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1   Introduction

General situation
The engineer‘s endeavor

numerical modeling − structure and environment•

General situation

» close to reality
» numerically efficient

design and prognoses − system behavior, safety, robustness,
economic aspects, aesthetics

u a y

Deterministic methods

deterministic
structural parameters Realitydeterministic

computational models
• •

Imprecision ?      Variation ?      Ambiguity ?      Vagueness ?p g y g

P bl  f t i t  d it  
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Problem of uncertainty and its consequences



Uncertainty
1   Introduction

Examples:

• Mechanical behavior of novel materials

Uncertainty

▪ Nanotubes as micro reinforcement
▪ Fiber reinforced concrete
▪ Textile reinforced concrete

Modeling on Micro,
Meso and Macro scale

?Distribution and orientation of reinforcement material
Failure modes ? Long-term behavior ?Interaction ?

?

• Risk and hazard analysis  earthquakes and tsunamis• Risk and hazard analysis − earthquakes and tsunamis
▪ Hazard potential and consequences of Sumatra earthquakes
Generation ? Propagation ? Local effects for Singapore ?

• Extreme environmental conditions − hurricanes and ice loads
▪ reliability and life-time assessment of offshore structures
Frequency ? Location ? Direction ? Strength ? Effects ?
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Frequency ? Location ? Direction ? Strength ? Effects ?
?Damage and residual safety 



Uncertainty
1   Introduction

Resumé

Uncertainty

different engineering fields •

common problem: uncertainty / lack of information•

inconsistency of data / information:

» small samples
» imprecise sample elements

inconsistency of data / information:
stochastic and non-stochastic characteristics simultaneously

» imprecise sample elements
» changing environmental conditions
» linguistic assessments
» experience, expert knowledge

appropriate mathematical modeling and quantification

p , p g
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Modeling of uncertainty
2   Mathematical models

Probabilistic uncertainty models
traditional stochastic models•

Modeling of uncertainty

subjective probabilities and BAYES'ian approach• subjective probabilities and BAYES ian approach•

Non-probabilistic uncertainty models
intervals•
con e  modelsconvex models•
fuzzy sets•

Mixed probabilistic/non-probabilistic uncertainty models
interval probabilities•
sets of probabilities / p-box approach•

• random sets
fuzzy random quantities / fuzzy probabilities•

appropriate model choice in each the particular case
depending on the available information

evidence theory•
imprecise probabilities•
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depending on the available information
application of different uncertainty models in parallel



Sources of imprecision
2   Mathematical models

2

imprecision of measuring devices•

high

linguistic assessments•

Sources of imprecision

4
2

6
5.15  ...  5.35 low

medium

high

0 10 30 50
βD [N/mm²]

imprecise measuring points•

plausible range

expert assessment / experience•

dthickness x

measurement / observation
under dubious conditions

plausible range
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Single imprecise value
2   Mathematical models

Single imprecise value
Fuzzy set

( ){ }= μ ∈ μ ≥ ∀ ∈x (x)  x , (x) 0  xX , X X
~

•

{ }α = ∈ μ ≥ α x   (x)  X X

Numerical representation
α-level set•

μ(x)

1.0

membership ~ ( ){ }α α= μ  , ( )X X X α-discretization

αk

membership function μ(x)

0.0
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Xαk
xαk l xαk r

x



Sample of imprecise values
2   Mathematical models

Sample of imprecise values
Fuzzy random quantity

fuzzy result of the mapping• ( )Ω → nF

μ(x)
1.0

ω5
fuzzy numbers

ω ∈ Ω
random elementary events

α

x(ω5)
~x(ω4)

~

x(ω3)
~

( )~x( )~
0 0

ω1

ω2

ω3

ω4
α

x(ω3)x(ω2)x(ω1)0.0

• original Xj
» real-valued random quantity X

that is completely enclosed in X
~

realizations
x ∈ X =

that is completely enclosed in X

• representation of X
» fuzzy set of all possible originals Xj

~
1
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random α-level sets Xα• α-discretization



