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Abstract: Early in the engineering design cycle, it is difficult to quantify product reliability due 
to insufficient data or information to model uncertainties. Probability theory can not be therefore, 
used. Design decisions are usually based on fuzzy information which is imprecise and 
incomplete. Various design methods such as Possibility-Based Design Optimization (PBDO) and 
Evidence-Based Design Optimization (EBDO) have been developed to systematically treat design 
with non-probabilistic uncertainties. In practical engineering applications, information regarding 
the uncertain variables and parameters may exist in the form of sample points, and uncertainties 
with sufficient and insufficient information may exist simultaneously. Most of the existing 
optimal design methods under uncertainty can not handle this form of incomplete information. 
They have to either discard some valuable information or postulate the existence of additional 
information. In this paper, a design optimization method is proposed based on evidence theory, 
which can handle a mixture of epistemic and random uncertainties. Instead of using “expert” 
opinions to form the basic probability assignment, a Bayesian approach is used with a limited 
number of sample points. A pressure vessel example demonstrates the merit of the proposed 
design optimization method. The results are compared with those from existing design 
methodologies under uncertainty. 
 
 

1. INTRODUCTION 
 
Engineering design under uncertainty has recently gained a lot of attention. Uncertainties are 
usually modeled using probability theory. In Reliability-Based Design Optimization (RBDO), 
variations are represented by standard deviations which are typically assumed constant, and a 
mean performance is optimized subject to probabilistic constraints [1-5]. In general, probability 
theory is very effective when sufficient data is available to quantify uncertainty using probability 
distributions. However, when sufficient data is not available or there is lack of information due to 
ignorance, the classical probability methodology may not be appropriate. For example, during the 
early stages of product development, quantification of the product’s reliability or compliance to 
performance targets is practically very difficult due to insufficient data for modeling the 
uncertainties. A similar problem exists when the reliability of a complex system is assessed in the 
presence of incomplete information on the variability of certain design variables, parameters, 
operating conditions, boundary conditions etc.  
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 Uncertainties can be classified in two general types; aleatory (stochastic or random) and 
epistemic (subjective) [6-10]. Aleatory or irreducible uncertainty is related to inherent variability 
and is efficiently modeled using probability theory. However, when data is scarce or there is lack 
of information, the probability theory is not useful because the needed probability distributions 
cannot be accurately constructed. In this case, epistemic uncertainty, which describes subjectivity, 
ignorance or lack of information, can be used. Epistemic uncertainty is also called reducible 
because it can be reduced with increased state of knowledge or collection of more data.  
 Formal theories to handle uncertainty have been proposed in the literature including evidence 
theory (or Dempster – Shafer theory) [9, 10], possibility theory [11] and interval analysis [12]. 
Two large classes of fuzzy measures, called belief and plausibility measures, respectively, 
characterize the mathematical theory of evidence. They are mutually dual in the sense that one of 
them can be uniquely determined from the other. Evidence theory uses plausibility and belief 
(upper and lower bounds of probability) to measure the likelihood of events. When the 
plausibility and belief measures are equal, the general evidence theory reduces to the classical 
probability theory. Therefore, the classical probability theory is a special case of evidence theory. 
Possibility theory handles epistemic uncertainty if there is no conflicting evidence among experts 
[9]. It uses a special subclass of dual plausibility and belief measures, called possibility and 
necessity measures, respectively. In possibility theory, a fuzzy set approach is common, where 
membership functions characterize the input uncertainty [13]. Even if a probability distribution is 
not available due to limited information, lower and upper bounds (intervals) on uncertain design 
variables are usually known. In this case, interval analysis [12, 14, 15] and fuzzy set theory [13] 
have been extensively used to characterize and propagate input uncertainty in order to calculate 
the interval of the uncertain output. An efficient method for reliability estimation with a 
combination of random and interval variables is presented in [16]. However, it is not 
implemented in a design optimization framework. A few design optimization studies have been 
also reported, where some or all of the uncertain design variables are in interval form [17-19]. 
 Optimization with input ranges has also been studied under the term anti-optimization [20, 
21]. Anti-optimization is used to describe the task of finding the “worst-case” scenario for a given 
problem. It solves a two-level (usually nested) optimization problem. The outer level performs 
the design optimization while the inner level performs the anti-optimization. The latter seeks the 
worst condition under the interval uncertainty [21]. A decoupled approach is suggested in [21] 
where the design optimization alternates with the anti-optimization rather than nesting the two. It 
was mentioned that this method takes longer to converge and may not even converge at all if 
there is strong coupling between the interval design variables and the rest of the design variables. 
A “worst-case” scenario approach using interval variables has also been considered in 
multidisciplinary systems design [19, 22].  
 Very recently, possibility-based design algorithms have been proposed [23-25] where a mean 
performance is optimized subject to possibilistic constraints. It was shown that more conservative 
results are obtained compared with the probability-based RBDO. A comprehensive comparison of 
probability and possibility theories is given in [26] for design under uncertainty. 
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 Evidence theory is more general than probability and possibility theories, even though the 
methodologies of uncertainty propagation are completely different [27, 28]. It can be used in 
design under uncertainty if limited, and even conflicting, information is provided from experts. 
Furthermore, the basic axioms of evidence theory allow to combine aleatory (random) and 
epistemic uncertainty in a straightforward way without any assumptions [28]. Evidence theory 
however, has been barely explored in engineering design. One of the reasons may be its high 
computational cost due mainly to the discontinuous nature of uncertainty quantification. 
Evidence-based methods have been only recently used to propagate epistemic uncertainty [28, 
29] in large-scale engineering systems. Although a computationally efficient method is proposed 
in [28, 29], the design issue is not addressed. We are aware of only one study which propagates 
epistemic uncertainty using evidence theory and also performs a design optimization [30]. The 
optimum design is calculated for multidisciplinary systems under uncertainty using a trust region 
sequential approximate optimization method with surrogate models representing the uncertain 
measures as continuous functions. 

In engineering design, information regarding the uncertain quantities is usually available in 
the form of a set of finite samples, either from historical data or from actual measurements. These 
samples are not enough to infer a probability distribution. However, if we collapse them into 
intervals, we discard valuable information. Collecting more samples is often not possible due to 
the cost or time limitations. So RBDO, PBDO (Possibility-Based Design Optimization) [23, 24], 
and EBDO (Evidence-Based Design Optimization) [31] may not satisfactorily address the 
presence of incomplete information. We must utilize Bayesian inference to estimate design 
reliability with incomplete information. 

Bayesian inference is an approach to statistics in which all forms of uncertainty are expressed 
in terms of probability. A Bayesian approach starts with the formulation of a model to describe 
the situation of interest. A prior distribution is formulated over the unknown parameters of the 
model, which is meant to capture the belief about the situation before seeing the data. Using 
available data, we apply Bayesian's rule to obtain a posterior distribution for these unknowns, 
which accounts for both the prior and the new data.  

