometimes, we have
values which are completely off: a measuring instrument can malfunction, a computer may have
misread this information, etc. Such values are often called outliers. In short, in addition to being not
100% accurate, the measurement results are also not 100% reliable. How can we take this possible
unreliability into account in data processing and data fusion?

How we can describe the reliability of different measurement results. A natural way to
describe the reliability of different measurement results is to provide the probability pi that the
i-th measurement result is an outlier. It is usually assumed that in terms of reliability, different
measurement results are independent – so that, e.g., the probability that both the i-th and the j-th
results are outliers is equal to the product pi · pj .

These probabilities can be gauged, e.g., based on our knowledge of what team performed these
measurements, what is the track records of this particular team, what auxiliary values have been
used in pre-processing these results, etc. In other words, these probabilities can be gauged based
on the provenance of the corresponding measurement results.

Based on these probabilities, we need to estimate the reliability p of the results of data processing
and data fusion.

Case of data processing. Let us first consider the case of data processing, when we transform n
measurement results x̃1, . . . , x̃n of n auxiliary quantities into an estimate ỹ = f(x̃1, . . . , x̃n) of the
desired quantity y.

For this estimate to be valid, all n measurement results must be valid (i.e., none of them is an
outlier). The probability that the i-th measurement result is not an outlier is equal to 1− pi. Since
we assumed independence, the probability 1− p that all n measurement results are not outliers is
equal to the product

1− p =
n∏

i=1

(1− pi).

Hence,

p = 1−
n∏

i=1

(1− pi).

If all the probability pi are small, we can ignore quadratic and higher order terms in this formula

and conclude that 1− p ≈ 1−
n∑

i=1
pi, i.e., that

p ≈
n∑

i=1

pi.
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Comment. Since pi > 0, we have 1− p < 1− pi for all i and hence, p > pi. It is worth mentioning
that for data processing, the un-reliability p of the result of data processing is larger than each
individual probability pi. Thus, if one of the input measurement results is highly unreliable, the
result of data processing is highly unreliable as well.

In particular, if we process n values with the same un-reliability p1 = . . . = pn, then the
un-reliability p of the result of data processing is n times larger: p ≈ n · p1 À p1.

Case of data fusion. The above-described data fusion techniques assume that we use all n results
ỹ1, . . . ỹn of measuring the desired quantity y. Thus, for these techniques, the reliability p of the
resulting estimate ỹ can be estimated by using a similar formula

p = 1−
n∏

i=1

(1− pi).

For small pi, we can use a linearized version of this formula p ≈
n∑

i=1
pi.

So here, just like for data processing, the un-reliability p of the result of data fusion is (much)
higher than the un-reliability of individual measurement results.

Case of interval uncertainty. Let us show that in the case of linear uncertainty, we can get much
better reliability values than in the general data fusion situation.

Indeed, in the case of interval uncertainty, we start with n intervals [y
i
, yi] which contain the

desired value y. In the “reliable” data fusion, we simply take the intersection of these n intervals,
i.e., we take the interval [y, y], where y = max(y

1
, . . . , y

n
) and y = min(y1, . . . , yn). The minimum

and the maximum are attained for some specific values i and j; thus, we always have y = y
i

for
some i and y = yj for some appropriate value j. Hence,

− the reliability for the lower endpoint y is simply equal to the reliability pi of the i-th measure-
ment, and

− the reliability of the upper endpoint y is equal to the reliability pj of the j-th measurement.

The corresponding values p = pi and p = pj are much better than in the general case when p À pi

for all i.

Data fusion can also improve reliability: towards an algorithm. Interval data fusion can
lead to even more reliable results: namely, an appropriate data fusion can drastically improve the
reliability of the result.

Indeed, let us assume that we have n interval measurements [y
1
, y1], . . . , [yn

, yn] with reliabilities
p1, . . . , pn. If these reliability are too high, how can we combine these values to get an estimate for
y for which the corresponding probability p does not exceed a given threshold p0?