2   Mathematical models

Sample of imprecise valuesSample of imprecise values
Fuzzy probability

evaluation of all random α-level sets Xα•

( ){ }α α= μi i iP( ) P ( ); (P ( ))A A A

α α α α= μ = α ∀ α ∈⎡ ⎤⎣ ⎦i i i i l  rP ( ) P ( ); P ( )  ;   (P ( ))   (0; 1]A A A A

~
•

•

αα = ⊆i i lP ( ) P(X )A A αα = ∩ ≠ ∅i i rP ( ) P(X )A A

α α α αμ⎡ ⎤⎣ ⎦i i i i l  r( ) ( ); ( ) ; ( ( )) ( ; ]

X

Ai Ai

Xα

Xα l Xα r

x x
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x x



2   Mathematical models

Sample of imprecise values
Fuzzy probability distribution function F(x)

~

• bunch of the Fj(x)
of the originals X of X

~

Sample of imprecise values

F(x)
1.0 F(x)

~

μ = 0
 1

of the originals Xj of X

» α-discretization

μ(F(x))

F(xi)
~

0 0

0.5 μ = 1~
»

»

( ){ }α α= μF(x) F (x), (F (x))

α α α= ⎡ ⎤⎣ ⎦ l  rF (x) F (x), F (x)  ,

( ( )) (0 ] xi1.0 0.0
0.0

x

f(x)

f(x)
~ μ = 0

 1

» αα

⎛ ⎞∈ =
= − =⎜ ⎟⎜ ⎟∃ ≥ ≤ ≤⎝ ⎠

n
  

j l j
k k

x, t          
F (x) 1 max  P X t  

 t x , 1 k n  
X

,

αμ = α ∀ α ∈(F (x))   (0, 1]

f(x)

x

μ = 1

»

F( ) i h f   d f  f i l 
~

⎝ ⎠

αα

⎛ ⎞∈ =
= =⎜ ⎟⎜ ⎟< =⎝ ⎠

n
 

j r j
k k

x, t             
F (x) max  P X t  

t x , k 1, ..., n   
X

,
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F(x) with fuzzy parameters and fuzzy functional type



3   Quantification techniques

Quantification of uncertaintyQuantification of uncertainty
General concept

exploitation of statistical information•

Typical cases in engineering

realistic consideration of imprecision•
no mixing between statistical information and imprecision•

Typical cases in engineering
small sample size, expert knowledge
» weak statistical information from estimations and tests

•

utilization of statistical imprecision

imprecise sample elements
» statistics with fuzzy quantities

•

utilization of statistical imprecision
in the specification of fuzzy parameters and fuzzy distribution types

inconsistent environmental conditions, expert knowledge
» critical conditions for statistical estimations and tests

•

utilization of fuzzy arithmetic in statistical estimations and tests

separation of fuzziness and randomness by constructing groups
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separation of fuzziness and randomness by constructing groups



3   Quantification techniques

Example IExample I
Small sample size, expert knowledge

measurement of the compressive strength of concrete
» 20 sample elements for x  f [N/mm²]

•
» 20 sample elements for x = fc [N/mm²]

28.3,   26.8,   31.5,   35.3,   35.2,   26.3,   29.8,   23.1,   27.6,   20.2
30.7,   29.2,   25.2,   25.7,   34.6,   34.2,   28.9,   24.8,   19.2,   22.8

expert knowledge• expert knowledge
» distribution type
▪ normal distribution

» choice of estimator
▪ sample mean for mX

•

sample mean for mX
▪ sample variance for σX²

» construction of confidence intervals (type and level)
▪ both-sided
▪ levels: γ = 0.50, 0.75, 0.90, 0.99levels: γ  0.50, 0.75, 0.90, 0.99

