General Interval FEM Program Based on Sensitivity Analysis Method

Andrzej Pownuk Department of Mathematical Science University of Texas at El Paso http://andrzej.pownuk.com

September 7, 2007

Uncertainty in mechanics

Figure: Material properties and geometrical parameters of damaged structures

Uncertainty in mechanics

Figure: Material and geometrical properties of rocks

Uncertainty in mechanics

Figure: Material and geometrical properties of soil

Random variables

• Definition $X : \Omega \ni \omega \to X(\omega) \in R$

• Probability density function $P\{a \le X \le b\} = \int_{a}^{b} f(x) dx$

Distributed load as a random variable

Figure: Beam with random distributed load

Distributed load as a random field

Figure: Beam with random distributed load (random field)

At this moment interval methods are not able to take into account more complicated types of dependency.

Main problem: How to get probabilistic characteristics (e.g. μ , Σ)?

Figure: Concrete beams with cracks

Limitations of probabilistic methods

Elishakoff I., Possible Limitations of Probabilistic Methods in Engineering, ASME. Applied Mechanics Reviews, Vol.53, pp 19-36, 2000

- Lack of probabilistic data (because there is no time and money for collecting these data).
- Controversy related to likelihood interpretation of reliability and safety.
- Some researchers claim that probability doesn't exist (pure random object doesn't exist).
- In many cases the problems are unique (particularly civil engineering applications) and it is hard to get reliable probabilistic data.
- In some cases data are unavailable because it is very hard to get the information about the values of particular parameter (e.g. material parameters of soil 2000 m under ground level).

etc.

Safety factors

Semi-probabilistic methods. Reliability index

$$\beta = -\Phi^{-1}(P_f) \tag{1}$$

Calibration of partial safety factors

$$\min_{\gamma} W(\gamma, \beta) \tag{2}$$

where W is some penalty function.

Non-probabilistic definition

$$\gamma = \frac{x^{max}}{x^{design}} \tag{3}$$

where x^{design} is a design value, x^{max} is characteristic value.

Simplest case of worst case analysis: interval parameters

▶
$$\mathbf{p} = [p^-, p^+]$$
 or $\mathbf{p} = [p_1^-, p_1^+] \times [p_2^-, p_2^+] \times ... \times [p_m^-, p_m^+]$.

Solution set of equations with interval parameters

$$u(\mathbf{p}) = \{ u : F(u, p) = Q(p), p \in \mathbf{p} \}$$

$$(4)$$

or

$$\Box u(\mathbf{p}) = \Box \{ u : F(u, p) = Q(p), p \in \mathbf{p} \}$$
(5)

where $\Box u(\mathbf{p})$ is the smallest set which contain the set $u(\mathbf{p})$. Above definition us valid also in the case of differential and integral equation.

 In particular case we have system of linear equation with interval parameters.

$$\Box u(\mathbf{p}) = \Box \{ u : K(p)u = Q(p), p \in \mathbf{p} \}$$
(6)

Convex model of uncertainty

- Ben-Haim, Y., and Elishakoff, I. (1990). Convex models of uncertainty in applied mechanics, Elsevier, New York.
- Ellipsoidal uncertainty

$$\tilde{\rho} = \left\{ (\rho_1, \rho_2) : \frac{\rho_1^2}{a^2} + \frac{\rho_2^2}{b^2} \leqslant 1 \right\}$$
(7)

Figure: Ellipsoidal uncertainty

Solution of the interval equations using endpoint combination method

Let us consider interval equation

$$f(u, p) = 0$$
, or equivalently $u = u(p)$ (8)

• Additionally lets assume that u = u(p) is monotone, then

$$\underline{u} = \min\{u(\underline{p}), u(\overline{p})\}, \quad \overline{u} = \max\{u(\underline{p}), u(\overline{p})\}$$
(9)

In multidimensional case in order to find the solution we have to solve 2^m (where *m* is a number of uncertain parameters).

$$\underline{u} = \min\{u(p_1^{\pm}, p_2^{\pm}, ..., p_m^{\pm})\}$$
(10)

$$\overline{u} = \max\{u(p_1^{\pm}, p_2^{\pm}, ..., p_m^{\pm})\}$$
(11)

