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Abstract: In this work, local discretization error is bounded via interval approach for the 
elasticity problem using the interval boundary element formulation. The formulation allows for 
computation of the worst case bounds on the errors in the solution of elasticity problem. From 
these bounds the worst case bounds on the discretization error of any point in the domain of the 
boundary can be computed. Examples are presented to demonstrate the effectiveness of the 
treatment of local discretization error in elasticity problem via interval methods. 
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1. Introduction 
 
Most of the problems in engineering mechanics are governed by partial differential equations, to 
which solutions, in general, cannot be obtained exactly due to complexities in the geometry of the 
system for which the applied boundary conditions must be satisfied. Therefore, numerical 
methods have been developed to approximate the true solution by a polynomial interpolation 
between discrete values. The foremost method is the finite element method (FEM), in which the 
domain of the system is discretized into elements consisting of polynomial interpolation functions 
between discrete values which are to be computed. Another numerical method used to 
approximate the solutions to partial differential equations is the boundary element method 
(BEM). In boundary element analysis (BEA), the domain variables are transformed to the 
boundary variables, thus decreasing the dimension of the problem by one. This allows, in general, 
decreasing the time necessary for mesh generation or mesh refinement. The domain 
transformation is performed by the use of fundamental solutions to the linear partial differential 
equations, thus restricting classical BEM to problems for which the fundamental solution is 
known. The boundary integral equations, resulting from weighted residual formulation, are solved 
using point collocation methods, in which the residual is set to zero in the domain and exists only g 
on the boundary of the system. To achieve such residual, the weighted residual function in a weak 
formulation of the partial differential equation, takes the form of the fundamental solution. The 
transformed boundary integral equations are then solved by approximating the true solution over 
discrete boundaries, thus introducing the discretization error. Although discretization error 
estimates have been made for BEM (Rencis and Jong 1989) the worst case bounds on the local 
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discretization error have been computed only for the Laplace problem (Zalewski and Mullen 
2007). 
 

In this work the point-wise discretization error is studied for the elasticity problem. The 
boundary integral equations are bounded by interval boundary integral equations, eventually 
resulting in interval linear system of equations. A parametric solver is reviewed that enables the 
computation of non-naive bounds. Example problems are presented to illustrate the behavior of 
the discretization error bounds. 
 
 

2. Boundary Element Analysis of Elasticity Problem 
 
2.1. BEA FORMULATION FOR ELASTICITY PROBLEM 
 
The boundary element formulation for the behavior of an isotropic and homogeneous body is 
discussed in the literature (Brebbia 1992, Hartmann 1889, Pilkey and Wunderlich 1994). The 
following section reviews the two dimensional boundary element formulation for the elasticity 
problem. The elasticity problem is: 
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where Ω  is the domain of the system, Γ  is the boundary of the system, ijσ  is the stress tensor, 

ib  is the vector of body force, iu  is the displacement vector with a forced boundary condition iû  

on 1Γ , and it  is the traction vector with a natural boundary condition it̂  on 2Γ . The first step in 
approximating the solution to Eq. (1) is to express it in a weighted residual form or a weak form: 
 
 ( ) 1

*
2

**
,

12

)ˆ()ˆ( Γ−−Γ−=Ω+ ∫∫∫
ΓΓΩ

dtuuduttdub iiiiiiiijijσ  (2) 

 
where *

iu  and *
it  are the weighted residual functions. In the following steps Betti’s reciprocal 

theorem is reviewed and used to formulate boundary integral equations. Expanding the left side 
of Eq. (2) results in: 
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 ( ) 0**
,
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, =Ω+Ω=Ω+ ∫ ∫∫

Ω ΩΩ

dubdudub iiijijiijij σσ  (3) 

 
Applying the chain rule to the first integral on the right side of Eq. (3) yields: 
 

 ( ) Ω−Ω=Ω ∫∫∫
ΩΩΩ

dududu jiijjiijijij
*
,,

**
, σσσ  (4) 

 
Substituting *

,
*

jiij u=ε  in Eq. (4) results in: 
 

 ( ) Ω−Ω=Ω ∫∫∫
ΩΩΩ

ddudu ijijjiijijij
*

,
**

, εσσσ  (5) 

 
where ijε  is the linear strain tensor. Applying Gauss integral theorem to the first integral on the 
right side of Eq. (5): 
 

 ( ) Γ=Γ=Γ=Ω ∫∫∫∫
ΓΓΓΩ

dutdundnudu iiijijjiijjiij
***

,
* σσσ  (6) 