» assignment of membership degrees to confidence levels
▪ point estimation − μ = 1.0
▪ γ = 0.50 − μ = 0.75,   γ = 0.75 − μ = 0.50
γ = 0.75 − μ = 0.25,   γ = 0.99 − μ = 0.00
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γ  0.75  μ  0.25,   γ  0.99  μ  0.00
» subsequent modification of the initial draft of the membership functions



3   Quantification techniques

Example IExample I
Small sample size, expert knowledge

statistical estimation•
fid t d l t d d d i ticonfidence expected value standard deviation

level γ mX [N/mm²] σX [N/mm²]

point estimation − 27.97 4.75

i t l 0 50 [27 24  28 70] [4 35  5 43]interval 0.50 [27.24, 28.70] [4.35, 5.43]
estimation 0.75 [26.71, 29.23] [4.05, 5.92]

0.90 [26.13, 29.81] [3.77, 6.52]
0.99 [24.93, 31.01] [3.34, 7.92]

construction of membership functions•

1.00
0 75

μ(mX)
1.00
0 75

μ(σX)

~ ~

0.50

0.25
0 00

0.75
0.50

0.25
0 00

0.75mX
~ σX

~
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0.00
mX [N/mm²]24.93  27.97  31.01

0.00
σX [N/mm²]24.93  27.97  31.01



3   Quantification techniques

Example IIExample II
Imprecise sample elements

measurement of the compressive strength of concrete
» 20 sample elements for x  f [N/mm²]

•
» 20 sample elements for x = fc [N/mm²]
▪ imprecision due to individual care and readings in the tests
▪ measurements modeled with fuzzy triangular numbers

<26.3, 28.3, 30.3>,   <24.8, 26.8, 28.8>,   <29.5, 31.5, 33.5>,
<33.3, 35.3, 37.3>,   <33.2, 35.2, 37.2>,   <24.3, 26.3, 28.3>,
<27.8, 29.8, 31.8>,   <21.1, 23.1, 25.1>,   <25.6, 27.6, 29.6>,
<18.2, 20.2, 22.2>,   <28.7, 30.7, 32.7>,   <27.2, 29.2, 31.2>,
<23.2, 25.2, 27.2>,   <23.7, 25.7, 27.7>,   <32.6, 34.6, 36.6>,
<32.2, 34.2, 36.2>,   <26.9, 28.9, 30.9>,   <22.8, 24.8, 26.8>,
<17.2, 19.2, 21.2>,   <20.8, 22.8, 24.8>

statistical evaluation
» distribution type: normal distribution (expert knowledge)

•

_

 distribution type: normal distribution (expert knowledge)
» application of estimators to fuzzy sample elements

~ n

i
i 1

1x x
n =

= ∑ ( ) ( )2n n22
X i i

i 1 i 1

1 1s x x
n 1 n= =

⎡ ⎤= −∑ ∑⎢ ⎥− ⎣ ⎦~

interaction
between !~ ~ ~~
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__
( ) ( ) ( ) ( )1 n 1 n X Xx x x x x x   x s x s,..., ,..., , ,= ∈ = ⇒ ∈

~ ~
x and sX
~ ~~ ~ ~



3   Quantification techniques

Example II

t  t  l

Example II
Imprecise sample elements

numerical evaluation of statistical estimations•
s extreme parameter values

sα=0 r

sX
F(x)
1.0

sα=1 F(x)
~

μ = 1
μ = 0, interaction

sα=0 l

x 0 r
_

x 0 l
_

x
_

x
0.0

x 1
_

F(x)

negligence
of interaction

between x and sX

_

xα=0 rxα=0 l xxα=1

construction of membership functions from extreme values for all α-levels•

1.00
μ(mX)

1.00
μ(σX)

