
Accurate Floating Point Product

Stef Graillat

LIP6/PEQUAN - Université Pierre et Marie Curie (Paris 6)

REC’08, Third International Worskhop on Reliable Engineering Computing
Savannah, Georgia, USA, February 20-22, 2008

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 1 / 25

Motivations

Determinant of a triangle matrix

T =


t11 t12 · · · t1n

t22 t2n
. . .

...
tnn

 .

det(T) =
n∏

i=1

tii .

Evaluation of a polynomial when represented by the root product form
p(x) = an

∏n
i=1(x − xi)

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 2 / 25

What are Error-Free Transformations (EFT) ?

Assume floating point arithmetic adhering IEEE 754 with rounding to
nearest with rounding unit u (no underflow nor overflow)

Error free transformations are properties and algorithms to compute the
generated elementary rounding errors,

a, b entries ∈ F, a ◦ b = fl(a ◦ b) + e, with e ∈ F

Key tools for accurate computation
fixed length expansions libraries : double-double (Briggs, Bailey, Hida,
Li), quad-double (Bailey, Hida, Li)
arbitrary length expansions libraries : Priest, Shewchuk
compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi,
Graillat-Langlois-Louvet)

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 3 / 25

EFT for the summation

x = fl(a ± b) ⇒ a ± b = x + y with y ∈ F,

Algorithms of Dekker (1971) and Knuth (1974)

Algorithm 1 (EFT of the sum of 2 floating point numbers with
|a| ≥ |b|)
function [x , y] = FastTwoSum(a, b)

x = fl(a + b)
y = fl((a − x) + b)

Algorithm 2 (EFT of the sum of 2 floating point numbers)

function [x , y] = TwoSum(a, b)
x = fl(a + b)
z = fl(x − a)
y = fl((a − (x − z)) + (b − z))

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 4 / 25

EFT for the product (1/3)

x = fl(a · b) ⇒ a · b = x + y with y ∈ F,

Algorithm TwoProduct by Veltkamp and Dekker (1971)

a = x + y and x and y non overlapping with |y | ≤ |x |.

Algorithm 3 (Error-free split of a floating point number into two
parts)

function [x , y] = Split(a, b)
factor = fl(2s + 1) % u = 2−p , s = dp/2e
c = fl(factor · a)
x = fl(c − (c − a))
y = fl(a − x)

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 5 / 25

EFT for the product (2/3)

Algorithm 4 (EFT of the product of 2 floating point numbers)

function [x , y] = TwoProduct(a, b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2 − (((x − a1 · b1)− a2 · b1)− a1 · b2))

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 6 / 25

EFT for the product (3/3)

Given a, b, c ∈ F,
FMA(a, b, c) is the nearest floating point number a · b + c ∈ F

Algorithm 5 (EFT of the product of 2 floating point numbers)

function [x , y] = TwoProductFMA(a, b)
x = fl(a · b)
y = FMA(a, b,−x)

The FMA is available for example on PowerPC, Itanium, Cell processors.

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 7 / 25

Summary

Theorem 1
Let a, b ∈ F and let x , y ∈ F such that [x , y] = TwoSum(a, b). Then,

a + b = x + y , x = fl(a + b), |y | ≤ u|x |, |y | ≤ u|a + b|.

The algorithm TwoSum requires 6 flops.
Let a, b ∈ F and let x , y ∈ F such that [x , y] = TwoProduct(a, b) . Then,

a · b = x + y , x = fl(a · b), |y | ≤ u|x |, |y | ≤ u|a · b|,

The algorithm TwoProduct requires 17 flops.

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 8 / 25

Classic method for computing product

The classic method for evaluating a product of n numbers
a = (a1, a2, . . . , an)

p =
n∏

i=1

ai

is the following algorithm.

Algorithm 6 (Product evaluation)

function res = Prod(a)
p1 = a1
for i = 2 : n

pi = fl(pi−1 · ai) % rounding error πi
end
res = pn

This algorithm requires n − 1 flops

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 9 / 25

Error analysis

γn :=
nu

1− nu
for n ∈ N.

A forward error bound is

|a1a2 · · · an − res| ≤ γn−1|a1a2 · · · an|

A validated error bound is

|a1a2 · · · an − res| ≤ fl
(

γn−1|res|
1− 2u

)

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 10 / 25

Compensated method for computing product

Algorithm 7 (Product evaluation with a compensated scheme)

function res = CompProd(a)
p1 = a1
e1 = 0
for i = 2 : n

[pi , πi] = TwoProduct(pi−1, ai)
ei = fl(ei−1ai + πi)

end
res = fl(pn + en)

This algorithm requires 19n − 18 flops

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 11 / 25

Compensated method for computing product

Algorithm 8 (Product evaluation with a compensated scheme with
TwoProductFMA and FMA)

function res = CompProdFMA(a)
p1 = a1
e1 = 0
for i = 2 : n

[pi , πi] = TwoProductFMA(pi−1, ai)
ei = FMA(ei−1, ai , πi)

end
res = fl(pn + en)

This algorithm requires 3n − 2 flops

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 12 / 25

Error analysis

Theorem 2
Suppose Algorithm CompProd is applied to floating point number ai ∈ F,
1 ≤ i ≤ n, and set p =

∏n
i=1 ai . Then,

|res− p| ≤ u|p|+ γnγ2n|p|

Condition number of the product evaluation :

cond(a) = lim
ε→0

sup
{
|(a1 + ∆a1) · · · (an + ∆an)− a1 · · · an|

ε|a1a2 · · · an|
: |∆ai | ≤ ε|ai |

}
A standard computation yields

cond(a) = n

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 13 / 25

Numerical experiments

Laptop with a Pentium M processor at 1.73GHz with gcc version 4.0.2.