In this paper, a Bayesian approach is used to account for uncertainty in the design when 
limited information is provided by a limited number of sample points. A Bayesian approach is 
proposed using the extreme value distribution of the smallest value. The approach can handle 
both a mixture of epistemic and random uncertainties or pure epistemic uncertainties. The 
accuracy of predictions improves with the use of more sample points. Previous research, such as 
in [32-34] illustrate how to use a Bayesian approach in design utilizing the confidence percentile 
concept. In this paper, the available methodologies are improved by using the extreme value 
distribution of the smallest value instead of the conventional beta distribution. The extreme value 
distribution approach is necessary because we have only a small set of sample points which are 
different at each experiment. A Bayesian approach to design optimization (BADO) using the 
extreme value distribution is proposed. We show that the optimal design is conservative.  

The proposed BADO approach can handle epistemic uncertainties or a mixture of aleatory 
and epistemic uncertainties. Also if only the number of sample points within a certain range is 
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known instead of the exact distribution of the sample points, we propose a design methodology 
which combines the evidence theory and the Bayesian approach.  

The difference between Possibility-Based Design Optimization (PBDO) and Bayesian-Based 
Design Optimization (BADO) is in the format of uncertain variables. Possibilistic variables are in 
the form of intervals and Bayesian uncertain variables are in the form of sample points. The latter 
provide more information compared with the possibilistic variables. Both of them are based on 
the confidence percentile concept. In PBDO, a membership function is constructed for each 
possibilistic variables. The PBDO approach provides a worst-case design because there is a 
minimal amount of information in the form of intervals. However, more information is available 
for the Bayesian uncertain variables in the form of sample points. For this reason, we will show 
that the BADO design is less conservative than the PBDO design. 
 The paper is organized as follows. Section 2 gives an introduction to the fundamentals of 
evidence theory. Section 3 presents an overview of an Evidence-Based Design Optimization 
(EBDO) algorithm. Section 4 presents the proposed Bayesian-Based Design Optimization 
(BADO) procedure and a methodology to estimate the BPA structure from limited available data 
using Bayesian statistics. The concepts in section 4 are demonstrated with a pressure vessel 
example. Comparisons among RBDO, EBDO, PBDO and BADO are also provided in order to 
demonstrate the value of added information in design. Finally, a summary and conclusions are 
given in section 5. 
 
 

2. FUNDAMENTALS OF EVIDENCE THEORY 
 
This section gives the fundamentals of evidence theory, how it can be used in design optimization 
and an introduction to fuzzy measures. Detailed information is provided in [8, 9, 11, 31, 35]. The 
role of fuzzy measures and the axiomatic definition of evidence theory are explained.  

Evidence theory is based on the belief (Bel) and Plausibility (Pl) fuzzy measures. Fuzzy 
measures provide the foundation of fuzzy set theory. Before we introduce the basics of fuzzy 
measures, it is helpful to review the used notation on set representation. A universe X represents 
the entire collection of elements having the same characteristics. The individual elements in the 
universe X are denoted by x, and are usually called singletons. A set A is a collection of some 
elements of X. All possible sets of X constitute a special set called the power set ℘(X). 

A fuzzy measure is defined by a function g: ℘(X) → [0,1] which assigns to each crisp subset 
of X a number in the unit interval [0,1]. The assigned number in the unit interval for a subset 
A∈℘(X), denoted by g(A), represents the degree of available evidence or belief  that a given 
element of X belongs to the subset A.  

In order to qualify as a fuzzy measure, the function g must have certain properties. These 
properties are defined by axioms that are weaker than the probability theory axioms [8, 9]. Every 
fuzzy measure obeys the following three axioms:  
 Axiom 1 (boundary conditions): g(∅ )=0 and g(X)=1. 
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 Axiom 2 (monotonicity): For every A, B∈℘(X), if A⊆B, then g(A) ≤   g(B). 
          Axiom 3 (continuity): For every sequence ( iA ∈℘(X), i=1,2,…) of subsets of  ℘(X),   
                                                 if either 1A ⊆ iA ⊆… or 1A ⊇ 2A ⊇  … (i.e., the sequence is   
                                                 monotonic),  then  )lim()(lim iiii

AgAg
∞→∞→

= . 

A belief measure is a function Bel: ℘(X) ]1,0[→ which satisfies the three axioms of fuzzy 
measures and the following additional axiom [9]:  
                             ( ) ( )212121 )()( AABelABelABelAABel ∩−+≥∪   .                                      (1)                              
The axiom (1) can be expanded for more than two sets. For ( )XA∈℘ , Bel(A) is interpreted as 
the degree of belief, based on available evidence, that a given element of X belongs to the set A.  
A plausibility measure is a function 
 
                                                          ( ) [ ]1,0: ⇒℘ XPl                             (2) 
 
which satisfies the three axioms of fuzzy measures and the following additional axiom [9] 

( ) ( )212121 )()( AAPlAPlAPlAAPl ∪−+≤∩                                   (3) 
Every belief measure and its dual plausibility measure can be expressed with respect to the non-
negative function 
                                                        ( ) [ ]1,0: ⇒℘ Xm                                        (4)  
such that m(∅ ) = 0 and 
                                                           ( )

( )
1=∑

℘∈ XA

Am .                                                 (5) 

The function m is called Basic Probability Assignment (BPA) due to the resemblance of Eq. (5) 
with a similar equation for probability distributions. The basic probability assignment m(A) is 
interpreted either as the degree of evidence supporting the claim that a specific element of X 
belongs to the set A or as the degree to which we believe that such a claim is warranted. Every set 

( )XA∈℘  for which m(A)>0 is called a focal element of m. Focal elements are subsets of X on 
which the available evidence focuses; i.e. available evidence exists. 

Given a BPA m, a belief measure and a plausibility measure are uniquely determined by 
                                                           ( ) ( )∑

⊆

=
AB

BmABel                         (6) 

and 
                                                           ( ) ( )∑

≠∩

=
0AB

BmAPl .                       (7) 

which are applicable for all ( )XA∈℘ .  
In Eq. (6), Bel(A) represents the total evidence or belief that the element belongs to A as well 

as to various subsets of A. The Pl(A) in Eq. (7) represents not only the total evidence or belief that 
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the element in question belongs to set A or to any of its subsets but also the additional evidence or 
belief associated with sets that overlap with A. Therefore, 
                                                           ( ) ( )ABelAPl ≥ .                        (8) 
It should be noted that belief and plausibility are complementary in the sense that one of them can 
be uniquely derived from the other. 