 
Substituting the result of Eq. (6) into Eq. (5) and rearranging terms yields: 
 

 Γ=Ω+Ω ∫∫∫
ΓΩΩ

dutdud iiijijijij
**

,
* σεσ  (7) 

 
The equilibrium condition, ijij b−=,σ , is substituted into Eq. (7) to obtain: 
 

 Γ=Γ−Ω ∫∫∫
ΓΓΩ

dutdubd iiiiijij
***εσ  (8) 

Following the same procedure, Eq. (3) through Eq. (8), the following equation can be obtained: 
 

 Γ=Γ−Ω ∫∫∫
ΓΓΩ

dutdubd iiiiijij
***εσ  (9) 

 
It is then considered that the body follows the linear elastic constitutive model: 
 

 klijklij E εσ =  (10) 
 



4 B. F. Zalewski and R. L. Mullen 
 

REC 2008 – B. F. Zalewski and R. L. Mullen 
 

where ijklE  is the fourth order linear elasticity tensor. Eq. (10) can also be written as: 
 

 ( )( ) kkijijij
EE εδ

νν
νε

ν
σ

2111 −+
+

+
=  (11) 

 
Also by expansion of ijσ  tensor and symmetry of ijklE  tensor with respect to ji,  and lk,  
indices: 

 ijijijklijklijklklijklijklijijklijklijij EEEE εσεεεεεεεεεσ ****** =====  (12) 
 
By equating the first integral terms in Eq. (8) and Eq. (9) due to Eq. (12), Betti’s reciprocal 
theorem can be obtained: 
 

 Γ+Γ=Γ+Γ ∫∫∫∫
ΓΓΓΓ

dubdutdubdut iiiiiiii
****  (13) 

 
Eq. (13) is the starting point of the boundary element formulation for the elasticity problem. 
Equilibrium equation **

, ijij b−=σ  is substituted into Eq. (13) resulting in: 
 

 Γ+Γ=Γ+Γ− ∫∫∫∫
ΓΓΓΓ

dtudbudutdu iiiiiiijij
****

,σ  (14) 

 
In order to decrease the dimension of the integral equation, Eq. (14), the weighted residual 
function is set to be the Green’s function, which is obtained by applying a point load in direction 

ia . This can be expressed as: 

 ijij ax )(*
, ξδσ −−=  (15) 

where ξ  is a source point at which a concentrated force is applied, x  is a field point at which a 
response to the concentrated force is observed, and )( ξδ −x  is the Dirac delta function. The 
resulting fundamental solution is: 
 

 jjii auu ** =  (16) 
 

 jjii att ** =  (17) 
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where *
jiu  and *

jit  are i  components of the displacements and tractions, respectively, due to a 

concentrated force in the j  direction, and ja  is a unit vector in the direction of the applied 

concentrated force. The kernel functions *
jiu  and *

jit  are given as: 
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Substituting Eq. (15), Eq. (16), and Eq. (17) into Eq. (14) yields: 
 

 Ω∈Γ+Γ=Γ+ ∫∫∫
ΓΓΓ

ξξ ,)( *** dtaudbauduatau ijjiijjiijjiii  (20) 

 
The indices are exchanged in all the integral terms in Eq. (20) as: 
 

 Ω∈Γ+Γ=Γ+ ∫∫∫
ΓΓΓ

ξξ ,)( *** dtaudbauduatau jiijjiijjiijii  (21) 

 
The ia  coefficients are constant and can be canceled out from Eq. (21): 
 

 Ω∈Γ+Γ=Γ+ ∫∫∫
ΓΓΓ

ξξ ,)( *** dtudbudutu jijjijjiji  (22) 

 
Assuming that the body force is zero, Eq. (22) can be simplified to: 
 

 Ω∈Γ=Γ+ ∫∫
ΓΓ

ξξ ,)( ** dtudutu jijjiji  (23) 
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Eq. (23) is integrated such that the source point, ξ , is included on the circular boundary of radius 
ε , as 0→ε . This results in the right side integral vanishing. For constant elements the left side 
integral results in )(2/1 ξiu− . Thus on the boundary of the system, Eq. (23) can be rewritten as: 
 

 Γ∈Γ=Γ+ ∫∫
ΓΓ

ξξξξ ,)(),()(),()(
2
1 ** dxtxudxuxtu jijjiji  (24) 

 
In most cases, the exact solution to Eq. (24) cannot be found. Therefore Eq. (24) can be 
approximately solved using numerical methods such as BEM. 
 