Let us illustrate this possibility on the example of the upper endpoint y of the desired reliable
bound for y. For that, let us sort the values yi into an increasing sequence

y(1) ≤ y(2) ≤ . . . ≤ y(n).
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The corresponding probabilities will now be p(1), p(2), . . . , p(n). In the “reliable” data fusion, we
simply take the smallest value y(1) as the desired estimate y. For fusing possibly un-reliable data,
we can no longer do that.

Instead, let us choose, as y, the k-th value y(k) for some k. This estimate is not valid only in
one case: when all k estimates y(1), . . . , y(k) are un-reliable. Since we assumed independence, the
probability for this is equal to the product p(1) · . . . · p(k). Thus, ro guarantee reliability p ≤ p0, we
can select the first k for which p(1) · . . . · p(k) ≤ p0. Thus, we arrive at the following algorithm.

Data fusion which improves reliability of interval estimates: an algorithm. We start with
n intervals [y

i
, yi] with are reliable with probabilities pi. Our objective is to fuse them into a single

interval [y, y] which is the most accurate under the constraint that each of its endpoints y and y
has an un-reliability ≤ p0 for some given value p0.

To get the desired value y, we sort the upper endpoints yi into an increasing sequence y(1) ≤
y(2) ≤ . . . ≤ y(n), select the smallest k for which p(1) · . . . · p(k) ≤ p0, and take y = y(k).

Similarly, to get the desired value y, we sort the lower endpoints y
i

into a decreasing sequence
y

(1)
≥ y

(2)
≥ . . . ≥ y

(n)
, select the smallest k for which p(1) · . . . · p(k) ≤ p0, and take y = y

(k)
.

Comment. When all input intervals have the same reliability p1 = . . . = pn, the condition

p(1) · . . . · p(k) ≤ p0

takes the form pk
1 ≤ p0. The smallest k for which this inequality holds can be easily computed as

k =
⌈ | ln(p0)|
| ln(p1)|

⌉
.

It is worth mentioning that in this case, we do not need to spend O(n · log(n)) times on sorting
the bounds, since the k-th value in the ordered sequence can be computed in linear time; see, e.g.,
(Cormen et al., 2001).

12. Case Study: Seismic Inverse Problem in the Geosciences

12.1. Description of the Case Study

Seismic inverse problem in the geosciences: brief reminder. As a case study, we consider
the seismic inverse problem in the geosciences; see, e.g., (Averill, 2007; Hole, 1992; Parker, 1994).
In this problem, we measure the travel times x1, . . . , xn of the seismic signals and based on these
travel times, we reconstruct the velocity of sound y = f(x1, . . . , xn) at different points inside the
Earth. There exist several algorithms for reconstructing this velocity. In our research, we use one
of most widely used algorithms proposed by J. Hole (Hole, 1992).

Our objective is to estimate the uncertainty of the resulting velocity estimates.

What we plan to do. The problem of estimating uncertainty has been actively researched in
geosciences; see, e.g., (Averill et al., 2005; Averill et al., 2007; Doser et al., 1998; Maceira et al.,
2005). In this section, we will apply the above-described techniques to this problem, explain the
results and their limitations, and provide a heuristic method of overcoming these limitations, a
method which can be applied to other problems as well.
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Details of this application are presented in (Averill, 2007).

Case study: brief description. The data used for our analysis was obtained from the Potrillo
Volcanic Experiment (PVF), a large-scale active source seismology profile designed to investigate
the crustal structure across southern New Mexico and Far West Texas. This field experiment was
conducted in 2003.

The PVF experiment was composed of 8 shots of 1000–2000 lbs.; 793 seismic recorders (TEX-
ANS) were deployed at variable spacing of 100 m, 200 m and 600 m over 205 km. The location map
for the (PVF) experiment is give below. Stars show shot point locations. Small gray dots represent
receiver locations. Black box outlines model space for tomography.

The resulting velocity distribution is given presented in the following picture. Velocity model is
gridded at 1× 1 km spacing. Illuminated coloring shows location of ray coverage within the model.
Coverage model showing location and coverage density for rays traced within the model is presented
in the next picture.
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What is the accuracy with which we know these values of velocity?