Probability theory is a subcase of evidence theory. When the additional axiom of belief 
measures (see Eq. (1)) is replaced with the stronger axiom 
                       )()()( BBelABelBABel +=∪  where ∅=∩ BA ,                             (9)                
we obtain a special type of belief measures which are the classical probability measures. In this 
case, the right hand sides of Eq. (6) and (7) become equal and therefore, 
                                           ( ) ( ) ( ) ( )∑∑

∈∈

===
AxAx

xpxmAPlABel                      (10) 

for all ( )XA∈℘ , where p(x) is the probability distribution function (PDF). Note that the BPA 
m(x) is equal to p(x). Therefore with evidence theory, we can simultaneously handle a mixture of 
input parameters. Some of the inputs can be described probabilistically (random uncertainty) and 
some can be described through expert opinions (epistemic uncertainty with incomplete data). In 
the first case, the range of each input parameter will be discretized using a finite number of 
intervals. The BPA value for each interval must be equal to the PDF area within the interval. 

Evidence obtained from independent sources or experts must be combined. If the BPA’s  1m  
and 2m  express evidence from two experts, the combined evidence m can be calculated by the 
following Dempster’s rule of combining [36] 

                                          ( )
( ) ( )

K

CmBm
Am ACB

−
=
∑

=∩

1

21

  for  0≠A         (11) 

where 
                                                  ( ) ( )∑

=∩

=
0

21
CB

CmBmK            (12) 

represents the conflict between the two independent experts. Dempster’s rule filters out any 
conflict, or contradiction among the provided evidence, by normalizing with the complementary 
degree of conflict. It is usually appropriate for relatively small amounts of conflict where there is 
some consistency or sufficient agreement among the opinions of the experts. Yager [10] has 
proposed an alternative rule of combination where all degrees of contradiction are attributed to 
total ignorance. Other rules of combining can be found in [36]. 
 

2.1. ASSESSING BELIEF AND PLAUSIBILITY WITH DEMPSTER-SHAFER THEORY 

The previous section described a methodology to quantify epistemic uncertainty, even when the 
experts provide conflicting evidence. This section shows how to propagate epistemic uncertainty 
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through a given model (transfer function). We will illustrate that, using the following simple 
transfer function 
                                                               ( )bafy ,=          (13) 
where BbAa ∈∈ , are two independent input parameters and y is the output. The combined 
BPA’s for both a and b are obtained from Dempster’s rule of combining of Eq. (11) if multiple 
experts have provided evidence for either a or b. With combined information for each input 
parameter, we define a vector [ ]cjci bac ,= , needed to calculate the output y as 

                                        [ ]{ }BbAabacBAC cjcicjci ∈∈==×= ,,,        (14) 
where subscript c stands for “combined” and i,j  indicate focal elements.  

Taking advantage of assumed parameter independency, the BPA for c is 
                                      ( ) ( ) ( )cjciijc bmamhm =            (15) 
 

  Figure 1. Representative BPA structure for two parameters a and b. 
 
where  [ ]cjciij bah ,=  and cia , cjb  denote intervals such that ciaa∈  and cjbb∈ . Eq. (15) can be 
used to calculate the combined BPA structure for the entire domain C. For every 
( ) Cccba ∈∈, , needed to evaluate the output y, the combined BPA cm  is used. A 
representative combined BPA structure is shown in Figure 1. 

The Cartesian product C of Eq. (14) is also called frame of discernment (FD) in the literature. 
It consists of all focal elements (rectangles in Figure 1 with nonzero combined BPA) and can be 
viewed as the finite sample space in probability theory. 

If a domain F is defined as  
                                    ( ) ( ) [ ]{ }CbaccbaybafggF cc ⊂=∈>−== ,,,,0,: 0       (16) 

S

a

b

B P A

S
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b

S
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where 0y  is a specified value, Bel(F) and Pl(F) can be calculated from Eqs (6) and (7) where set 
F replaces set A. According to evidence theory, Bel(F) and Pl(F) bracket the true probability 

( )0>= gPp f  [9,27]; i.e. 

                                                           ( ) ( )FPlpFBel f ≤≤ .        (17) 
The Bel (F) and Pl (F) are calculated using Eqs (6) and (7) where set A is equal to set F of 

Eq. (16) and B is a rectangular domain (focal element) such that AB ⊆  for Eq. (6) and 
0≠∩ AB  for Eq. (7). In other words, AB ⊆  means that the focal element must be entirely 

within the domain g>0 and 0≠∩ AB  means that the focal element must be entirely or partially 
within the domain g>0 (see Fig. 2). In general, in order to identify if a focal element B satisfies 

AB ⊆  or 0≠∩ AB , the following minimum and maximum values of g must be calculated  
          [ ] ( ) ( )[ ]XX

XX
gggg max,min, maxmin =        (18) 

for UL XXX ≤≤ where ( )UL XX ,  defines the focal element domain. For monotonic functions, 
the vertex method [37] can be used to calculate the minimum and maximum values in Eq. (18) by 
simply identifying the minimum and maximum values among all vertices of the focal element 
domain. If for a focal element, ming  and maxg  are both positive, the focal element will contribute 
to the calculation of belief and plausibility according to Eqs (6) and (7). On the other hand, if 

ming  and maxg  are both negative, the focal element will not contribute to the calculation of belief 
or plausibility. If however, ming  is negative and maxg  is positive, the focal element will not 
contribute to the belief but it will contribute to the plausibility calculation. This is shown 
schematically in Figure 2. 
 

 
Figure 2. Schematic illustration of focal element contribution to belief and 

plausibility measures. 
 

In summary the following tasks are performed in order to calculate the belief and plausibility 
of the failure region: 

1) For each input parameter, combine the evidence from the experts by combining the 
individual BPA’s from each expert using Dempster’s rule of combining (Eq. (11)). 

ming

maxg
0g>

0g<
0g=

ming

maxg
0g>

0g< 0g=

ming

maxg0g>

0g<

0g=
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2) Construct the BPA structure for the m-dimensional frame of discernment, where m is the 
number of input parameters. Assuming independent input parameters, Eq. (15) is used. 

3) Identify the failure region space (set F of Eq. (16)). 
4) Use Eqs (6) and (7) to calculate the belief and plausibility measures of the failure region. 

The failure region must be identified only within the frame of discernment. The true 
probability of failure is bracketed according to Eq. (17). 

 
 

3. EVIDENCE-BASED DESIGN OPTIMIZATION (EBDO) 
 
In deterministic design optimization, an objective function is minimized subject to satisfying each 
constraint. In Reliability-Based Design Optimization (RBDO), where all design variables are 
characterized probabilistically, an objective function is usually minimized subject to the 
probability of satisfying each constraint, being greater than a specified high reliability level. In 
this section, a methodology is presented on how to use evidence theory in design. We will show 
that the evidence theory-based design is conservative compared with all RBDO designs obtained 
with different probability distributions.  

If feasibility of a constraint g is expressed with the non-negative null form 0≥g , we have 
shown in the previous section that ( )0≥gP  is bracketed by the belief ( )0≥gBel  and 
plausibility ( )0≥gPl ; i.e. ( ) ( )0)0(0 ≥≤≥≤≥ gPlgPgBel . Therefore,  

  ( ) fpgP ≤< 0  is satisfied if ( ) fpgPl ≤< 0          (19) 

where fp  is the probability of failure which is usually a small prescribed value. The above 
statement is equivalent to 

  ( ) RgP ≥≥ 0  is satisfied if ( ) RgBel ≥≥ 0          (20) 

where fpR −=1  is the corresponding reliability level. 