Taylor expansion method (first order)

Let us consider interval equation

$$f(u,p) = 0$$
, or equivalently $u = u(p)$ (12)

Function u = u(p) can be approximated using Taylor expansion

$$u(p) = u(p_0) + \sum_{i} \frac{\partial u(p_0)}{\partial p_i} (p_i - p_{i0})$$
(13)

$$\underline{u} = u(p_0) + \sum_{i} \left| \frac{\partial u(p_0)}{\partial p_i} \right| (\underline{p}_i - p_{i0})$$
(14)

$$\overline{u} = u(p_0) + \sum_{i} \left| \frac{\partial u(p_0)}{\partial p_i} \right| (\overline{p}_i - p_{i0})$$
(15)

Extreme values of monotone function

Figure: Extreme values of a monotone function u = u(p) can be calculated by using upper and lower bounds of the parameters i.e. $p^-, p^+ \in R$.

Sensitivity analysis

$$u = u(p), \quad p \in [\underline{p}, \overline{p}]$$
 (16)

$$rac{du(p)}{dp} \geqslant 0, \quad \textit{for} \quad p \in [\underline{p}, \overline{p}]$$
 (17)

$$\underline{u} = u(\underline{p}), \quad \overline{u} = u(\overline{p})$$
 (18)

$$\underline{u} = u(\overline{p}), \quad \overline{u} = u(\underline{p}) \tag{20}$$

Interval functional parameters

Uncertain Young modulus

$$E(x) \in \mathbf{E}(x) = [E^{-}(x), E^{+}(x)]$$
 (21)

Figure: Set-valued Young modulus

Solution of equation with functional parameters

$$u(\mathbf{p}) = \{ u : F(u, p) = 0, p(x) \in \mathbf{p}(x) \},$$
(22)
$$u(\mathbf{p}) = \Box u(\mathbf{p}) = \Box \{ u : F(u, p) = 0, p(x) \in \mathbf{p}(x) \}.$$
(23)

General concept of monotonicity

A map $T: X \to Y$ is monotone if (X, \ge) is a partially ordered set and $x, y \in X$, $x \ge y \Rightarrow T(x) \ge T(y)$.

A partial order is a binary relation " \leqslant " over a set P which is reflexive, antisymmetric, and transitive, i.e., for all a, b, and c in P, we have that:

 $a \leq a$ (reflexivity); if $a \leq b$ and $b \leq a$ then a = b (antisymmetry); if $a \leq b$ and $b \leq c$ then $a \leq c$ (transitivity). Sensitivity analysis: functional parameters case

$$\left| u(p_0 + \delta p) - u(p_0) \approx \delta u(p_0, \delta p) \right|$$
(24)

Algorithm 1 General sensitivity analysis with functional parameters

- 1. **if** $\delta u(p, \delta p) \ge 0$ **then** $p^{min} = \underline{p}, p^{max} = \overline{p}.$
- 2. if $\delta u(p, \delta p) < 0$ then $p^{min} = \overline{p}$, $p^{max} = p$.

3.
$$\underline{u} = u(p^{min}), \ \overline{u} = u(p^{max}).$$

Sensitivity analysis: functional parameters case

$$u(p) = \int_{\Omega} L(x, p(x)) dx$$
 (25)

$$\delta u(p_0, \delta p) = \int_{\Omega} \frac{\delta u(p)}{\delta p(x)} \delta p(x) dx = \int_{\Omega} \frac{\partial L(x, p(x))}{\partial p(x)} \delta p(x) dx \quad (26)$$

Theorem If $\frac{\delta u(p)}{\delta p(x)} \ge 0$ for $p \in [\underline{p}, \overline{p}] \subset X$, then the function u = u(p) is monotone in the interval **p**.