~

0.50
0.25

0.75 mX
~

0.50
0.25

0.75 σX
~
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0.00

mX [N/mm²]
25.97  27.97  29.97

0.00

σX [N/mm²]
3.22 3.95 4.75 5.63 6.54



Fuzzy analysis
3   Quantification techniques

x = (..., xi, ...)      p = (..., pj, ...)
~ ~ ~→ ~ fuzzy

sample element x2
~fuzzy

sample element x1
~

x1 x2

Fuzzy analysis

mapping
model

x1 ∈ X1,α x2 ∈ X2,αX1,α

x1 l

x1,α r

X2,α

x2 l

x2,α r

pj ∈ Pj,α
0.01.0 α

μ(x1) μ(x2)
x1,α l x2,α l

0.0 1.0α
α-level optimization

1.0
μ(pj)statistical estimator

generally applicable
numerical solution:extreme

p

fuzzy parameter pj
~       

α modified evolution strategyextreme
parameter
values
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0.0
pj

Pj,αpj,α l pj,α r



3   Quantification techniques

Example IIIExample III
Inconsistent environmental conditions, expert knowledge

measurement of the compressive strength of concrete
» 620 sample elements for x  f [N/mm²]

•
» 620 sample elements for x = fc [N/mm²]
» sample generation under varying environmental conditions
▪ different manufacturers
▪ different aggregates / additives (different suppliers)
different hardening conditions (temperature  humidity)▪ different hardening conditions (temperature, humidity)
▪ different motivation of personnel

expert knowledge
 l if  l  l  i h   h i  ib  ( di i )

•
» classify sample elements with respect to their attributes (conditions)
» determine groups of sample elements with same attributes

quantification options•
» parametric quantification
▪ distribution assumption from expert knowledge

» non-parametric quantification
▪ use of empirical distribution functions
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3   Quantification techniques

Example IIIExample III
Inconsistent environmental conditions, expert knowledge

option a) − parametric quantification
» distribution type for each group

•
» distribution type for each group
▪ normal distribution

» choice of estimator and point / interval estimation for each group
▪ point estimation
sample mean for m▪ sample mean for mX
▪ sample variance for σX²

group sample m σ group sample m σgroup sample mX σX
number size [N/mm²] [N/mm²]
1 54 27.3 5.3
2 48 26.6 4.9
3 42 29 2 4 2

group sample mX σX
number size [N/mm²] [N/mm²]
7 55 26.4 5.0
8 47 30.1 4.6
9 64 28 3 5 93 42 29.2 4.2

4 38 31.4 3.8 
5 44 28.3 5.6
6 48 29.4 3.2 

9 64 28.3 5.9
10 53 27.9 3.8 
11 75 29.6 6.3
12 52 27.8 4.7 
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3   Quantification techniques

Example IIIExample III
Inconsistent environmental conditions, expert knowledge

option a) − parametric quantification
» histograms for parameters for all groups

•
» histograms for parameters for all groups
» construction of membership functions for the parameters

n
4

n
4 mX [N/mm²]

» assessment of interaction

m σ

3
2
1

3
2
1

mX [N/mm ]

32.00

1.00
0 75

μ(mX)
1.00
0 75

μ(σX)

~

mX σX

0.50

0.25
0 00

0.75 mX
0.50
0.25
0 00

0.75 σX~

σX [N/mm²]

25.43
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0.00

mX [N/mm²]
25.43  27.91  32.00

0.00

σX [N/mm²]
2.79  4.88  6.96 2.79         6.96



3   Quantification techniques

Example IIIExample III
Inconsistent environmental conditions, expert knowledge

option b) − non-parametric quantification
» construction of empirical distributions F e(x) for each group i

•
» construction of empirical distributions Fi

e(x) for each group i
» histograms for Fe(x) for selected values x for all groups
» construction of membership functions for the Fe(x) for all selected x

x = 20 N/mm² x = 28 N/mm² x = 36 N/mm²n n nx = 20 N/mm² x = 28 N/mm² x = 36 N/mm²n
8