An evidence theory-based design optimization (EBDO) problem can be formulated as 
                                                            ( )NNf

N
P,Xd,

Xd,
min       

                             s.t.   ( )( )
ifi pgPl ≤< 0,, PXd , ni ,...,1=                             (21) 

                                                            UL ddd ≤≤   

                                                            N
U

NN
L XXX ≤≤     

where kR∈d is the vector of deterministic design variables, mR∈X is the vector of uncertain 
design variables, qR∈P is the vector of uncertain design parameters, ( )f  is the objective 
function and n, k, m and q are the number of constraints, deterministic design variables, uncertain 
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design variables and uncertain design parameters, respectively. According to the used notation, a 
bold letter indicates a vector, an upper case letter indicates an uncertain variable or parameter and 
a lower case letter indicates a realization of the uncertain variable. The superscript “N” in 
Problem (21) indicates nominal value of each uncertain design variable or design parameter. The 
uncertainty is provided by expert opinions. 

It should be noted that the plausibility measure is used instead of the equivalent belief 
measure, in Problem (21). The reason is that at the optimum, the failure domain for each active 
constraint is usually much smaller than the safe domain over the frame of discernment (FD). As a 
result, the computation of the plausibility of failure is much more efficient than the computation 
of the belief of safe region.  

 
3.1. IMPLEMENTATION OF THE EBDO ALGORITHM 

This section describes a computationally efficient solution of Problem (21). As a geometrical 
interpretation of Problem (21), we can view the design point (d,X) moving within the feasible 
domain so that the objective f is minimized. If the entire FD is in the feasible domain, the 
constraints are satisfied and are inactive. A constraint becomes active if part of the FD is in the 
“failure” region so that the plausibility of constraint violation is equal to fp . In general, Problem 
(21) represents movement of a hyper-cube (FD) within the feasible domain. 

In order to save computational effort, the bulk of the FD movement, from the initial design 
point to the vicinity of the optimal point (point B of Figure 3), can be achieved by moving a 
hyper-ellipse which contains the FD. The center of the hyper-ellipse is the “approximate” design 
point and each axis is arbitrarily taken equal to three times the standard deviation of a 
hypothetical normal distribution. This assumes that each dimension of the FD hyper-cube is equal 
to six times the standard deviation of the hypothetical normal distribution. The hyper-ellipse can 
be easily moved in the design space by solving a Reliability-Based Design Optimization (RBDO) 
problem. The RBDO optimum (point B of Figure 3) is in the vicinity of the 
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Figure 3. Geometrical interpretation of the EBDO algorithm. 
 
solution of Problem (21) (EBDO optimum). The RBDO solution also identifies all active 
constraints and their corresponding most probable points (MPP’s). The maximal possibility 
search algorithm [38] can also be used to move the FD hyper-cube in the feasible domain. It 
should be noted that the 3-sigma axes hyper-ellipse is arbitrary. The size of the hyper-ellipse is 
not however, crucial to the user because it is only used to calculate the initial point (point B of 
Figure 3) of the EBDO algorithm. The latter calculates the true EBDO optimum accurately. From 
our experience, 3 to 4-sigma size works fine. 

At this point, we generate a local response surface of each active constraint around its MPP. 
In this work, the Cross-Validated Moving Least Squares (CVMLS) [39] method is used based on 
an Optimum Symmetric Latin Hypercube (OSLH) [40] “space-filling” sampling. 

A derivative-free optimizer calculates the EBDO optimum. It uses as initial point the 
previously calculated RBDO optimum which is close to the EBDO optimum. Problem (21) is 
solved, considering only the identified active constraints. For the calculation of the plausibility of 
failure ( )0<gPl  of each active constraint, the algorithm of next section is used. The algorithm 
identifies all focal elements which contribute to the plausibility of failure. The computational 
effort is significantly reduced because accurate local response surfaces are used for the active 
constraints. The cost can be much higher if the optimization algorithm evaluates the actual active 

Feasible Region

x2

x1

g1(x1,x2)=0

g2(x1,x2)=0

Objective 
Reduces

hyper-ellipse
initial design 

point

frame of 
discernment

EBDO optimum

B

MPP for g1=0

deterministic 
optimum

Feasible RegionFeasible Region

x2

x1

g1(x1,x2)=0

g2(x1,x2)=0

Objective 
Reduces
Objective 
Reduces

hyper-ellipse
initial design 

point

frame of 
discernment

EBDO optimum

B

MPP for g1=0

deterministic 
optimum



 
 

Design under Uncertainty using a Combination of Evidence Theory and a Bayesian Approach 
 

12 
 

 

REC 2008 – Jun Zhou and Zissimos P. Mourelatos 

constraints instead of their efficient surrogates (response surfaces). It should be noted that a 
derivative-free optimizer is needed due to the discontinuous nature of the combined BPA 
structure. The DIRECT (DIvisions of RECTangles) derivative-free, global optimizer is used in 
this work. DIRECT is a modification of the standard Lipschitzian approach that eliminates the 
need to specify a Lipschitz constant [41]. 

 
3.1. CALCULATION OF PLAUSIBILITY OF FAILURE 

In Problem (21), the plausibility of failure or equivalently the plausibility of constraint violation, 
( )0<gPl , must be calculated every time the optimizer evaluates a constraint. The algorithm is 

given below. 
Step 1. Initialize sets C = {FD} and F = {0} and counter m = 1 
Step 2. Consider all sets  CEE kk ⊂:  or CEk ⊆  
 Initialize counter n = 0 
 Empty set C; i.e. C = {0} 
 For k = 1 to m 
  Partition kE  into 1

kE  and 2
kE  

  For j = 1 to 2 
   Calculate ( )j

kEgmin  

   If ( ) 0min <j
kEg  then 

    Calculate ( )j
kEgmax  

    If ( )j
kEgmax >0 then j

kECC ∪=  and n = n+1 

    If ( ) 0max ≤j
kEg  then j

kEFF ∪=  

   End if (for the loop of ( ) 0min <j
kEg ) 

  End if (for the loop of j = 1 to 2) 
 End if (for the loop k = 1 to m) 
 Set counter m = n 
 If C can be partitioned, go to step 2. 
 If C can not be partitioned, stop and calculate plausibility of failure from Eq. (22) 
  ( ) ( ) ( )∑ ∑

∈ ∈

+=<
FB CB

BmBmgPl 0          (22) 

as the sum of BPA values of all focal elements B which belong to sets F and C. 
A set C which is initially equal to the entire frame of discernment FD (see step 1) is 

partitioned into sets 1E  and 2E . The partitioning sequence is explained at the end of this section. 
The minimum and maximum values of g in the 1E  and 2E  domains are calculated; i.e. 
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( ) ( ) 2,1,,minmin =∈= iEgEg ii XX  and ( ) ( ) 2,1,,maxmax =∈= iEgEg ii XX  (see step 2). 

