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Abstract. Systems of parametric linear interval equations are encountered in many practical
applications. Parametric linear interval system is a family of real linear systems. Parametric solution
set is a set of all solutions of real systems from the family. In general case the parametric solution
set is not an interval vector. Hence, instead of the parametric solution set itself, interval vector
containing the solution set (outer interval solution) is calculated. The tightest outer interval solution
is called an interval hull solution. To calculate the interval hull solution 2n constrained optimization
problems are solved using the global optimization method with some accelerating techniques. The
monotonicity test is performed using a direct method for solving parametric linear interval systems.
Some other techniques like special ordering of subdivided boxes is also used. A bisection and
multisection techniques are compared. Various subdivision direction selections rules are tested.
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1. Introduction

This paper focuses on solving parametric linear systems of structure mechanics with interval
parameters. Parametric interval methods allow the engineering practice to account for uncer-
tainty connected either to external factors, such as boundary conditions or applied loads, or to
internal factors, such as mechanical or geometric characteristics (Aughenbaugh, 2006; Lallemand,
2000; Muhanna, 2006; Muhanna, 2006; Zalewski et. al., 2006), and to calculate the very sharp
bounds on the system response for all possible scenarios in a single analysis (Mullen, 2002).

In general case the parametric solution set is not an interval vector (Neumaier, 1990). Hence,
instead of the parametric solution set itself, interval vector containing the parametric solution set
(outer interval solution) is calculated. The tightest outer interval solution is called an interval
hull solution. The problem of computing the hull solution is NP-hard (Rohn and Kreinovich, 1995).
However, when the parametric solution is monotone with respect to all interval parameters, interval
hull can be calculated by solving at most 2n real linear systems.
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The problem of calculating hull solution can be written as a problem of solving 2n constrained
optimization problems. In (Skalna, 2006) an evolutionary optimization methods for approximating
(from below) the hull solution has been proposed. One may argue that the underestimation is
unknown. However, numerical experiments and the comparison with other methods for solving
parametric systems show that the method performs very well.

In this paper global optimization method (GOM for short) with some accelerating techniques
is used to calculate the interval hull solution. The monotonicity test is performed using a Direct
Method for solving parametric linear interval systems. Some other techniques like special ordering of
subdivided boxes are also exploited. A bisection and multisection techniques are compared. Various
subdivision direction selections rules are tested.

The paper is organized as follows. The second section contains preliminaries on solving paramet-
ric interval linear systems with two disjoint sets of parameters. In the third section, the optimization
problem is outlined. This is followed by a description of global optimization algorithm and selected
accelerating techniques. Next, some illustrative examples of truss structures and the results of
computational experiments are presented. The paper ends with summary conclusions.

2. Preliminaries

Italic faces will be used for real quantities, while bold italic faces will denote their interval coun-
terparts. Let IR denote a set of real compact intervals x = [x, x] = {x ∈ R | x 6 x 6 x}. For two
intervals a, b ∈ IR, a > b, a 6 b and a = b will mean that, resp., a > b, a > b, and a = b z a = b.
IRn will denote interval vectors, IRn×n square interval matrices (Neumaier, 1990). The midpoint
x̌ = m(x) = (x + x)/2, the radius r(x) = (x − x)/2, and the width w(x) = x − x are applied to
interval vectors and matrices componentwise.

Consider linear algebraic system

A(p)x(p, q) = b(q) , (1)

with linear dependencies

aij(p) = αij0 + αT
ij · p , bj(q) = βj0 + βT

j · q , (2)

where αij0, βj0 ∈ R, αij = {αijν} ∈ Rk, βj = {βjν} ∈ Rl, i, j = 1, . . . , n.
Now assume that some model parameters are unknown. The real vectors p and q are replaced by

interval vectors p and q (the real elements are represented by point intervals). This gives a family
of the systems

A(p)x(p, q) = b(q), p ∈ p, q ∈ q , (3)

which is usually written in a symbolic compact form

A(p)x(p, q) = b(q) , (4)

and is called the parametric interval linear system. Parametric (united) solution set of the system
(4) is defined (Jansson, 1991; Kolev, 2004; Rump, 1994) as

S(p, q) = {x | ∃p ∈ p, ∃q ∈ q, A(p)x(p, q) = b(q)} . (5)
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If the solution set S = S(p, q) is bounded, then its interval hull exists and is defined as

2S = [inf S, supS] =
⋂
{y ∈ IRn |S ⊆ y} .

2S is called an interval hull solution. In order to guarantee that the solution set is bounded, the
matrix A(p) must be regular, i.e. A(p) must be non-singular for all parameters p ∈ p.