Main source of direct measurement errors in the seismic inverse problem. The input to
the seismic inverse problem consists of travel times xi. Each travel time is the time that a seismic
wave takes to travel from the location of the explosion to the corresponding sensor. It is determined
as the first moment of time at which we detect the incoming seismic wave (on top of the noise). For
the low-energy artificial explosions which are used in seismic experiments, the signal-to-noise ratio
is rather small, especially for sensors located several dozens kilometers away from the experiment
location. As a result, we may miss the first peak of the seismic wave and erroneously identify the
second peak as the arrival time of the seismic wave.

This “picking error” is the main source of error in measuring travel time. A typical size of a
picking error is the time distance between the two peaks of the seismic wave, i.e., about 150 ms.

12.2. First Try: Probabilistic Approach

First try: probabilistic approach. As we have mentioned, traditionally in science and engineer-
ing, the probabilistic approach is used to estimate the uncertainty of the result of data processing. In
this approach, we assume that the errors of different direct measurements are independent random
variables, with 0 mean and known standard deviations σi.

This method have been successfully used in geosciences. In particular, it was used in the analysis
of the passive seismic inverse problem, when we use only the travel times of the seismic waves
generated by the earthquakes; see, e.g., (Maceira et al., 2005). For this problem, the independence
assumption makes sense since different earthquakes at different locations are indeed independent.

In view of these past successes, we decided to apply this technique to our active seismic inverse
problems.

In principle, we can use the above formula. In principle, to find the desired value σ, we

can use the above formula σ =

√
n∑

i=1
c2
i · σ2

i , where each partial derivative can be determined by

numerical differentiation, as ci =
1
h
· (f(x̃1, . . . , x̃i−1, x̃i + h, x̃i+1, . . . , x̃n)− ỹ).

Limitations of directly using the above formula. The direct use of the above formula requires
that we call the program f (in our case, the program for solving the seismic inverse problem) n+1
times, where n is the total number of inputs: once to compute ỹ = f(x̃1, . . . , x̃n), and n more times
to compute the values c1, . . . , cn.

The problem with directly using the above formula is that the program f requires several hours
time to compute (e.g., in the geological applications, computing f may involve solving an inverse
problem), and the number n of inputs xi is in the thousands. Thus, calling the program f n + 1
times requires 1,000 times longer than several hours – i.e., several months.

Monte-Carlo simulations: main idea. In the probabilistic setting, we can use straightforward
(Monte-Carlo) simulation, and drastically save the computation time. In this approach, we use a
computer-based random number generator to simulate the normally distributed error. A standard
normal random number generator usually produces a normal distribution with 0 average and
standard deviation 1. So, to simulate a distribution ∆xi with a standard deviation σi, we multiply
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the result αi of the standard Gaussian random number generator by σi. In other words, we take
∆i = σi · αi, and we simulate xi as x̃i −∆xi.

As a result of N Monte-Carlo simulations, we get N values

∆y(1) = c1 ·∆x
(1)
1 + . . . + cn ·∆x(1)

n , . . . ,∆y(N) = c1 ·∆x
(N)
1 + . . . + cn ·∆x(N)

n

which are normally distributed with the desired standard deviation σ. So, we can determine σ by
using the standard statistical estimate

σ =

√√√√ 1
N − 1

·
N∑

k=1

(
∆y(k)

)2
. (1)

Computation time required for Monte-Carlo simulation. The relative error of the above
statistical estimate depends only on N (as ≈ 1/

√
N), and not on the number of variables n.

Therefore, the number Nf of calls to f that is needed to achieve a given accuracy does not depend
on the number of variables at all.