 
2.2. BOUNDARY  DISCRETIZATION USING CONSTANT ELEMENT 
 
In general, boundary integral equations, such as Eq. (24), cannot be solved analytically. To obtain 
approximate solutions, the boundary integral equation is discretized into boundary elements for 
which the true solution is approximated by a polynomial interpolation between known values of 
either u  or t . In this work, only boundary elements with constant shape functions are used to 
generate significant discretization errors. Higher order approximation is assumed to approximate 
the true solutions better thus decreasing the discretization error. Constant elements contain one 
node per element, leading to the following discretization: 
 
 iuxu Φ=)(  (25) 
 
 itxt Φ=)(  (26) 
 
where iu  and it  are the vectors of nodal values of u  or t , respectively, at node i , and Φ  is the 
vector of constant shape functions. The discretized Eq. (24) can be written as: 
 

 j
Elements

xij
Elements

jxiji tdxuudxtu
xx

∑ ∫∑ ∫
ΓΓ

ΓΦ=ΓΦ+ ),(),(
2
1 ** ξξ  (27) 

 
Eq. (27) can be written in a matrix form: 
 
 GtHu =  (28) 
 
where matrix H  is singular and therefore satisfies the rigid body motion. To obtain a unique 
solution to Eq. (28) at least one boundary condition in each direction of the problem must be 
specified for the displacement. Eq. (28) is then rearranged according to the appropriate boundary 
conditions and solved as a linear algebra problem: 
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 fAx =  (29) 
 
The terms of H  and G  matrices can either be determined explicitly or are computed 
numerically using numerical integration schemes. The effects of the integration error and 
truncation error have been studied (Zalewski et al. 2007) and can be implemented to enclose the 
true solution of Eq. (29). In this work the impact of the discretization error on the solution to Eq. 
(24) is studied, following the boundary element formulation, using interval methods. 
 
 

3. Interval Analysis 
 
In this work, the discretization error in BEM is treated using an interval approach. The following 
is a review of interval analysis (Moore 1966, Neumaier 1990). An interval number ],[~ bax =  is a 
set of real numbers such that: 
 
 }|{],[ bxaxba ≤≤=  (30) 
 
where ℜ∈),( ba . Interval variables ],[~ bax =  and ],[~ dcy =  behave according to the 
following operations: 
 
 
 
Addition: 
 ],[~~ dbcayx ++=+  (31) 
Subtraction: 
 ],[~~ cbdayx −−=−  (32) 
Multiplication: 
 }],,,max{},,,,[min{~~ bdbcadacbdbcadacyx =⋅  (33) 
Division: 

 y
cd

ba
y
x ~0,1,1],[~
~

∉⎥⎦
⎤

⎢⎣
⎡⋅=  (34) 

 
Integration of interval-valued function )~,( ξxf , which is a class of all possible functions 
bounded by a given interval is performed as: 
 

 ],[,)~,(,)~,()~,( ξξξξξξ ∈⎥
⎦

⎤
⎢
⎣

⎡
ΓΓ=Γ ∫∫∫

ΓΓΓ

dxfdxfdxf  (35) 
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Subdistributive property: 
 
 zxyxzyx ~~~~)~~(~ ⋅+⋅⊆+⋅  (36) 
 
One of the major sources of overestimation or underestimation in interval solutions is the 
subdistributive property of interval numbers. Great emphasis should be made to the correct order 
of operations in interval analysis. If the correct representation is given by the left term in Eq. (36), 
expressing the operation by the right term may cause overestimation. If the correct representation 
is expressed as the right term in Eq. (36), expressing it as the left term may result in inner bounds 
and the enclosure of the solution may not be guaranteed. This issue will be farther referred to in 
considering interval kernel functions. 
 

Another source of overestimation occurs due to the dependency of interval numbers, either 
linear or nonlinear. Linear dependency of interval numbers for ]1,1[~ −=x  and ]1,1[~ −=y  can be 
illustrated as: 

 
 ]1,1[~~ −=⋅ yx  (37) 
 
 ]1,0[~~ =⋅ xx  (38) 
 
Eq. (37) considers the two sets to be independent; therefore, the operation must enclose all 
possible values. Eq. (38) takes into account that the same set is multiplied by itself; therefore, 
every number in set x~  is multiplied by itself. For engineering problems interval dependency 
occurs mostly due to the physics of the problem and needs to be considered for sharp solutions. 
Naive interval application may results in wide and unrealistic bounds. Considering an example: 
 

]1,1[~,~3~~6~ −=⋅+⋅⋅= xxxxy  
 
direct interval operation results in naive bounds for the solution, ]9,9[~ −=y . However, 
considering interval dependency, the bounds on the solution result in exact bounds, 

]9,375.0[~ −=y . 
 

