Evaluation of Inconsistent Engineering data

Michael Beer Department of Civil Engineering National University of Singapore, Singapore

Evaluation of Inconsistent Engineering data

Program

- 1 Introduction
- 2 Mathematical Models
- 3 Quantification Techniques
- 4 Numerical Processing and Result Interpretation
- 5 Resumé

General situation

The engineer's endeavor

numerical modeling – structure and environment

design and prognoses – system behavior, safety, robustness, economic aspects, aesthetics

» close to reality» numerically efficient

Deterministic methods

1 Introduction

Uncertainty

Examples:

- Mechanical behavior of novel materials
 - Nanotubes as micro reinforcement
 - Fiber reinforced concrete
 - Textile reinforced concrete

Modeling on Micro, Meso and Macro scale

Distribution and orientation of reinforcement material ?

Interaction ? Failure modes ? Long-term behavior ?

- Risk and hazard analysis earthquakes and tsunamis
 Hazard potential and consequences of Sumatra earthquakes
 Generation ? Propagation ? Local effects for Singapore ?
- Extreme environmental conditions hurricanes and ice loads
 reliability and life-time assessment of offshore structures
 Frequency ? Location ? Direction ? Strength ? Effects ?
 Damage and residual safety ?

1 Introduction

Uncertainty

Resumé

- different engineering fields
- common problem: uncertainty / lack of information

inconsistency of data / information: stochastic and non-stochastic characteristics simultaneously

- » small samples
- » imprecise sample elements
- » changing environmental conditions
- » linguistic assessments
- » experience, expert knowledge

appropriate mathematical modeling and quantification

Modeling of uncertainty

Probabilistic uncertainty models

- traditional stochastic models
- subjective probabilities and BAYES'ian approach

Non-probabilistic uncertainty models

- intervals
- convex models
- fuzzy sets

Mixed probabilistic/non-probabilistic uncertainty models

- interval probabilities
- sets of probabilities / p-box approach
- random sets
- fuzzy random quantities / fuzzy probabilities
- evidence theory
- imprecise probabilities
 - appropriate model choice in each the particular case depending on the available information
 - application of different uncertainty models in parallel

Sources of imprecision

• imprecision of measuring devices

- NUS National University of Singapore
- linguistic assessments

• imprecise measuring points

Single imprecise value

Fuzzy set

• $\widetilde{X} = \left\{ \left(x, \mu(x) \right) \middle| x \in \mathbf{X} \right\}, \ \mu(x) \ge 0 \quad \forall x \in \mathbf{X}$

Numerical representation

• α -level set $X_{\alpha} = \{ x \in \mathbf{X} \mid \mu(x) \ge \alpha \}$

Sample of imprecise values

Fuzzy random quantity

• fuzzy result of the mapping $\Omega \to F(\square^n)$

Sample of imprecise values

Fuzzy probability

- evaluation of all random α -level sets \underline{X}_{α}
- $\widetilde{\mathsf{P}}(\underline{A}_{i}) = \left\{ \left(\mathsf{P}_{\alpha}(\underline{A}_{i}); \ \mu(\mathsf{P}_{\alpha}(\underline{A}_{i}))\right) \right\}$
- $P_{\alpha}(\underline{A}_{i}) = [P_{\alpha i}(\underline{A}_{i}); P_{\alpha r}(\underline{A}_{i})]; \mu(P_{\alpha}(\underline{A}_{i})) = \alpha \forall \alpha \in (0; 1]$

Sample of imprecise values

Fuzzy probability distribution function $\tilde{F}(\underline{x})$

Quantification of uncertainty

General concept

- exploitation of statistical information
- realistic consideration of imprecision
- no mixing between statistical information and imprecision

Typical cases in engineering

- small sample size, expert knowledge
 weak statistical information from estimations and tests
 utilization of statistical imprecision
 in the specification of fuzzy parameters and fuzzy distribution types
- imprecise sample elements
 » statistics with fuzzy quantities

utilization of fuzzy arithmetic in statistical estimations and tests

inconsistent environmental conditions, expert knowledge
 » critical conditions for statistical estimations and tests
 separation of fuzziness and randomness by constructing groups