The error of the above algorithm is asymptotically normally distributed, with a standard devia-
tion σe ∼ σ/

√
2N . Thus, if we use a “two sigma” bound, we conclude that with probability 95%, this

algorithm leads to an estimate for σ which differs from the actual value of σ by ≤ 2σe = 2σ/
√

2N .
This is an error with which we estimate the error of indirect measurement; we do not need too

much accuracy in this estimation, because, e.g., in real life, we say that an error is ±10% or ±20%,
but not that the error is, say, ±11.8%. Therefore, in estimating the error of indirect measurements,
it is sufficient to estimate the characteristics of this error with a relative accuracy of, say, 20%.

For the above “two sigma” estimate, this means that we need to select the smallest N for which
2σe = 2σ/

√
2N ≤ 0.2 · σ, i.e., to select Nf = N = 50.

In many practical situations, it is sufficient to have a standard deviation of 20% (i.e., to have a
“two sigma” guarantee of 40%). In this case, we need only N = 13 calls to f .

On the other hand, if we want to guarantee 20% accuracy in 99.9% cases, which correspond
to “three sigma”, we must use N for which 3σe = 3 · σ/

√
2N ≤ 0.2 · σ, i.e., we must select

Nf = N = 113, etc.
For n ≈ 103, all these values of Nf are much smaller than Nf = n required for numerical

differentiation.

Additional advantage: parallelization. In Monte-Carlo algorithm, we need 50 calls to f . If each
call requires a minute, the resulting time takes about an hour, which may be too long for on-line
results. Fortunately, different calls to the function f are independent on each other, so we can run
all the simulations in parallel.

The more processors we have, the less time the resulting computation will take. If we have as
many processors as the required number of calls, then the time needed to estimate the error of
indirect measurement becomes equal to the time of a single call, i.e., to the time necessary to
compute the result ỹ of this indirect measurement. Thus, if we have enough processors working in
parallel, we can compute the result of the indirect measurement and estimate its error during the
same time that it normally takes just to compute the result.
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In particular, if the result ỹ of indirect measurement can be computed in real time, we can
estimate the error of this result in real time as well.

Probabilistic case: results. Following the above algorithm, we randomly perturbed the travel-
time data by a Gaussian distribution with a standard deviation equal to the “picking error” of 150
ms. The perturbed data was used to generate a new velocity model. This process was repeated
multiple times, and the resulting velocity models are used to calculate the RMS difference σ in
velocity.

The majority of the values are less than 0.01 km/s (see below).

From our experience of comparing different results, we know that the actual difference between
different estimates ỹ for the velocity is much higher. Thus, these results are misleadingly low.

Also, the results seem to be qualitatively misleading: the values of σ are the highest near the
shots (where the reconstruction is more accurate) and smaller elsewhere.

Comment. When instead of single value σi = 150 ms, we used more realistic different values at
different sensor locations (obtained by using a technique from (Zelt and Forsyth, 1994)), we got
similar results.

Comment. In addition to the Monte-Carlo approach, we also tried the jack-knife approach (see,
e.g., (Lees and Crosson, 1989; Tihelaar and Ruff, 1989)) in which the data is divided into two
sets (we divided into even and odd sensors). Each of these two data sets was inverted to generate
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the velocity distribution. The resulting distributions were compared to the result of processing the
combined data set; the differences are taken as an estimate for σ.

The resulting values σ are similar to the probabilistic case: the values σ are too low (generally
below 0.06 km/s), and qualitatively wrong: the highest values are located near the ends of the
profile, adjacent to the shot points and in regions of lower ray coverage.

12.3. Second Try: Interval Approach

Toward interval estimates. In our probabilistic estimates, we made a simplifying assumption
that the measurement errors of different measurements are independent random variable. Since this
assumption is false, this means that there is a correlation between these errors.

We do not know the value of this correlation. It is therefore reasonable to now try the more
general interval case, which makes no assumption about the correlations.

Interval approach: brief reminder. In this approach, we assume that we know the upper bounds
∆i on the measurement errors ∆xi, and we compute the upper bounds ∆ on the resulting error
∆y.

In our example, we take ∆i = 150 ms.