Another source of overestimation is the order of operations in interval linear algebra. To 
obtain sharp results, interval operations should be performed last to reduce the overestimation due 
to the dependency in interval matrix coefficients. The following example demonstrates this 
consideration. 
 

xBAyxBAy ~)(~),~(~
21 ⋅⋅=⋅⋅= , where 
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It can be clearly seen that 2

~y  is sharper then 1
~y  due to the considered dependency of 1

~x  and 2
~x  

throughout the rows of 2
~y . Therefore special care should be given to the order of interval 

operations to obtain sharp bounds on the solution. 
 
 

4. Interval Linear System of Equations 
 
The interval linear system of equations of the form of Eq. (29) is solved using Krawczyk iteration 
(Krawczyk 1969) based on Brouwer’s fixed point theorem (Mullen and Muhanna 1999, Muhanna 
and Mullen 2001, Muhanna et al. 2005). One approach of self-validating (SV) methods to find the 
zero of the function nnxf ℜ→ℜ= ,0)(  is to consider a fixed point function xxg =)( . The 
transformation between )(xf  and )(xg  for a non-singular preconditioning matrix C  is: 
 
 xxgxf =⇔= )(0)(  (39) 
 
 )()( xfCxxg ⋅−=  (40) 
 
where the function )(xg  is considered as a Newton operator. From Brouwer’s fixed point 
theorem and from: 
 
 nxsomeforxxg ℜ∈⊆ ~~)~(  (41) 
 
the following is true: 
 
 0)(:~ =∈∃ xfxx  (42) 
 
This method is used to solve linear system of equations of the form of Eq. (29). The 
preconditioning matrix C  is chosen as 1−= AC . From Eq. (40) and Eq. (41) it follows that: 
 
 xxCAICb ~~)( ⊆−+  (43) 
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The left hand side of Eq. (43) is the Krawczyk operator (Krawczyk 1969). For the iteration to 
provide finite solution, the preconditioning matrix needs to be proven regular (Neumaier 1990, 
Rump 2001). The following proves this condition. 
 

Theorem 1. (Rump 2001) givenbexandbCALet nnnn ℜ∈ℜ∈ℜ∈ × ~,,, . If 
 
 )~int(~)( xxCAICb ⊆−+  (44) 
 

xbAsatisfiesbAxofsolutionuniquetheandregularareAandCthen ~1 ∈= − .  
 

)~int(x  refers to the interior of x~ . However, all terms in Eq. (29) can be interval terms, thus the 
following is a proof for the guarantee of the solution for the equation of this form. 
 
 

Theorem 2. (Rump 2001) givenbexandbCALet nnnnnn ℜ∈ℜ∈ℜ∈ℜ∈ ×× ~,~,,~ . If 
 
 )~int(~)~(~ xxACIbC ⊆−+  (45) 
 

andregularisAAmatrixeveryandCthen ~∈  
 

 xbAxbbAAxbA n ~}:~~{)~,~( ⊆=∈∃∈∃ℜ∈=∑  (46) 

 
Eq. (46) guarantees the solution to the interval linear system of equations of the form of Eq. (29). 
The residual form of Eq. (46) is (Neumaier 1990): 
 
 )~int(~)~(~~

0 δδ ⊆−+− ACIxACbC  (47) 
 
where δ~~

0 += xx . A good initial guess is bCx ˆ
0 = , where 1ˆ −= AC , Â  is the midpoint matrix 

of A , and b̂  is the midpoint vector of b . The following sections describe the treatment of point-
wise discretization error via interval methods. 
 