If ( ) 0min <iEg   and  ( ) 0max >iEg  , iE  is placed in set C. If  ( ) 0min <iEg   and  ( ) 0max <iEg  , 
iE  is placed in set F. Otherwise, iE  is not considered further. For a subsequent iteration k in 

step 2, each set which has been placed in C (denoted by kE ) is further partitioned into sets 1
kE  

and 2
kE , and the process continues. If all sets put in C represent focal elements and therefore, can 

not be partitioned further, the algorithm stops and Eq. (22) is used to calculate the plausibility of 
failure. 

The above algorithm is demonstrated with a hypothetical example. Figure 4 shows the 
location of the FD relative to the limit state g=0 for a particular iteration. A hypothetical BPA 
structure is also shown. Each “rectangle” represents a focal element. In this case, we have 20 
focal elements denoted by im , i=1,2,…,20. A set which is initially equal to FD, is partitioned into 

sets 1E  and  

Figure 4. A hypothetical two-dimensional BPA structure. 
 
 

2E  such that 17,16,12,11,7,6,2,1,1 == imE i
i
U   and   

20,19,18,15,14,13,10,9,8,5,4,3,2 == imE i
i
U  . Subsequently, the minimum and maximum 

values of g in the 1E  and 2E  domains ( ( )iEgmin  and ( )iEgmax , i=1,2) are calculated. Because  

( ) 01
min <Eg   and  ( ) 01

max >Eg  , 1E  is placed in C. However,  ( ) 02
min >Eg   and therefore, 

2E  is not considered further. This is the end of the first iteration. 

0>g0<g

0=g

1m 3m2m 4m

20m

5m

10m9m8m7m6m

15m14m13m12m11m

19m18m17m16m

0>g0<g

0=g

1m 3m2m 4m

20m

5m

10m9m8m7m6m

15m14m13m12m11m

19m18m17m16m



 
 

Design under Uncertainty using a Combination of Evidence Theory and a Bayesian Approach 
 

14 
 

 

REC 2008 – Jun Zhou and Zissimos P. Mourelatos 

The second iteration starts by partitioning C which is equal to 1E  of the first iteration, into  
17,16,12,11,11 == imE i

i
U  and 7,6,2,1,12 == imE i

i
U  . Similarly to the first iteration, 11E  

is discarded and 12E  is placed in C which is now composed of 12E  only. Note that at the end of 
the second iteration, set F is empty. At the third iteration, C or equivalently 12E , is partitioned 
into 6,1,121 == imE i

i
U   and 7,2,122 == imE i

i
U  which are both placed in C. At the fourth 

iteration, 121E  is partitioned into 1
1211 mE =  and 6

1212 mE =  and 122E  is partitioned into  

2
1221 mE =   and 7

1222 mE = . Now 1211E  is placed in F and 1212E , 1221E  and 1222E  are placed in 
C. Because all previous sets consist of one focal element each, they can not be partitioned further. 
Therefore, the algorithm stops. Finally, 1mF =   and 7,6,2, == imC i

i
U . Eq. (22) is used to 

calculate the plausibility of g<0 as the sum of BPA values of all focal elements in F and C; i.e.  
  ( ) ( ) ( )∑ ∑

∈ ∈

+=<
FB CB

BmBmgPl 0 . 

The described algorithm uses the following partitioning scheme for an n-dimensional hyper-
rectangle representing the FD which corresponds to n uncertain variables and parameters. For the 
kth iteration (k = 1,…,n), the hyper-rectangle is partitioned into two parts with an (n-1)-
dimensional hyper-plane perpendicular to the kth dimension. Each part has roughly the same 
number of focal elements. For iteration k > n, the (n-1)-dimensional hyper-plane is perpendicular 
to the (k-n)th dimension. 
 

4. BAYESIAN RELIABILITY-BASED DESIGN OPTIMIZATION 
 
It has been mentioned that if we only know the bounds within which an uncertain variable varies, 
interval analysis or possibility theory can be used to quantify and propagate uncertainty. If 
additional information is available in terms of expert opinions for example, the evidence theory 
can be used. It is common however, in engineering design, to know the bounds of the uncertain 
variables and also have additional information in the form of a discrete but limited number of 
sample points based on historic data or experiment data. In this case, we can not infer a 
probabilistic distribution because of the limited number of sample points. However, a Bayesian 
approach [32, 33] can be used to estimate the probability distribution. If more information is 
obtained later in the form of additional sample points, a more accurate estimation of the 
probability distribution can be obtained. The next subsections provide the basics of Bayesian 
approach as well as the introduction of the extreme value distribution in the Bayesian approach in 
order to account for the fact that we only have a small set of sample points which are different at 
each experiment. 
 
4.1. BAYESIAN RELIABILITY ESTIMATION  
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Let us denote available data by D and the probability of success by θ . We wish to improve our 
knowledge about the unknown quantity θ  by utilizing the known information in the available 
data D. To make inferences about θ , we build a conditional probability distribution P(θ |D) that 
describes how we believe θ  is distributed considering the existence of data D. Using the 
Bayesian rule, it can be shown that  
                              

( )βαθθ
βα

βαθ βα +−+=−
+−+

++
= −+−−+ DNDBeta

DNΓDΓ
NΓDP DND ,)(1

)()(
)()|( 11    (23) 

where, 

 11 )1(
)()(
)(), −− −

ΓΓ
+Γ

= βα θθ
βα
βαβαBeta(                                 (24) 

with α, and β being the Beta distribution parameters. As expected, the posterior distribution is 
also a Beta distribution because Beta is a conjugate family of distributions.  

It should be noted that initially there is no prior information about θ  and any values between 
0 and 1 may be assumed equally probable. In this case, a uniform prior P(θ )=U(0,1) is used 
which is equivalent to Beta(1,1).  

If we have 0r  successes out of 0N  sample points, then the probability distribution )|( 0rP θ  
is proportional to Beta ( 0r +1, 0N - 0r +1). If additional 1N  data is obtained later, where 1r  is the 
number of successes, then the total number of success is 0r + 1r  and the total number of failures is 

0N + 1N - 0r - 1r . In this case, the probability distribution )|( 10 rrp +θ  is proportional to Beta 
( 0r + 1r +1, 0N + 1N - 0r - 1r +1). Note that if we use the constraint function g to divide the design 
space into feasible and infeasible domains, then a feasible realization of g is considered a success 
and an infeasible realization is considered a failure.  

Let us define two vectors R = [Y, Z] and U = [X, P] where Y and Z denote the random 
variables and parameters whose PDFs are known and X and P denote the uncertain variables and 
parameters whose PDFs are not known. If R is not empty, each realization of U = [X, P] results in 
a distribution of g values. In this case, we can calculate the probability Pr [g (Y, Z) > 0 | (X, P)] 
that a sample point [Y, Z] will result in a feasible realization given the sample point [X, P]. This 
conditional probability is the expected feasible realization of one sample. 