In principle, we can use the above explicit formula. In principle, to find the desired value

∆, we can use the above formula ∆ =
n∑

i=1
|ci| ·∆i, where each partial derivative can be determined

by numerical differentiation. However, similarly to the probabilistic case, this method requires that
we call f 4n + 1 times – which can lead to months of computations.

To avoid these computations, we use the Cauchy-based method described in (Kreinovich et al.,
2007; Kreinovich et al., 2004).

Mathematics behind the Cauchy method. In our simulations, we use Cauchy distribution

– i.e., probability distributions with the probability density ρ(z) =
∆

π · (z2 + ∆2)
; the value ∆ is

called the (scale) parameter of this distribution.
Cauchy distribution has the following property that we will use: if z1, . . . , zn are independent

random variables, and each of zi is distributed according to the Cauchy law with parameter ∆i,
then their linear combination z = c1 · z1 + . . . + cn · zn is also distributed according to a Cauchy
law, with a scale parameter ∆ = |c1| ·∆1 + . . . + |cn| ·∆n.

Therefore, if we take random variables δi which are Cauchy distributed with parameters ∆i,
then the value

δ
def= f(x̃1, . . . , x̃n)− f(x̃1 − δ1, . . . , x̃n − δn) = c1 · δ1 + . . . + cn · δn

is Cauchy distributed with the desired parameter ∆ =
n∑

i=1
|ci| ·∆i. So, repeating this experiment N

times, we get N values δ(1), . . . , δ(N) which are Cauchy distributed with the unknown parameter,
and from them we can estimate ∆.

The bigger N , the better estimates we get.
There are two questions to be solved:
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− how to simulate the Cauchy distribution;

− how to estimate the parameter ∆ of this distribution from a finite sample.

Simulation can be based on the functional transformation of uniformly distributed sample values:
δi = ∆i · tan(π · (ri − 0.5)), where ri is uniformly distributed on the interval [0, 1].

In order to estimate ∆, we can apply the Maximum Likelihood Method

ρ(δ(1)) · ρ(δ(2)) · . . . · ρ(δ(N)) → max,

where ρ(z) is a Cauchy distribution density with the unknown ∆. When we substitute the above-
given formula for ρ(z) and equate the derivative of the product with respect to ∆ to 0 (since it is
a maximum), we get an equation

1

1 +

(
δ(1)

∆

)2 + . . . +
1

1 +

(
δ(N)

∆

)2 =
N

2
. (2)

The left-hand side of (2) is an increasing function that is equal to 0(< N/2) for ∆ = 0 and > N/2
for ∆ = max

∣∣∣δ(k)
∣∣∣; therefore the solution to the equation (2) can be found by applying a bisection

method to the interval
[
0, max

∣∣∣δ(k)
∣∣∣
]
.

It is important to mention that we assumed that the function f is reasonably linear within the
box [x̃1−∆1, x̃1 + ∆1]× . . .× [x̃n−∆n, x̃n + ∆n]. However, the simulated values δi may be outside
the box. When we get such values, we do not use the function f for them, we use a normalized
function that is equal to f within the box, and that is extended linearly for all other values (we
will see, in the description of an algorithm, how this is done).

As a result, we arrive at the following algorithm.

Algorithm.

− Apply f to the results of direct measurements: ỹ := f(x̃1, . . . , x̃n);

− For k = 1, 2, . . . , N , repeat the following:

• use the standard random number generator to compute n numbers r
(k)
i , i = 1, 2, . . . , n,

that are uniformly distributed on the interval [0, 1];

• compute Cauchy distributed values c
(k)
i := tan(π · (r(k)

i − 0.5));

• compute the largest value of |c(k)
i | so that we will be able to normalize the simulated

measurement errors and apply f to the values that are within the box of possible values:
K := maxi |c(k)

i |;
• compute the simulated measurement errors δ

(k)
i := ∆i · c(k)

i /K;

• compute the simulated “actual values” x
(k)
i := x̃i − δ

(k)
i ;
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• apply the program f to the simulated “actual values” and compute the simulated error
of the indirect measurement:

δ(k) := K ·
(
ỹ − f

(
x

(k)
1 , . . . , x(k)

n

))
;

− Compute ∆ by applying the bisection method to solve the equation (2).