 

5. Discretization Error Bounds for Boundary Element Method 
 
The discretization error in the solutions to integral equations results from considering a finite 
number of collocation points for which these solutions are computed. In general, the true 
solutions to integral equations are functions, not discrete values, and therefore the space of the 



Worst Case Bounds on the Point-wise Discretization Error in Boundary Element 11 
 

REC 2008 – B. F. Zalewski and R. L. Mullen 
 

approximate solutions does not cover the space of the true solutions. The boundary integral 
equations can be obtained by the use of collocation methods resulting in equation of the form of 
Eq. (24). The boundary integral equations are satisfied exactly only if all the locations of the 
source point ξ  on the boundary are considered. However, to obtain a linear system of equations, 
a finite number of source points are considered. Moreover, the location of the source points is 
unique and the solution is considered as a polynomial interpolation between discrete values, 
whose location corresponds to the location of the source point. This allows for the solution of the 
linear system of equations to be unique and thus the system can be solved for the unknown 
boundary values. It should be noted that if al non countable source points are considered, the 
boundary values at all points can be computed, resulting in the true solution. The boundary 
integral equation can also be evaluated over n  sub-domains as expressed by Eq. (27). The unique 
location of the source point and its correspondence to the point at which the approximate solution 
is computed must be satisfied for all sub-domains. Eq. (27) is satisfied exactly only if all the 
locations of the source point are considered. Thus the discretization error is introduced in the 
same manner as in Eq. (24). 
 

In the analysis of the discretization error, all the locations of the source point, ξ~ , in the 
continuous boundary integral equation: 
 

 Γ∈Γ=Γ+ ∫∫
ΓΓ

ξξξξ ,)(),()(),()(
2
1 ** dxtxudxuxtu jijjiji  (48) 

 
are treated via interval approach. Considering interval bounds ξ~  on all the possible locations of 
the source points ξ  allows obtaining an interval solution which bounds the true solution. From 
the interval bounds on the boundary values, the bounds on the true solution for any point in the 
domain can be computed. Eq. (48) is bounded by an interval boundary integral equation in which 
the terms ),(* ξxuij  and ),(* ξxtij  are known interval-valued functions. The unknown functions 

)(xu j  and )(xt j  in Eq. (48) are then bounded by interval values enclosing the true solution. 
 
The integral over the domain can be expressed as the sum of the integrals over the elements and 
thus the boundary integral equation must be bounded on each element for all the locations of the 
source points. Hence, for the boundary Γ  subdivided into n  boundary elements, for each 
element k  the interval values u~  and t~  that bound the functions )(xu  and )(xt  are found 
(Figure 1). 
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Figure 1. Constant interval bounds on a function. 
 
For higher order elements the interval valued function, of the order of the polynomial 
approximation, encloses the true solution. The bounding of the function using linear elements is 
shown (Figure 2). 
 

 
 

Figure 2. Linear interval bounds on a function. 
 
It is assumed that on all other elements, except for the element in consideration, the bounds on all 
boundary values are known. Also either the bounds on the Dirichlet or the Neumann boundary 
condition bounds are known for the element in consideration. Then the remaining boundary value 
for the single element in consideration is bounded. The process is repeated for the second element 
with the assumed bounds for all the other elements, a computed bound for the previously 
considered element, and either the Dirichlet or the Neumann boundary condition bounds for the 
second element in consideration. This procedure, known as the interval Gauss-Seidel iteration 
(Neumaier 1990), is performed for all elements until the true solution is enclosed. Mathematically 
the above statement can be expressed as: 



Worst Case Bounds on the Point-wise Discretization Error in Boundary Element 13 
 

REC 2008 – B. F. Zalewski and R. L. Mullen 
 

 

{ }

{ }

∑ ∫∑ ∫

∫∫

∑ ∫∫∑ ∫

∫

= Γ= Γ

ΓΓ

= ΓΓ= Γ

Γ

Γ−Γ

+Γ+=Γ

∀

≤≤≤≤

≠∀≤≤≤≤∈∀

Γ−Γ+Γ

=Γ+

∀

≤≤≤≤

≠∀≤≤≤≤∈∀

n

m
mjmkij

n

m
mjmkij

kjkkijkikkjkkij

k

kkkkkk

mmmmmm

n

m
mjmkijkjkkij

n

m
mjmkij

kjkkijkik

k

kkkkkk

mmmmmm

mm

kk

mkm

k

dxtxudxuxt

dxuxtudxtxu

tttFinduuuknownAlso

kmknownistttuuuAssumenk

Or

dxuxtdxtxudxtxu

dxuxtu

uuuFindtttknownAlso

kmknownistttuuuAssumenk

1

*

1

*

**

1

**

1

*

*

)(),()(),(

)(),()(
2
1)(),(

.

.,,...,2,1

)(),()(),()(),(

)(),()(
2
1

.

.,,...,2,1

ξξ

ξξξ

ξ

ξξξ

ξξ

ξ

 (49) 
 
Each term of the summation in Eq. (49) is represented graphically (Figure 3). 

 
Figure 3. Integration from element B from point P on element A. 