3. Optimization problem

The problem of computing the interval hull solution of the parametric linear system (3) can be
written as a problem of solving 2n constrained optimization problems

min
p∈p
q∈q

xi(p, q), i = 1, . . . , n (6)

and
max
p∈p
q∈q

xi(p, q), i = 1, . . . , n (7)

where xi(p, q) =
{
A(p)−1b(q)

}
i is the i-th coordinate of the solution of the parametric linear

system (1), p ∈ IRk and q ∈ IRl are vectors of interval parameters.

Theorem 1. Let A(p) be regular, p ∈ IRk, and xi
min, xi

max denote the global solutions of the i-th
minimization (6), resp. maximization (7) problems. Then the interval vector

x = [xmin, xmax] =
([

xi
min, xi

max

])n

i=1
= 2S(p, q). (8)

The optimization problems (6) and (7) will be solved using a global optimization approach.
As a result of the minimization (maximization) problem approximation of the solution set hull,
possibly the solution hull itself, will be gained.

4. Global optimization

Global optimization refers to finding the extreme value of a given nonconvex function in a certain
feasible region. Solving global optimization problems has made great gain from the interest in the
interface between computer science and operations research.

It is assumed in what follows that the inclusion functions have the isotonicity property; i.e.,
x ⊆ y implies F (x) ⊆ F (y) and that for all the inclusion functions holds

w(F (xi)) −→ 0 as w(xi) −→ 0. (9)
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4.1. Algorithm

Consider x(p, q), and define r ∈ IRk+l with ri = pi for i = 1, . . . , k, ri = qi for i = k+1, . . . , k+l.
Now x(p, q) can be written in shorter form as x(r) keeping in mind that x has two vector arguments.
Inclusion function is calculated using the Direct Method (Skalna, 2007). It can be easily shown that
the method preserves isotonicity property.

The model algorithm is as follows:

Step 0 Set y = r and f = minx(y). Initialize the list L = {(f, y)}
and the cutoff level z = maxx(y).

Step 1 Choose a coordinate direction using one of the rules: ν ∈ {1, 2, ..., k + l}.
Step 2 Bisect (multisect) y in direction ν: y1 ∪ y2(

s⋃

i=1

yi, int(yi) ∩ int(yj) = ∅, i 6= j

)
, int denotes the interior.

Step 3 Calculate x(y1), x(y2), and set fi = minx(yi) for i = 1, 2
and z = min {z, maxx(y1), maxx(y2)}.

Step 4 Remove (f, y) from the list L.
Step 5 Cutoff test: discard the pair (fi, yi) if fi > z (where i ∈ {1, 2}).
Step 6 Monotonicity test: discard or reduce any remaining pair

(fi, yi) if 0 /∈ xj(yi) for any j ∈ {1, 2, ..., n} and i = 1, 2.
Step 7 Add any remaining pairs to the list L. If the list becomes empty, then STOP.
Step 8 Denote the pair with the smallest first element by (f∗,y∗).
Step 9 If the width of x(y∗) is less than ε, then print x(y∗) and y∗, STOP.
Step 10 Go to Step 1.

4.2. Midpoint test

The midpoint test is used to reduce the number of intervals in the list L. The pair (f̃ , ỹ) which
satisfies f̃ < f for all pairs (f, y) of the list L is chosen out of L. Then, f̌ = supF (c) is computed,
with c = mid(ỹ). Now, all pairs (f ′, y′) satisfying f̌ < f ′ can be discarded from the list L. Also,
a new pair (f ′′, y′′) must only be entered in the list L if f̃ > f ′′ is satisfied.

4.3. Monotonicity test

The monotonicity test is used to figure out whether the function f is strictly monotone in a whole
subbox y ⊆ x Then, y cannot contain a global minimizer in its interior. Therefore, if f satisfies

∂f

∂xi
(y) < 0 ∨ ∂f

∂xi
(y) < 0 (10)

then the subbox y can be reduced to one of its edges.
Monotonicity test is pefromed using the Method for Checking the Monotonicity (MCM for

short) proposed in (Skalna, 2007). The MCM method is based on a Direct Method (Skalna, 2007)
for solving parametric linear systems. Let f = x(p, q). Briefly speaking, the approximations of
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∂x
∂pm

(p, q), ∂x
∂qr

(p, q) are obtained by solving the following k + l parametric linear systems

A(p)
∂x

∂pm
= b′m(x∗), m = 1, . . . , k; A(p)

∂x

∂qr
= b′′r, r = 1, . . . , l , (11)

where b′mj (x∗) = −αijmx∗j , b′′rj = βjr, j = 1, . . . , n, x∗ ∈ x∗. Detailed description of the MCM
method can be found in (Skalna, 2007).