4

n
4

2

n
8

4

0 0.05 0.10 Fe(x) 0 0.2 0.4 0.6 0.8 Fe(x) 0.8 0.9 1.0 Fe(x)
0 0 0

μ(Fe(x))
1 0

μ(Fe(x))
1 0

μ(Fe(x))
1 01.0

0.5

1.0

0.5

1.0

0.5
Fe(x)~ Fe(x)~

Fe(x)~

slide 21 of 25Michael Beer

0      0.113 Fe(x) 0.128 0.557 0.750 Fe(x) 0.742 0.958 1.0 Fe(x)
0.0 0.0 0.0



3   Quantification techniques

Example IIIExample III
Inconsistent environmental conditions, expert knowledge

option b) − non-parametric quantification
» determination of bounding distributions F (x) and F (x) for all levels

•
» determination of bounding distributions Fα l(x) and Fα r(x) for all α-levels
▪ assumption of compound distribution − normal / logarithmic normal

least squares algorithm with bounding condition F (x) ≤ Fe(x) ≤ F (x)

( ) ( ) ( ) ( )ND LNDF x a F x 1 a F x= ⋅ + − ⋅
~ ~ ~ ~ ~

▪ least squares algorithm with bounding condition Fα l(x) ≤ Fe(x) ≤ Fα r(x)

μ(F(x))
1.0

0.5

F(x)~
mX = < 23.30, 27.66, 34.29 > N/mm²
σX = < 4.34, 4.34, 4.81 > N/mm²

~
~
~

0.0
0           23 30 27 66 34 29            60   [N/ ²]

a = < 0.00, 0.00, 1.00 >~
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0           23.30 27.66 34.29            60  x [N/mm²]



4   Numerical processing and result interpretation

Fuzzy stochastic structural analysis

{x(θ, t), x(θ, t), X(θ, t), X(θ, t)}     {Z(θ, t), Pf(t)}
~ ~ ~

→
~

Fuzzy stochastic structural analysis

deterministic
parameters

fuzzy

random
quantities

fuzzy safety level

fuzzy stochastic
structural responses

depending on temporal and spatial coordinates

fuzzy
quantities fuzzy random

quantities

• depending on temporal and spatial coordinates•

Numerical algorithm
coupling of ARBITRARY algorithms for
• fuzzy analysis
• deterministic structural analysis
• stochastic structural analysis or safety assessment
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worst and best case results in terms of probability



Fuzzy stochastic structural analysis
4   Numerical processing and result interpretation

Capabilities and performance features

vague and imprecise statistical information, expert knowledge•

Fuzzy stochastic structural analysis

g p , p g

• generally applicable,
coupling of arbitrary algorithms for
fuzzy analysis  deterministic structural analysis  and stochastic analysisfuzzy analysis, deterministic structural analysis, and stochastic analysis

simultaneous processing of
random quantities, fuzzy quantities and fuzzy random quantities

•

• numerical effort ≤ cost(stochastic analysis) × cost(fuzzy analysis)• numerical effort ≤ cost(stochastic analysis) × cost(fuzzy analysis)

results reflect the uncertainty of distribution assumptions•

• applicable in combination with response surface approximations

esu ts e ect t e u ce ta ty o d st but o assu pt o s

direct determination of worst and best case results in terms of probability•
• qualitative information on sensitivities,

in particular, with respect to the distribution assumptions
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Resumé
Evaluation of Inconsistent Engineering data

•

Comprehensive evaluation of uncertainty

Resumé

high degree of flexibility in uncertainty quantification
» fuzzy random quantities / fuzzy probabilities
▪ combination of traditional statistics with interval and fuzzy methods
▪ appropriate uncertainty modeling in the particular situation
▪ inclusion of subjective assessmentsj

» processing of various uncertain quantities simultaneously
▪ stochastic simulation

f l

• high degree of generality in uncertainty processing

▪ fuzzy analysis
▪ fuzzy stochastic analysis

adequate consideration of uncertainty
in structural analysis  safety assessment and designin structural analysis, safety assessment and design
complete reflection of the uncertainty
in the computational results
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worst case analysis in terms of probability