 
If u  or q  are specified boundary conditions, the interval integration can be performed explicitly 
as described in section 3, Eq. (35). In this work, for computational efficiency purposes, the 
underlying system of interval equations is solved using Krawczyk iteration (Krawczyk 1969), 
rather than using the interval Gauss-Seidel iteration (Neumaier 1990). This substitution of the 
method for bounding the unknown boundary values can be made since both of these methods are 
iterative methods for solving interval linear systems of equations and both obtain guaranteed 
bounds for the solution. Hence, the interval boundary element method (IBEM) formulation is 
performed such that the resulting interval linear system of equations is of the form of Eq. (29). 
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6. Interval Kernel Splitting Technique 

 
The analysis of the discretization error requires that the boundary integral equations for each 
element be bounded for all the locations of the source point ξ . The integral equation in the 
boundary element formulation has the form of the Fredholm equation of the first kind. Kernel 
splitting techniques have been used to bound the interval Fredholm equation of the first kind in 
which the right side is deterministic (Dobner 2002) as: 
 
 )()(),(~ ξξ bdxuxa =Γ∫

Γ

 (50) 

 
However, the interval boundary integral equations considered herein have an interval right side, 
due to the interval valued location of the source point ξ~ , therefore a new Interval Kernel 
Splitting Technique (IKST) is developed. The integral of the product of two functions is bounded 
considering interval bounds on the unknown value as: 
 
 )~()()~,(~)~,( ξξξ bdxuxaduxa =Γ⊇Γ ∫∫

ΓΓ

 (51) 

 
To separate the kernels such that the unknown u~  can be taken out of the integral on Γ , the left 
side integral from Eq. (51) is expressed as a sum of the integrals: 
 
 ∫∫∫

ΓΓΓ

Γ+Γ=Γ
21

21
~)~,(~)~,(~)~,( duxaduxaduxa ξξξ  (52) 

 
where 0, 2121 =ΓΓΓ=ΓΓ IU  and: 
 
 10)~,(0)~,( Γ<> onxaorxa ξξ  (53) 
 
 20)~,( Γ∈ onxa ξ  (54) 
 
The interval kernel is of the same sign on 1Γ , thus u~  can be directly taken out of the integral on 

1Γ  as: 
 
 udxaduxa ~)~,(~)~,(

11

11 ∫∫
ΓΓ

Γ=Γ ξξ  (55) 
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Due to the subdistributive property of interval numbers, Eq. (36), u~  cannot be taken out of the 
integral on 2Γ . The direct application of the subdistributive property may result in inner bounds 
on the interval integral as: 
 
 ∫∫

ΓΓ

Γ⊆Γ
22

22
~)~,(~)~,( duxaudxa ξξ  (56) 

 
Hence the interval kernel is bounded by its limits on 2Γ : 
 
 ∫∫

ΓΓ

Γ⊇Γ
22

22
~)~,(~~ duxadua ξ  (57) 

 
where a~  is defined as: 
 
 )}]~,~(max{)},~,~([min{~ ξεξε ++= xaxaa  (58) 
 
 ],[~ εεε −=  (59) 
 
ε  is the tolerance level of the nonlinear solver used to find the zero location of )~,( ξxa . To 
show that by bounding the kernel on 2Γ  allows u~  to be taken out from the integral on 2Γ , the 
integral on 2Γ  is expressed as an infinite sum: 
 

 udauauanuanuadua
n

i

n

i

~~~)~(lim~)~(lim)~~(lim)~~(lim~~
22

22

22

2
1000102 ∫∑∑∫

ΓΓ=
→ΔΓ→ΔΓ→Δ

Γ=
→Δ

Γ

Γ=Δ=Δ=Δ=Δ=Γ  

(60) 
 
where Δ  is a small part of 2Γ . Thus u~  can be taken out of both integrals on 1Γ  and on 2Γ  and 
the split interval boundary integral equation becomes: 
 )~()()~,(~)~,(~~~)~,(

21

21 ξξξξ bdxuxaduxaudaudxa =Γ⊇Γ⊇Γ+Γ ∫∫∫∫
ΓΓΓΓ

 (61) 

 
The kernels are bounded for all the elements resulting in interval linear system of equations: 
 
 buAuA ~~~~~

21 ⊇+  (62) 
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IKST bounds the continuous boundary integral equation for all the locations of the source point 
ξ  and Eq. (48) is guaranteed to be satisfied for all the weighting functions. The solution to Eq. 
(62) is described in the following sections. 
 
 

7. Iterative Solver for the Interval Linear System of Equations 
 
The bounding of the original boundary integral equation using IKST results in the interval linear 
system of equations different from that of Eq. (29). Hence, the algorithm to solve the interval 
linear system of equations, Eq. (62), must be developed. This section describes the transformation 
of Eq. (62) to obtain it in the form of Eq. (29). Then, Krawczyk iteration (Krawczyk 1969) is 
performed to obtain the guaranteed bounds on the solution. Considering the linear system of 
equations: 
 
 eeeee bxAxA ~~~~~

21 =+  (63) 
 
where xxbbAAAA eeee

~~,~~,~~,~~
2211 ∈∈∈∈  and eA1  is regular eee AAA 111

~∈∀ . Eq. (63) is pre-

multiplied by 1
1

~−
eA  as: 

 
 eeeeeeee bAxAAxAA ~~~~~~~~ 1

12
1

11
1

1
−−− =+  (64) 

 
By substituting eeeee AAAIAA 32

1
11

1
1