Using a limited number of sample points we obtain therefore, a probability distribution 
instead of a single probability value. Because there are few sample points and the samples are 
random, the Beta distribution may not be accurately representing the actual distribution. In order 
to increase our confidence of the predicted probability, we propose to use the extreme distribution 
of the smallest value using the Beta distribution as the basic distribution. If X is a Beta distributed 
uncertain variable and there are n available sample points of X, the CDF of the extreme minimum 
value 1Y  (i.e. 1Y = ),...,,min( 21 nXXX ) is given by  
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                                           n
XY yFyF )](1[1)(

1
−−= .                                                             (25) 

 
4.2. CONSTRUCTION OF THE EXTREME SMALLEST VALUE DISTRIBUTION 
 
Because we have a limited number of sample points [X, P] the probability Pr [g (Y, Z) > 0 | (X, 
P)] is approximated by the Beta distribution. To increase our confidence of constraint satisfaction 
(reliability) exceeding a specified target reliability R , we express each probabilistic constraint in 
terms of a confidence percentile [42]. For the ith constraint, this is expressed as 

                      ( ) ( )( ) σθθ ≥=≥≥∇ ∫ dDP R), g( P
t
fpii )|(0

1
PXZY,d, ,                 (26) 

where σ  is a specified confidence percentile, ( )it
f Rp −Φ−= 1  is the target probability of 

failure for the ith constraint, and ∇  denotes the confidence percentile. The latter is calculated 
based on the extreme value distribution. It provides a conservative distribution of the probability 
of constraint satisfaction which is not a scalar. It should be noted that the extreme value 
distribution provides a much smaller confidence percentile compared with the Beta distribution 
for the same reliability. This means that it is much safer (or more conservative) to use the extreme 
value distribution in design optimization.  

For a confidence percentile σ , let us denote by BP  and 'BP  the probability corresponding to 
σ  based on the extreme value and Beta distributions, respectively. Also, let us assume that the 

number of available sample points is N. For the extreme value distribution 
N

BX PF )](1[11 −−=−σ , resulting in ]1[1 N
XB FP σ−= −  where X ~ Beta (a, b). Similarly for the 

Beta distribution )]'(1[11 BX PF−−=−σ , or ]1[' 1 σ−= −
XB FP  where X ~ Beta (a, b). It is easy to 

see that if N=1, BP = 'BP . However because σσ ≥N  or σσ −≤− 11 N , BP  is less than 'BP , if 
N is larger than 1. For this reason, the extreme value distribution based confidence percentile 
provides a more conservative (smaller) probability compared with the Beta distribution. 

 
4.3. EVALUATION OF BAYESIAN TARGET RELIABILITY 
 
In design optimization, the target reliability must be predefined. Because we do not have 
however, enough data, it is not practical to set the target reliability very high (e.g. 3=β ). If the 
predefined target reliability is high, the confidence percentile will be low. In this section, we will 
calculate the maximum target reliability based on an existing sample size N.  

If we have N sample points, the safest Beta distribution is Beta(N+1,1). The maximum 
Bayesian target reliability is therefore, equal to ]1[1 N

XB FP σ−= −  where X ~ Beta(N+1, 1), and 
σ  is the confidence percentile. The larger the N, the higher the maximum target reliability is. 

However, the latter must be always lower than the allowable maximum reliability.  For example, 
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if we have 50 sample points, the maximum target reliability with confidence percentile 0.8 must 
be lower than 90%. 

A Bayesian-based design optimization process entails the following steps: 
1. Construct Beta distribution based on existing sample data. 
2. Construct an extreme smallest value distribution using the above Beta distribution as 

the basic distribution. 
3. Calculate the maximum target reliability for a specified confidence percentile.  
4. Solve the design optimization problem using reliabilities which are based on the   
    extreme smallest value distribution with a specified confidence percentile. 

 
4.4. A BAYESIAN APPROACH TO DESIGN OPTIMIZATION 
 
Reliability-based design optimization (RBDO) provides optimum designs in the presence of only 
random (or aleatory) uncertainty.  A typical RBDO problem is formulated 
                                            ( )ZY

Yμd,
μ,μd,fmin        

                                   s.t.    ( )( )
ifii pRgP −=≥≥ 10,, ZYd ,   ni ,...,1=                  (27) 

                                            UL ddd ≤≤  , UL
Y YY μμμ ≤≤     

where lR∈Y  is the vector of random design variables and rR∈Z  is the vector of random 
design parameters. 

For a variety of practical applications, the uncertain information may be provided as a 
mixture of sample points and probability distributions. In this case, a Bayesian approach can be 
used based on the confidence percentile concept. A Bayesian Approach Design Optimization 
(BADO) problem with a combination of random and Bayesian uncertain variables can be 
formulated as   
                                          ( )NN

Y
N

min p,xμμd, ZY
μxd,

,,f
,

                                            (28) 

                               s.t.      ( )( ) σ  R) g( P ii ≥≥≥∇ 0,, PXd ,   ni ,...,1=                      

                                          UL ddd ≤≤  , UL
YYY μμμ ≤≤   

                                          U
N

L xxx ≤≤     

where kR∈d is the vector of deterministic design variables, mR∈X  is the vector of Bayesian 
uncertain design variables, qR∈P is the vector of Bayesian uncertain design parameters, lR∈Y  
is the vector of random design variables, rR∈Z  is the vector of random design parameters, iR  
is the target reliability, σ  is the confidence percentile factor, and ∇  is the confidence function.  

All constraints in Problem (28) are expressed using a confidence percentile because the 
predicted probability is distributed based on the extreme value distribution instead of having a 
single value. We need the confidence percentile in order to calculate a single probability value. It 
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should be noted that the described formulation represents a double-loop optimization sequence. 
The design optimization of the outer loop calls a series of Bayesian uncertain constraints. Each 
Bayesian uncertain constraint is in general, a global optimization problem.  

It should be noted that the double-loop optimization structure of Problem (28) is different 
from the double-loop RBDO structure. In the outer loop, the deterministic variables d, the mean 
values Yμ  of random variables and the normal points Nx  of Bayesian uncertain variables are 
used as design variables. In the inner loop, based on the distributions of some of the input design 
variables and the available sample points for the remaining design variables, an extreme value 
distribution is constructed using the Bayesian approach. Subsequently, we calculate the reliability 
of the constraint using the confidence percentile principle. Because the Bayesian uncertain 
variables are represented using discrete sample points, we can not use a gradient-based local 
optimizer to calculate the optima. Instead, we must use a global optimizer. 
 
4.4.1. A PRESSURE VESSEL EXAMPLE 
 
This example considers the design of a thin-walled pressure vessel [43] which has hemispherical 
ends as shown in Figure 5. The design objective is to calculate the radius R, mid-section length L 
and wall thickness t in order to maximize the volume while avoiding  yielding  of  the  material in 
both the circumferential and radial directions under an internal pressure P. Geometric constraints 
are also considered. The material yield strength is Y. A safety factor SF = 2 is used. 