Algorithm 2 Sensitivity analysis based on functional derivative 1. if $\frac{\delta u}{\delta p(x)} \ge 0$ then $p^{min} = \underline{p}$, $p^{max} = \overline{p}$. 2. if $\frac{\delta u}{\delta p(x)} < 0$ then $p^{min} = \overline{p}$, $p^{max} = \underline{p}$. 3. $\underline{u} = u(p^{min})$, $\overline{u} = u(p^{max})$.

Non-monotone case, continuous gradient method

$$u(p_0 + \delta p) - u(p_0) \approx \delta u(p_0, \delta p) = \int_{\Omega} \frac{\delta u(p)}{\delta p(x)} \delta p(x) dx \ge 0 \quad (27)$$

$$\delta p^{u}(x) = \lambda(x) \frac{\delta u(p_0)}{\delta p(x)}$$
(28)

$$\delta p'(x) = -\lambda(x) \frac{\delta u(p_0)}{\delta p(x)}$$
⁽²⁹⁾

$$u(p_0 + \delta p^u) \geqslant u(p_0) \tag{30}$$

$$u(p_0 + \delta p') \leqslant u(p_0) \tag{31}$$

Non-monotone case, continuous gradient method

Algorithm 3 Calculation of upper bound \overline{u}

1.
$$p(x) = p_0(x)$$

2. choose the function $\lambda(x)$
3. $\delta p^u(x) = \lambda(x) \frac{\delta u(p)}{\delta p(x)}$
4. $p_{old}(x) = p(x)$
5. $p(x) := p(x) + \delta p^u(x)$
6. if $p(x) > \overline{p}(x)$ then $p(x) = \overline{p}(x)$
7. if $p(x) < \underline{p}(x)$ then $p(x = \underline{p}(x)$
8. if $||p_{old} - p|| > \varepsilon$ then goto step 2
9. $\overline{u} = u(p)$
10. stop

Sensitivity with respect of changes of the region of integration

$$u(\Omega) = \int_{\Omega} L(x)dx \qquad (32)$$

$$u(\Omega + \Delta\Omega) - u(\Omega) = \int_{\Omega + \Delta\Omega} L(x)dx - \int_{\Omega} L(x)dx = \int_{\Delta\Omega} L(x)dx \quad (33)$$

$$\int_{\Delta\Omega} L(x)dx = |\Delta\Omega|L(x^*) \qquad (34)$$

$$\frac{u(\Omega + \Delta\Omega) - u(\Omega)}{|\Delta\Omega|} = L(x^*) \qquad (35)$$

$$\delta u \qquad \lim_{\Omega \to \Omega} u(\Omega + \Delta\Omega(x)) - u(\Omega) = L(x)$$

$$\frac{\partial u}{\partial \Omega(x)} = \lim_{|\Delta\Omega(x)| \to 0} \frac{u(\Omega + \Delta\Omega(x)) - u(\Omega)}{|\Delta\Omega(x)|} = L(x).$$
(36)

Sensitivity with respect of changes of the region of integration

The inclusion \subset can be treat as partial order relation \geq . Because of that it is possible to take into account "set intervals"

$$[\underline{\Omega},\overline{\Omega}] = \{\Omega : \Omega \subset \Omega \subset \overline{\Omega}\}.$$
(37)

Algorithm 4 Sensitivity analysis based on functional derivative 1. if $\frac{\delta u}{\delta\Omega(x)} \ge 0$ for $x \in \overline{\Omega} - \underline{\Omega}$ then $\Omega^{max} = \overline{\Omega}$, $\Omega^{min} = \underline{\Omega}$. 2. if $\frac{\delta u}{\delta\Omega(x)} < 0$ for $x \in \overline{\Omega} - \underline{\Omega}$ then $\Omega^{max} = \underline{\Omega}$, $\Omega^{min} = \overline{\Omega}$. 3. $\underline{u} = u(\Omega^{min})$, $\overline{u} = u(\Omega^{max})$.

Conclusions

- Using functional derivative it is possible to find solution of equation with uncertain functional parameters.
- The method can be applied to solution of large class of engineering problems with uncertain filed.
- The method can be applied to solution of linear and nonlinear problems of computational mechanics with uncertain filed.
- The algorithm of sensitivity analysis method method can be parallel.