~~~,~~ == −−  and eee bbA 1
1

1
~~~ =− , Eq. (64) can be rewritten as: 

 
 eeee bxAx 13

~~~~ =+  (65) 
 
Since the first term in Eq. (65) is a deterministic identity matrix pre-multiplying ex~ , the following 

substitution can be made directly. Letting ee AAI ~~
3 =+  results in: 

 eee bxA 1
~~~ =  (66) 

 
The transformed system of equations is subjected to Krawczyk iteration (Krawczyk 1969) as 
described in the previous section. 
 
 

8. Discretization Error in Interval Boundary Element Method 
 
In the preceding formulation, the bounds on the unknown boundary values are found using 
iterative techniques. The obtained bounds, however, are greatly overestimated since the 
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dependency of interval values was not considered. One reason for this overestimation is that the 
interval kernels are bounded such that the source point ξ  is allowed to vary along the entire 
element. Thus, for two adjacent elements, two source points are allowed to be connecting point 
between the elements and have the same location, resulting in the reduction of the rank of the 
system of equations. The unique location of a single source point is also not considered 
throughout the rows of H  and G  matrices, which are in nnR × . Thus, the parameterization of the 
interval location of the source point, ξ~ , in the H~  and G~  matrices must be considered in the 
solver to obtain n  independent interval equations and to reduce the overestimation which results 
from a non-unique location of the source point on any individual element. For convenience, the 
system is parameterized such that ]1,0[~

=ξ  is the location scaled by a length of an element. In 

performing interval matrix products, the value of ξ~  is decomposed into sub-intervals such that: 
 

 0~~~
11

==
==
IU

n

i
ii

n

i

and ξξξ  (67) 

 
The parameterized boundary integral equation is bounded by IKST for each subinterval iξ

~
, 

resulting in the linear system of equations: 
 
 tGtGuHuH iiii

~)~(~)~(~)~(~)~( 2121 ξξξξ +=+  (68) 
 
where the kernel is of the same sign for )~(1 iH ξ  and )~(1 iG ξ  and contains zero for )~(2 iH ξ  and 

)~(2 iG ξ . The system of equations is rearranged according to the boundary conditions as: 
 
 )~(~)~(~)~( 21 iii bxAxA ξξξ =+  (69) 
Steps described in the previous section lead to the equation of the form: 
 
 )~(~)~( 1 ii bxA ξξ =  (70) 
 
The initial interval guess is then considered as: 
 

 )~(~
1

1

1
0 i

n

i

bAx ξU
=

−=  (71) 

 
where A  is computed for 2/1=ξ . The difference between I  and the preconditioning matrix 

1−A  post-multiplied by the interval matrix )~( iA ξ  is computed as: 
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 )~(~~ 1

1
i

n

i
d AAII ξ−

=

−= U  (72) 

 
The difference between the solution and the initial guess is computed for each iξ

~
 pre-multiplied 

by the preconditioning matrix I , which numerically gave the sharpest results: 
 

 ( )0201
1

~)~(~~)~(~)~(~~ xAxAb iii

n

i

ξξξδ −−=
=
U  (73) 

Also: 
 δδ ~~

1 =  (74) 
 
The iteration is performed as: 
 1

~~ δ=eld  (75) 
 
 eldId

~~~~
1 += δδ  (76) 

 
 If 1

~~ δ⊃eld  (77) 
 