Comment. To avoid confusion, we should emphasize that, in contrast to the Monte-Carlo solution
for the probabilistic case, the use of Cauchy distribution in the interval case is a computational
trick and not a truthful simulation of the actual measurement error ∆xi: indeed, we know that
the actual value of ∆xi is always inside the interval [−∆i, ∆i], but a Cauchy distributed random
attains values outside this interval as well.

Interval case: results. The results (given below) show some interesting features which we can
use to qualitatively interpret the accuracy of the velocity values. In general, the values correspond
well to the density and geometry of ray coverage in the model (see an earlier picture). The lowest
values are in the upper part of the model and along paths of greatest ray coverage. The highest
values or regions of lowest resolution are deeper in the model, near the center of the model with
low ray coverage, and beneath the El Paso area (between shotpoints 5 and 6), where urban noise
has decreased the number of travel-time picks and their quality. Whereas theses values do provide
a good assessment of reliability for different regions of the model, they are clearly not useful in
absolute terms.
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Comment. When instead of single value ∆i = 150 ms, we used more realistic different values at
different sensor locations (Zelt and Forsyth, 1994), we got similarly over-large results.

Clarifying comment. The above negative result is easy to explain by the following back-of-the-
envelope calculations. Let us take two neighboring sensors at a distance d = 600 m from each
other. Let x1 be the time by which the seismic wave arrived at the first sensor, and let x2 be the
time by which this wave arrived at the second sensor. This means that this wave took time t2 − t1
to travel a distance d between the two sensors and thus, its velocity in this area can be estimated
as v = d/(x2 − x1).

The actual velocity near the surface is about v ≈ 2 km/s, so the actual time difference is
x2 − x1 = d/v ≈ 0.3 sec. The observed value x̃2 − x̃1 is thus 0.3 sec, and the upper bound on each
measurement error ∆x1 and ∆x2 is 0.15 sec. Thus, the upper bound on the error ∆x2 − ∆x1 is
0.3 sec. So, by using interval uncertainty, we conclude that the actual (unknown) value of x2 − x1

can take any value from 0 to 0.6 sec. When x2 − x1 is close to 0, for the corresponding velocity
v = d/(x2 − x1) we get meaningless thousands of km/s.

12.4. A New Heuristic Approach

Towards the main idea. The guaranteed bounds provided by the interval approach are too high.
How can we improve these bounds?

One possible solution comes from the following simple observation. For the normally distributed
random variable with 0 mean and standard deviation σ, the only guaranteed upper bound is ∞. In
practice, however, we can say that with confidence 90%, the actual value of this variable does not
exceed 2σ, with confidence 99.9%, it does not exceed 3σ, etc. To get a bound with 90% confidence,
we “cut-off” the top 10% of the normal distribution. To get the bound with 99.9% confidence, we
“cut-off” the top 0.1% of the normal distribution, etc.

Main idea. Since guaranteed bounds are too high, it is reasonable to restrict ourselves to bounds
guaranteed with a given confidence, e.g., bounds which are guaranteed with a confidence of 95%
and dismiss the top 5% of uncertainty values. To find such bounds in the Cauchy method, we
“cut-off” the top 5% of the corresponding Cauchy distribution. To be more precise, we find the
threshold value x0 for which the probability of exceeding this value is 5% (or any other desired
cut-off probability p0), and then replace values x for which x > x0 with x0 and for x < −x0 with
−x0. For the Cauchy distribution, we have found that a 95% confidence level is obtained for the
bounds of −12.706 ≤ x0 ≤ 12.706 (see Appendix).

So, to get more realistic estimates for ∆, in the Cauchy approach, we use the “cut-off” Cauchy
distribution instead of the original one.