4.4. Subdivision direction selection

Following Ratz and Csendes the interval subdivision direction selection rules has the following merit
function:

k := min {j | j ∈ {1, . . . , n} and D(j) = maxiD(i)} (12)

where D(i) is determined by a given rule.
Rule A. The first rule to be applied was the interval-width-oriented rule (Hansen, 1980), it can

also be aaplied to non-differentiable function. This rule chooses the coordinate direction with

D(i) = w(y). (13)

and was justified by the idea that if the original interval is subdivided in a uniform way then the
width of the actual subintervals goes to zero most rapidly.

Rule B. Define the indicator

p(fk, f) =
fk − f

f − f
(14)

that gives which interval is to be selected for subdivision. Here fk is the approximation of the global
minimum value in the iteration k (Casado, 200)

fk = min {fl | (fl, yl) ∈ L} . (15)

Rule B selects the coordinate direction for which (12) holds with

D(i) = p(fk, fi). (16)

Rule C. Hansen described another rule (initiated by G.W. Walster) (Hansen, 1980). Rule C
selects the coordinate direction for which (12) holds with

D(i) = w
(
F ′

i (y)w(y)
)
. (17)

4.5. Multisection

Global optimization is based on successive subdivision of the set of feasible solutions. The main
idea of multisection technique is to subdivide the problem (in a single step) into many (> 2) smaller
problems in contrast to traditional bisection, where to new subintervals are always produced.
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5. Examples

To check the performance of the method some illustrative examples of structural mechanical systems
are provided. The results of the Global Optimization Method are compared with the results of the
Evolutionary Optimization Method (EOM for short) (Skalna, 2006) .

Example 1. (21-bar plane truss structure)
For the plane truss structure shown in Fig. 1 the displacements of the nodes are computed. The
truss is subjected to downward forces P1 = P2 = P3 = 30[kN] as depicted in the figure; Young’s
modulus Y = 7.0× 1010[Pa], cross-section area C = 0.003[m2], and length L = 2[m]. Assume the
stiffness of all bars is uncertain by ±5%. This gives 21 interval parameters.

P
1

L

0.5L

P
2

P
3

Figure 1. Example 1: 21 planar truss structure

The results produced by the GOM and the EOM methods (Table I) coincide.

Table I. Example 1: results of the GOM and the EOM methods

n x [×10−5] x [×10−5] n x [×10−5] x [×10−5]

1 -32.53 -29.27 12 3.90 4.67

2 -1.61 -1.45 13 -16.23 -14.67

3 -26.45 -23.93 14 3.18 3.87

4 -2.41 -2.17 15 -3.63 -2.96

5 -15.78 -14.27 16 3.18 3.87

6 -1.69 -1.37 17 -0.05 0.05

7 -4.08 -3.37 18 2.35 3.02

8 -0.96 -0.57 19 -0.46 -0.40

9 0.36 0.50 20 0.85 1.47

10 3.90 4.67 21 -2.78 -2.09

11 -26.45 -23.93
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Example 2. (Baltimore bridge built in 1870)
Consider the plane truss structure shown in Figure 2 subjected to downward forces of P1 = 80[kN ]
at node 11, P2 = 120[kN ] at node 12 and P1 at node 15; Young’s modulus Y= 2.1× 1011 [Pa],
cross-section area C = 0.004[m2], and length L = 1[m]. Assume that the stiffness of 16 bars is
uncertain by ±5%. This gives 16 interval parameters.

P
1

P
1P

2

L

L

L

Figure 2. Example 2: Baltimore bridge (built in 1870)

Once again the results of the GOM and the EOM methods coincide. The average relative error
produced by both methods equals 2.51%. Maximal relative error equals 34%. For 23 coordinates
relative error equals 1%, for another 10 coordinates equals 2%.

6. Conclusions

The problem of solving parametric linear systems has been considered in Section 2. In Section 3
the global optimization method GOM for approximating the solution set hull of parametric linear
systems has been described. Computations performed in Section 5 show that the GOM is a powerful
tool for solving such systems. The results of the GOM method have been compared with the results
of the evolutionary optimization method EOM. Both methods produced the same result which
proves that both approaches are powerful tools for solving parametric linear systems. It turns
out from the experiments that the monotonicity test and the cutoff test significantly speeds up
the convergence of the GOM method, while different rules of subdivision direction selection have
no impact on the convergence. Multisection technique is not useful for the problem of solving
parametric linear systems since the computation of implicitly given inclusion function is very
expensive.
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