 
Figure 5. Thin-walled pressure vessel. 

 
The BADO problem is stated as  

                           NNN LRRmax 23

t,L,R 3
4f

NNN

ππ +=                                                             (29) 

        s.t.   ( )( ) 1,...,5j ,  R) g( P ii =≥≥≥∇ σ0X   
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There are three design variables (R, L, t) and two design parameters (P, Y) where P is the internal 
pressure and Y is the material yielding strength. The design variable R is considered a Bayesian 
uncertain variable. To compare results with RBDO, we sample 50 points based on the PDF of a 
normal distribution N ( NR ,1.5) The design variables L and t and the design parameters P and Y 

Table 1. Comparison of BADO and PBDO optima for the pressure vessel example. 
 

 

Design Variables Objective 
NR  NL  Nt  f(X) 

Det. Opt. 11.75 36 0.25 22400 
Reliability 
Optimum 

(p=0.85/β=1.036) 
10.1926 34.7147 0.25 15757 

Bayesian Uncertainty (N=50) 

σ=0.6, p=0.85 9.50 33.2099 0.4306 13100 
σ=0.6, p=0.75 10.2778 34.4444 0.2639 15970 

     
σ=0.8, p=0.85 9.50 31.4815 0.4853 12511 
σ=0.8, p=0.75 10.50 31.4815 0.3750 15745 

     

Possibilistic Uncertainty 

σ=0.6, p=0.85 8.9464 33.0912 0.25 11314 
σ=0.6, p=0.75 8.9825 34.1069 0.25 11676 

     
σ=0.8, p=0.85 8.0464 33.0912 0.25 8908 
σ=0.8, p=0.75 8.0825 34.1069 0.25 9207 
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are normally distributed random variables with standard deviations equal to 3, 0.1, 50 and 13000, 
respectively. The mean values of P and Y are equal to 1,000 and 260,000. 

For the vessel example with a combination of Bayesian and random variables, Table 1 gives 
the BADO results based on different target reliabilities and confidence percentiles. When the 
confidence percentile is σ=0.8, and the target probability is p=0.85, the BADO and RBDO results 
are 12511 and 15757, respectively. Because RBDO uses probabilistic distribution information, it 
utilizes more information compared with BADO which uses only a limited number of sample 
points. Thus, the BADO result should be more conservative. Because the objective is maximized 
in this example, the BADO result is less than the RBDO result. For the same confidence 
percentile of σ=0.8, if the target probability is 0.75, the BADO objective is 15745. If the target 
probability is 0.85, then the objective is equal to 12511. The higher the confidence percentile is, 
the lower the objective becomes. It should be noted that the uncertain variables in BADO are 
characterized only by a limited number of sample points, while only the bounds are known for the 
uncertain variables in PBDO. Therefore, the latter represent the least amount of information. For 
this reason, the PBDO design has the smallest objective value of 8908 which is obtained for a 
confidence percentile of σ=0.8 and a target probability of p= 0.85. 

 
 
4.5. A COMBINED BAYESIAN AND EBDO APPROACH 
 
For the above Bayesian approach, we know the range of the uncertain variables and parameters 
and also have a limited number of sample points. In actual engineering design however, assuming 
that this range is partitioned into a number of segments, we only know how many sample points 
are within a certain segment. In this case, we do not have an exact distribution of those sample 
points within the segment and we can not use therefore, the BADO methodology of section 4.4 to 
construct the probability distribution function of the constraint. Also, since the total number of 
sample points is limited, we can not assume that the probability of being within a segment is 
equal to the number of samples in the segment divided by the total number of samples in the 
whole range.  

In this case, in order to utilize the existing information, we can use evidence theory to 
calculate the Basic Probability Assignment (BPA) for a segment of each Bayesian variable. In 
summary, the following tasks are performed in order to calculate the belief and plausibility of the 
failure region: 

1) For each Bayesian input variable and parameter, construct a Beta distribution using the 
available data, and then form the extreme value distribution. Calculate the BPA structure 
for each variable and parameter using a predefined confidence percentile and the extreme 
value distribution. 

2) Construct the BPA structure for the m-dimensional frame of discernment, where m is the 
number of input variables and parameters. Assume independent input variables and 
parameters. 

3) Identify the failure region space based on the limit state functions (constraints). 
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4) Calculate the belief and plausibility measures of the failure region. The failure region 
must be identified only within the frame of discernment. The true probability of failure is 
bracketed by the belief and plausibility measures. 

5) If more information becomes available, we can obtain a more accurate estimate of the 
BPA structure using an assumed confidence percentile. 

This process is illustrated with an example in the following subsection. 
 
4.5.1. THE PRESSURE VESSEL EXAMPLE 
 

The same pressure vessel example of section 4.4.1 is considered here. We initially assume 
that we have only 100 sample points. Based on this limited available information, we only know 
the number of sample points within specified segments (bins) as is for example, indicated in 
Table 2 and shown in Figure 6 for NR . However, we do not know the exact distribution of the 
sample points within each segment. 

 

 
According to Figure 6, there are three sample points of NR  within the [ NR - 4.5, NR - 3] 

segment. We cannot assume that the probability of having samples in that segment is equal to 
3/100=0.03, because there are not enough sample points. However, we know that the extreme 
probability distribution for the smallest value will be 100)](1[1)(

1
pFpF XY −−= , where p denotes 

Figure 6. Histogram of sample points. 
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Figure 6. Histogram of sample points. 
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probability and X ~ Beta (3+1, 100-3+1) =Beta (4, 98). If we use a predefined confidence 
percentile of σ=0.8, then Pr( NR - 4.5< R < NR - 3 | σ=0.8) = ]8.01[ 1001 −= −

XFp =0.0054, which is 

smaller than the real CDF (approximately equal to 3/50=0.06). Similarly, Pr( NR - 3.0< R < NR  | 

σ=0.8) = 0.3155, which is also smaller than 45/100=0.45. Because of the existing uncertainty, if 
the confidence percentile is large enough, the values of the BPA structure calculated using the 
Bayesian approach of section 4.2 will be smaller than the actual values. 

 

If we have more sample points, the BPA structure can be estimated more accurately. In 
Tables 3 and 4, we utilize 300 and 1000 sample points, respectively. For the same confidence 
percentile of σ=0.8, for 300 samples, the estimated probability is Pr( NR - 3.0< R < NR  | σ=0.8) = 

]8.01[ 3001 −= −
XFp =0.393. For 1000 samples, the estimated probability is equal to 0.4457, 

which is very close to the CDF of normal distribution 0.475. It should be noted that for 100 
sample points, the same probability is equal to 0.3155. Using the calculated BPA structure, we 
can use steps 2 to 5 of section 4.5 to determine the optimal design using the EBDO algorithm. 
The more accurate the BPA structure is, the less conservative (smaller objective in this example) 
the optimum design will be. At the limit, the design approaches the RBDO design. 