Heuristic approach: results. The results of applying the Cauchy approach with 95% and 90%
confidence are presented on the next page. Good news is that, in contrast to the practically useless
interval-case values of uncertainty, here, velocity uncertainties ∆ are exactly as expected. At the
95% confidence, the values ∆ range from 0.01 to 0.3 km/s, and at a 90% confidence level, they
range from 0.005 to 0.23 km/s.
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On the qualitative level, the values ∆ are still as geophysically reasonable as the values computed
by the original interval-case method:

− the lowest values of ∆ are found near the shotpoints, and along paths of highest ray coverage;

− the highest uncertainties are near the center of the model with lowest ray coverage and beneath
the El Paso region between shotpoints 5 and 6.

Conclusions

In the past, communications were much slower than computations. As a result, researchers and
practitioners collected different data into huge databases located at a single location such as NASA
and US Geological Survey. At present, communications are so much faster that it is possible to keep
different databases at different locations, and automatically select, transform, and collect relevant
data when necessary. The corresponding cyberinfrastructure is actively used in many applications.
It drastically enhances scientists’ ability to discover, reuse and combine a large number of resources,
e.g., data and services.

Because of this importance, it is desirable to be able to gauge the the uncertainty of the results
obtained by using cyberinfrastructure. This problem is made more urgent by the fact that the level
of uncertainty associated with cyberinfrastructure resources can vary greatly – and that scientists
have much less control over the quality of different resources than in the centralized database. Thus,
with the cyberinfrastructure promise comes the need to analyze how data uncertainty propagates
via this cyberinfrastructure.

When the resulting accuracy is too low, it is desirable to produce the provenance of this inac-
curacy: to find out which data points contributed most to it, and how an improved accuracy of
these data points will improve the accuracy of the result. In this paper, we describe algorithms for
propagating uncertainty and for finding the provenance for this uncertainty.

The above results mainly deal either with the probabilistic situations, when we either know the
probability distributions of different measurement errors (and different errors are independent), or
with interval situations, when we only know the upper bounds on the measurement errors. Proba-
bilistic estimates tend to underestimate the resulting error – since in reality, different measurement
errors are correlated (e.g., they have the same systematic error components). Interval estimates
tend to overestimate because they are based on – often unrealistic – worst-case scenarios. It is
thus desirable to combine these estimates to get more realistic error bounds. We describe several
such combination methods, their mathematical justifications, and their successful use in processing
geospatial data.
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Appendix

The standard Cauchy distribution is characterized by the probability density function ρ(x) =
1
π
· 1
1 + x2

. We are given a small probability p0 (e.g., p0 = 5%), and we want to find the value x0

such that the probability that |x| ≥ x0 is exactly p0. In other words, we want the probability that
x ≥ x0 or x ≤ −x0 to be equal to p0. Since the Cauchy distribution is symmetric, the probability
that x ≤ −x0 is equal to the probability that x ≥ x0. Therefore, the probability that |x| ≥ x0 is
equal to twice the probability that x ≥ x0: p0 = Prob(|x| ≥ x0) = 2 · Prob(x > x0).

For the Cauchy distribution,

p0

2
= Prob(x > x0) =

1
π
·
∫ ∞

x0

1
1 + x2

=
1
π
· (arctan(∞)− arctan(x0)) =

1
π
·
(

π

2
− arctan(x0)

)
=

1
2
− 1

π
· arctan(x0).

Thus, we must take arctan(x0) =
π

2
· (1− p0) and

x0 = tan
(

π

2
· (1− p0)

)
. (3)

For small p0, we can get an even simpler formula. Indeed, in general, x0 = tan
(

π

2
− π

2
· p0

)
=

sin
(

π

2
− π

2
· p0

)

cos
(

π

2
− π

2
· p0

) . We know that sin
(

π

2
− α

)
= cos(α) and cos

(
π

2
− α

)
= sin(α), so x0 =

cos
(

π

2
· p0

)

sin
(

π

2
· p0

) . For small α, we have sin(α) ≈ α and cos(α) ≈ 1, hence for small p0, we get x0 ≈ 1
π

2
· p0

and
x0 ≈ 2

π · p0
. (4)
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