NUS National University of Singapore

Example I

Small sample size, expert knowledge

- measurement of the compressive strength of concrete
 - \gg 20 sample elements for x = f_c [N/mm²]

28.3,26.8,31.5,35.3,35.2,26.3,29.8,23.1,27.6,20.230.7,29.2,25.2,25.7,34.6,34.2,28.9,24.8,19.2,22.8

- expert knowledge
 - » distribution type
 - normal distribution
 - » choice of estimator
 - sample mean for m_{χ}
 - sample variance for σ_{χ^2}
 - » construction of confidence intervals (type and level)
 - both-sided
 - levels: γ = 0.50, 0.75, 0.90, 0.99
 - » assignment of membership degrees to confidence levels
 - point estimation $-\mu = 1.0$
 - $\gamma = 0.50 \mu = 0.75$, $\gamma = 0.75 \mu = 0.50$
 - $\gamma = 0.75 \mu = 0.25, \quad \gamma = 0.99 \mu = 0.00$
 - » subsequent modification of the initial draft of the membership functions

Example I

NUS National University of Singapore

Small sample size, expert knowledge

statistical estimation

	confidence level γ	expected value m _x [N/mm ²]	standard deviation σ_{χ} [N/mm ²]
point estimation	-	27.97	4.75
interval estimation	0.50 0.75 0.90 0.99	[27.24, 28.70] [26.71, 29.23] [26.13, 29.81] [24.93, 31.01]	[4.35, 5.43] [4.05, 5.92] [3.77, 6.52] [3.34, 7.92]

• construction of membership functions

Example II

Imprecise sample elements

- measurement of the compressive strength of concrete
 - » 20 sample elements for $x = f_c [N/mm^2]$
 - imprecision due to individual care and readings in the tests
 - measurements modeled with fuzzy triangular numbers

<26.3, 28.3, 30.3>, <24.8, 26.8, 28.8>, <29.5, 31.5, 33.5>, <33.3, 35.3, 37.3>, <33.2, 35.2, 37.2>, <24.3, 26.3, 28.3>, <27.8, 29.8, 31.8>, <21.1, 23.1, 25.1>, <25.6, 27.6, 29.6>, <18.2, 20.2, 22.2>, <28.7, 30.7, 32.7>, <27.2, 29.2, 31.2>, <23.2, 25.2, 27.2>, <23.7, 25.7, 27.7>, <32.6, 34.6, 36.6>, <32.2, 34.2, 36.2>, <26.9, 28.9, 30.9>, <22.8, 24.8, 26.8>, <17.2, 19.2, 21.2>, <20.8, 22.8, 24.8>

- statistical evaluation
 - » distribution type: normal distribution (expert knowledge)
 - » application of estimators to fuzzy sample elements

$$\begin{split} \widetilde{\mathbf{X}} &= \frac{1}{n} \sum_{i=1}^{n} \widetilde{\mathbf{X}}_{i} & \widetilde{\mathbf{S}}_{\mathbf{X}}^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} \left(\widetilde{\mathbf{X}}_{i} \right)^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} \widetilde{\mathbf{X}}_{i} \right)^{2} \right] & \text{interaction} \\ \underline{\mathbf{X}} &= \left(\mathbf{X}_{1}, \dots, \mathbf{X}_{n} \right) \in \widetilde{\mathbf{X}} = \left(\widetilde{\mathbf{X}}_{1}, \dots, \widetilde{\mathbf{X}}_{n} \right) \implies (\mathbf{X}, \mathbf{S}_{\mathbf{X}}) \in \left(\widetilde{\mathbf{X}}, \widetilde{\mathbf{S}}_{\mathbf{X}} \right) & \widetilde{\mathbf{X}} \text{ and } \widetilde{\mathbf{S}}_{\mathbf{X}} \end{split}$$