 10

~~~ δ+= xx  (78) 
 
 
For any point n  on element k  the bounds on the discretization error are found as: 
 
 nk

tiondiscretiza
nk xxE −= ~~  (79) 

 
where kx~  are the solution bounds over an element k  and nx  is the solution from a conventional 
boundary element analysis for point n . 
 
 

9. Examples 
 
The first example demonstrates the IBEM considering discretization error for the elasticity 
problem. A unit square domain of the problem as well as the boundary element mesh is shown 
(Figure 4). The body has a unit elastic modulus and a zero Poisson ratio. The left and right sides 
have a zero traction boundary condition; the bottom boundary has a zero displacement boundary 
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condition, while the top boundary has a zero traction condition in the x  direction and a unit 
displacement in the y  direction. 
 

  

Figure 4. Boundary discretization using constant boundary elements. 
 
The behavior of the y  displacement bounds such as solution width, effectivity index, and 
solution bounds is depicted (Figure 5-7) for nodes 2, 3, 4, and 5 on the four respective meshes. 
The interval bounds, depicted by a solid line enclosing the dashed true solution, for the right edge 
displacement in the y  direction are shown (Figure 8). The effect of the parameterization for the 
traction in the x  direction for element 1 for the 4 and 8 element meshes is also shown (Figure 9, 
Figure 10). 
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Figure 5. Behavior of the width of the interval solution with problem size. 
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Figure 6. Behavior of the effectivity index with problem size. 
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Figure 7. Behavior of the interval bounds with problem size. 
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Figure 8. Behavior of the interval bounds for the different meshes. 
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Figure 9. Behavior of the width of the interval solution with parameterization for a 4 element mesh. 
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Figure 10. Behavior of the width of the interval solution with parameterization for an 8 element mesh. 
 

 
 
 
The second example obtains bounds on the solution, considering the discretization error, to a 
hexagonal plate subjected to a unit displacement in the y  direction at the top and a unit 
displacement in the y−  direction on the bottom (Figure 11). The body has a unit elastic modulus 
and a zero Poisson ratio. 
 

 
 

Figure 11. Hexagonal plate subjected to a unit displacement. 
 
 
A symmetry model is considered, to decrease the computational time, with a unit displacement at 
the top and is uniformly discretized using constant boundary elements (Figure 12, Figure 13). 
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Figure 12. Symmetry model. 

 

 
 

Figure 13. Uniform boundary discretization using constant boundary elements. 
The behavior of the solution width, effectivity index, and solution bounds is depicted (Figure 14-
16) for the displacement in the y  direction for nodes 4, 8, 12, and 16 on the four respective 
meshes shown above. The interval bounds, depicted by a solid line enclosing the dashed true 
solution, for the left edge displacement in the y  direction are shown (Figure 17). 
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Figure 14. Behavior of the width of the interval solution with problem size. 
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Figure 15. Behavior of the effectivity index with problem size. 
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Figure 16. Behavior of the interval bounds with problem size. 
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Figure 17. Behavior of the interval bounds for the different meshes. 

10. Conclusion 
 
In this work the discretization error for the elasticity problem is bounded using interval boundary 
element method. The interval bounds on the true solution are shown to converge for the meshes 
considered despite the increase in the effectivity index. The increase in the effectivity index is 
attributed to the slower convergence of the interval bounds than the true solution. The 
overestimation in the interval bounds is due to the overestimation of the terms in the interval 
boundary integral equation using IKST, imperfect parameterization of the location of the source 
point throughout the rows of the matrices H  and G , and the overestimation in the iterative 
interval solver. There are two sources of overestimation in the iterative scheme solving the 
interval system of linear equations. The first one is due to the inherent overestimation when 
Krawczyk iteration is used to solve interval linear system of equations. This source of 
overestimation occurs due to the orthogonal multidimensional interval bounds enclosing a true 
solution which may not be, and in most cases is not, orthogonal and/or oriented in the same 
direction as the interval bounds (Figure 18). 
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Figure 18. Interval bounds on the solution. 
 
The second source of overestimation on the interval solver comes from incomplete consideration 
of the interval parameterization in Eq. (76). Each term in Eq. (76) is parameterized; however, 
each of these terms must be dealt with in its entirety when operated with. The solution of the 
linear system of equations must be satisfied for the entire system and thus the residual has to be 
calculated for the entire interval width, not for the length of the subinterval. If the residual is 
computed for the portion of the interval, for instance an interval width corresponding to a 
subinterval such that a complete interval parameterization can be utilized in Eq. (76), the 
enclosure in no longer guaranteed. 
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