Tab.: Measured computing times with Prod normalised to 1.0

n Prod CompProd
100 1.0 3.5
500 1.0 4.4

1000 1.0 5.0
10000 1.0 4.9

100000 1.0 5.5

The theoretical ratio for CompProd is 19.
Compensated algorithms are generally faster than the theoretical
performances
→ due to a better instruction-level parallelism.

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 14 / 25

Validated error bound

Lemma 1
Suppose Algorithm CompProd is applied to floating point numbers ai ∈ F,
1 ≤ i ≤ n and set p =

∏n
i=1 ai . Then, the absolute forward error affecting

the product is bounded according to

|res− p| ≤ fl
((

u|res|+ γnγ2n|a1a2 · · · an|
1− (n + 3)u

)
/ (1− 2u)

)
.

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 15 / 25

Faithful rounding (1/3)

Floating point predecessor and successor of a real number r satisfying
min{f : f ∈ R} < r < max{f : f ∈ F} :

pred(r) := max{f ∈ F : f < r} and succ(r) := min{f ∈ F : r < f }.

Definition 1
A floating point number f ∈ F is called a faithful rounding of a real
number r ∈ R if

pred(f) < r < succ(f).

We denote this by f ∈ �(r). For r ∈ F, this implies that f = r .

Faithful rounding means that the computed result is equal to the exact
result if the latter is a floating point number and otherwise is one of the
two adjacent floating point numbers of the exact result.

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 16 / 25

Faithful rounding (2/3)

r

f

Lemma 2 (Rump, Ogita and Oishi, 2005)
Let r , δ ∈ R and r̃ := fl(r). Suppose that 2|δ| < u|̃r |. Then r̃ ∈ �(r + δ),
that means r̃ is a faithful rounding of r + δ.

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 17 / 25

Faithful rounding (3/3)

Let res = CompProd(p)

Lemma 3

If n <
√

1−u√
2
√

2+u+2
√

(1−u)u
u−1/2 then res is a faithful rounding of p.

If n < αu−1/2 where α ≈ 1/2 then the result is faithfully rounded

In double precision where u = 2−53, if n < 225 ≈ 5 · 107, we get a faithfully
rounded result

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 18 / 25

Validated error bound and faithful rounding

If

fl
(

2
γnγ2n|a1a2 · · · an|

1− (n + 3)u

)
< fl(u|res|)

then we got a faitfully rounded result. This makes it possible to check a
posteriori if the result is faithfully rounded.

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 19 / 25

Exponentiation - a linear algorithm

Algorithm 9 (Power evaluation with a compensated scheme)

function res = CompLinPower(x , n)
p1 = x
e1 = 0
for i = 2 : n

[pi , πi] = TwoProduct(pi−1, x)
ei = fl(ei−1x + πi)

end
res = fl(pn + en)

Complexity : O(n)

In double precision where u = 2−53, if n < 225 ≈ 5 · 107, we get a faithfully
rounded result

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 20 / 25

A double-double library

Algorithm 10 (Multiplication of two double-double numbers)

function [rh, rl] = prod_dd_dd(ah, al , bh, bl)
[t1, t2] = TwoProduct(ah, bh)
t3 = fl(((ah · bl) + (al · bh)) + t2)
[rh, rl] = TwoProduct(t1, t3)

Algorithm 11 (Multiplication of double-double number by a double
number)

function [rh, rl] = prod_dd_d(a, bh, bl)
[t1, t2] = TwoProduct(a, bh)
t3 = fl((a · bl) + t2)
[rh, rl] = TwoProduct(t1, t3)

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 21 / 25

A double-double library

Theorem 3 (Lauter 2005)
Let be ah + al and bh + bl the double-double arguments of Algorithm
prod_dd_dd. Then the returned values rh and rl satisfy

rh + rl = ((ah + al) · (bh + bl))(1 + ε)

where ε is bounded as follows : |ε| ≤ 16u2. Furthermore, we have
|rl | ≤ u|rh|.

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 22 / 25

A logarithmic algorithm

Algorithm 12 (Power evaluation with a compensated scheme)

function res = CompLogPower(x , n) % n = (ntnt−1 · · · n1n0)2
[h, l] = [1, 0]
for i = t : −1 : 0

[h, l] = prod_dd_dd(h, l , h, l)
if ni = 1

[h, l] = prod_dd_d(x , h, l)
end

end
res = fl(h + l)

Complexity : O(log n)

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 23 / 25

A logarithmic algorithm

Theorem 4
The two values h and l returned by Algorithm CompLogPower satisfy

h + l = xn(1 + ε)

with
(1− 16u2)n−1 ≤ 1 + ε ≤ (1 + 16u2)n−1.

For example, in double precision where u = 2−53, if n < 249 ≈ 5 · 1014,
then we get a faithfully rounded result.

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 24 / 25

Thank you for your attention

S. Graillat (Univ. Paris 6) Accurate Floating Point Product 25 / 25