Example II

Imprecise sample elements

NUS National University of Singapore

Fuzzy analysis

Example III

- measurement of the compressive strength of concrete
 - » 620 sample elements for $x = f_c [N/mm^2]$
 - » sample generation under varying environmental conditions
 - different manufacturers
 - different aggregates / additives (different suppliers)
 - different hardening conditions (temperature, humidity)
 - different motivation of personnel
- expert knowledge
 - » classify sample elements with respect to their attributes (conditions)
 - » determine groups of sample elements with same attributes
- quantification options
 - » parametric quantification
 - distribution assumption from expert knowledge
 - » non-parametric quantification
 - use of empirical distribution functions

Example III

- option a) parametric quantification
 - » distribution type for each group
 - normal distribution
 - » choice of estimator and point / interval estimation for each group
 - point estimation
 - sample mean for m_{χ}
 - sample variance for σ_{χ^2}

group number 1 2 3 4 5 6	sample size 54 48 42 38 44 44	m _x [N/mm ²] 27.3 26.6 29.2 31.4 28.3 29.4	σ _x [N/mm ²] 5.3 4.9 4.2 3.8 5.6 3.2	group number 7 8 9 10 11 12	sample size 55 47 64 53 75 52	m _x [N/mm ²] 26.4 30.1 28.3 27.9 29.6 27.8	σ _x [N/mm ²] 5.0 4.6 5.9 3.8 6.3 4 7
6	48	29.4	3.2	12	52	27.8	4.7

Example III

- option a) parametric quantification
 - » histograms for parameters for all groups
 - » construction of membership functions for the parameters

Example III

- option b) non-parametric quantification
 - \ast construction of empirical distributions $F_i{}^e(x)$ for each group i
 - » histograms for $F^e(x)$ for selected values x for all groups
 - » construction of membership functions for the $F^e(x)$ for all selected x

Example III

Inconsistent environmental conditions, expert knowledge

- option b) non-parametric quantification
 - » determination of bounding distributions $F_{\alpha\,I}(x)$ and $F_{\alpha\,r}(x)$ for all $\alpha\text{-levels}$
 - assumption of compound distribution normal / logarithmic normal

$$\widetilde{F}(x) = \widetilde{a} \cdot \widetilde{F}^{\text{ND}}(x) + (1 - \widetilde{a}) \cdot \widetilde{F}^{\text{LND}}(x)$$

• least squares algorithm with bounding condition $F_{\alpha | I}(x) \le F^{e}(x) \le F_{\alpha | I}(x)$

• depending on temporal and spatial coordinates

Numerical algorithm

coupling of ARBITRARY algorithms for

- fuzzy analysis
- deterministic structural analysis
- stochastic structural analysis or safety assessment

worst and best case results in terms of probability

4 Numerical processing and result interpretation

Fuzzy stochastic structural analysis Capabilities and performance features

- vague and imprecise statistical information, expert knowledge
- generally applicable, coupling of arbitrary algorithms for fuzzy analysis, deterministic structural analysis, and stochastic analysis
- simultaneous processing of random quantities, fuzzy quantities and fuzzy random quantities
- numerical effort ≤ cost(stochastic analysis) × cost(fuzzy analysis)
- applicable in combination with response surface approximations
- results reflect the uncertainty of distribution assumptions
- direct determination of worst and best case results in terms of probability
- qualitative information on sensitivities, in particular, with respect to the distribution assumptions

Resumé

Comprehensive evaluation of uncertainty

- high degree of flexibility in uncertainty quantification
 - » fuzzy random quantities / fuzzy probabilities
 - combination of traditional statistics with interval and fuzzy methods
 - appropriate uncertainty modeling in the particular situation
 - inclusion of subjective assessments
- high degree of generality in uncertainty processing
 - » processing of various uncertain quantities simultaneously
 - stochastic simulation
 - fuzzy analysis
 - fuzzy stochastic analysis
 - adequate consideration of uncertainty in structural analysis, safety assessment and design
- complete reflection of the uncertainty in the computational results
- worst case analysis in terms of probability