Table 3. BPA structure for Bayesian Variable R (300 sample points). 
 

R # of Sample 
Points 

BPA(Extreme 
Value) 

[ NR - 6.0 , NR - 4.5] 2 0.00057 

[ NR - 4.5 , NR - 3.0] 6 0.0048 

[ NR - 3.0 ,  NR ] 145 0.393 

[ NR , NR + 3.0] 138 0.371 

[ NR + 3.0 , NR + 4.5] 8 0.0078 

[ NR + 4.5 , NR + 6.0] 1 0.00013 

[ NR - 6.0 , NR + 6.0] --- 0.2228 

Table 2. BPA structure for Bayesian Variable R (100 sample points). 

 
R # of Sample 

Points 
BPA(Extreme 

Value) 
[ NR - 6.0 , NR - 4.5] 0 2.2e-5 

[ NR - 4.5 ,  NR - 3.0] 3 0.0054 

[ NR - 3.0 ,   NR ] 45 0.3155 

[ NR , NR + 3.0] 49 0.3523 

[ NR + 3.0 , NR + 4.5] 2 0.0025 

[ NR + 4.5 , NR + 6.0] 1 0.00068 

[ NR - 6.0 , NR + 6.0] --- 0.3236 
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Based on the evidence theory the sum of all BPA values should be equal to one. However in 
Tables 2, 3 and 4, the sums of BPA are 0.6764, 0.7772 and 0.8564, respectively. The difference is 
due to unavailable information because of the limited number of sample points. It represents the 
uncertain belief of being somewhere between NR - 6.0 and NR + 6.0 without knowing the exact 
segment. Figure 7 shows the BPA values based on 100 samples. The uncertain belief is equal to 
1-0.6764=0.3236 for the 100 sample point case, equal to 1-0.7772=0.2228 for the 300 sample 
point case, and equal to 1-0.8564=0.1436 for the 1000 sample point case. The uncertain belief 
will contribute to the belief measure (see section 3.1) if the range [ NR - 6.0, NR + 6.0] is within 
the feasible area. 

 

 
Figure 7. BPA of R for 100 sample points. 

 

Table 4. BPA structure for Bayesian Variable R (1000 Sample points). 
 

R # of Sample 
Points 

BPA(Extreme 
Value) 

[ NR - 6.0 , NR - 4.5] 7 0.00157 

[ NR - 4.5 , NR - 3.0] 22 0.00985 

[ NR - 3.0 ,  NR ] 501 0.4457 

[ NR , NR + 3.0] 445 0.3906 

[ NR + 3.0 , NR + 4.5] 16 0.0062 

[ NR + 4.5 , NR + 6.0] 9 0.00244 

[ NR - 6.0 , NR + 6.0] --- 0.1436 

2.2e-5

6RN − 5.4RN − 3RN − NR 3+NR 4.5RN + 6RN +

0.0054 0.3155 0.3523 0.0025 0.00068

0.3236

2.2e-5

6RN − 5.4RN − 3RN − NR 3+NR 4.5RN + 6RN +

0.0054 0.3155 0.3523 0.0025 0.00068

0.3236
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Considering the information from the above example, Table 5 compares the results between 
the Bayesian approach, EBDO and RBDO for a reliability index of 385.0=β  ( fp =0.35) and a 
confidence percentile of σ=0.8. The EBDO results are based on the assumption that a very large 
number of sample points is available from which the BPA structure is calculated. According to 
Table 5, the Bayesian approach (BADO of section 4.4) provides the most conservative result 
(smallest objective of 15098 for fp =0.35) compared with the EBDO and RBDO optima of 
16802 and 19610, respectively, because it utilizes the least amount of information among the 
three approaches. For comparison purposes the PBDO optimum of 7269 is also shown in Table 5 
for the zero α -cut (worst-case design) as well as the Bayesian Evidence optimum of 9805. As 
expected, the Bayesian Evidence optimum is better than the PBDO optimum because it uses more 
information. However, the Bayesian Evidence optimum of 9805 is smaller than the Bayesian 
optimum of 15098 because the BPA structure of the former is more conservative than the extreme 
value distribution of the latter. It should also be noted that although the Bayesian Evidence 
approach is the most conservative compared with the RBDO, EBDO and BADO approaches, it is 
less conservative than the worst-case scenario of PBDO, as expected. Table 5 also compares 
results for fp =0.45 with similar trends observed. 
 

Table 5. Comparison of design optimization approaches. 
 

 

Reliability 
Optimum 
(RBDO) 

Bayesian  Optimum 
(BADO) 

Bayesian Evidence 
Optimum Possibility Optimum 

(PBDO) 
Evidence Optimum 

(EBDO) 

Design 
Variables 

fp =0.35, 

( β =0.385) fp =0.45 fp =0.35 fp =0.45 fp =0.35 
a=0, 

fp =0.45 
a =0, 

fp =0.35 fp =0.45 fp =0.35 

NR  11.153 10.574 10.166 8.654 8.481 7.346 7.211 10.778 10.555 

NL  35.330 33.539 32.963 34.032 32.098 34.905 34.905 33.703 33.950 

Nt  0.264 0.300 0.291 0.254 0.254 0.25 0.25 0.263 0.263 

Objective          

( )NN LRf ,  19610 16725 15098 10718 9805 7574 7269 17535 16802 

 
 
                                                                                                                                                      

5. SUMMARY AND CONCLUSIONS 
 
If only the bounds are available within which an uncertain variable varies, interval analysis or 
possibility theory can be used to quantify and propagate uncertainty. If additional information is 
known in terms of expert opinions for example, the evidence theory can be used. If in addition to 
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the bounds of the uncertain variables, there is information in the form of a discrete but limited 
number of sample points, we can not infer a probabilistic distribution because of the limited 
number of sample points. However, a Bayesian approach can be used to estimate the probability 
distribution which can be subsequently, utilized in a Reliability-Based Design Optimization 
algorithm.  

This paper has presented a method called Bayesian Approach Design Optimization (BADO) 
to solve design problems with uncertain variables in the form of both finite sample points and 
probability distributions. Also, a Bayesian approach was proposed to estimate the Basic 
Probability Assignment (BPA) for a specified confidence percentile, using only the number of 
available sample points within ranges. Subsequently, the evidence theory was used to obtain the 
optimal design.  

A pressure vessel example was used to demonstrate the proposed Bayesian approach in 
design optimization and compare the results with known design methods such as reliability-
based, possibility-based and evidence-based (RBDO, PBDO and EBDO) design optimization. It 
was clearly demonstrated that reducing the amount of available information in quantifying 
uncertainty, results in a more conservative design. We showed that the proposed Bayesian 
approach as well as the existing RBDO, PBDO and EBDO methods can quantify the tradeoff 
between available information and less optimal design (loss of optimality). 
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