
Propagating Uncertainties
in Modeling Nonlinear Dynamic Systems

Joshua A. Enszer,1 Youdong Lin,1

Scott Ferson,2 George F. Corliss,3 Mark A. Stadtherr1

1Department of Chemical and Biomolecular Engineering

University of Notre Dame, Notre Dame, IN 46556, USA
2Applied Biomathematics

Setauket, NY 11733, USA
3Department of Electrical and Computer Engineering

Marquette University, Milwaukee, WI 53201, USA

3rd International Workshop on Reliable Engineering Computing, Savannah, GA, February 20–22, 2008



Overview

• Problem Statement

• Representations of Uncertainty

– Intervals and Taylor Models

– Cumulative Probability Functions and P-boxes

• Solution Procedure

• Examples

– Lotka-Volterra Model

– Microbial Bioreactor with Haldane Kinetics

– Three-State Bioreactor

• Concluding Remarks

2



A Motivating Problem: Lotka-Volterra Model

• Simulate a simple predator-prey model with the ODE system with uncertainty

in parameters
dx1

dt
= θ1x1(1 − x2)

dx2

dt
= θ2x2(x1 − 1)

over the interval t = [0, 10]

• The variables x represent the biomasses of the prey and predator

• The parameters θ affect the growth and death of each species

• The distribution of uncertainties in θ1 and θ2 is not entirely unknown
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Problem Statement

• We consider the general ODE initial value problem

y′(t) = f(y, θ), y(t0) = y0 ∈ Y0, θ ∈ Θ,

where at least one of the initial conditions on state variables y or one of the

time-invariant parameters θ is uncertain (contained in Y0 and/or Θ)
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Problem Statement

• We consider the general ODE initial value problem

y′(t) = f(y, θ), y(t0) = y0 ∈ Y0, θ ∈ Θ,

where at least one of the initial conditions on state variables y or one of the

time-invariant parameters θ is uncertain (contained in Y0 and/or Θ)

– There may be information about the distribution of this uncertainty that can

be represented by a p-box

• We wish to obtain two items of interest

– Guaranteed enclosure of solution across all times of interest

– Ability to see p-box enclosure of state variables y at any time of interest

• In short, we wish to propagate all knowledge of uncertainty through a

dynamic model
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Representation of Uncertainty: Intervals

• The most basic way to represent uncertainty in a value is to declare its lower

and upper bound

• An real interval is just that, a segment of the real number line

X = [a, b] = {x ∈ R | a ≤ x ≤ b}

• An interval vector X = [X1, X2, . . .Xn]T can be thought of as an

n-dimensional rectangle

• We can define basic interval arithmetic using set notation:

X op Y = {x op y | x ∈ X, y ∈ Y }

• We can define other elementary interval functions (e.g., exp (X), sin (X))
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Representation of Uncertainty: Intervals

• An interval extension F (X) encloses f(x) for every x ∈ X :

F (X) ⊇ {f(x) | x ∈ X}

• If the function calls an interval-valued variable more than once, direct

substitution may lead to overestimation (the “dependency” problem)

• If the function range is not interval-shaped, the interval enclosure will include

the interval as well as other values (the “wrapping effect”)

• Repeated applications of such overestimations can quickly lead to the loss of

any meaningful interval enclosure
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Representation of Uncertainty: Taylor Models

• A Taylor model Tf = (pf , Rf ) may be used to enclose f(x) over X where

pf is a qth order Taylor polynomial and Rf is an interval remainder bound
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pf is a qth order Taylor polynomial and Rf is an interval remainder bound

• One way to obtain Tf is directly from Taylor’s theorem: pf is a truncated

Taylor series and Rf is an interval bound on the remainder term

• Another way is to obtain them from other Taylor models and operations

(Makino and Berz, 1996)

– Beginning with Taylor models of simple functions (e.g., constant, identity)

and using TM operations, one we can compute the TM of a complicated

function
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Representation of Uncertainty: Taylor Models

• A Taylor model Tf = (pf , Rf ) may be used to enclose f(x) over X where

pf is a qth order Taylor polynomial and Rf is an interval remainder bound

• One way to obtain Tf is directly from Taylor’s theorem: pf is a truncated

Taylor series and Rf is an interval bound on the remainder term

• Another way is to obtain them from other Taylor models and operations

(Makino and Berz, 1996)

– Beginning with Taylor models of simple functions (e.g., constant, identity)

and using TM operations, one we can compute the TM of a complicated

function

• Compared to other methods, the Taylor model often provides sharper bounds

for modest and more complicated functions
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Representation of Uncertainty: CDF’s

• For a quantity x, the cumulative distribution function (CDF) F (z) gives the

probability that x ≤ z

• Example: in the CDF below, P (x ≤ 0) = 0.5
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Representation of Uncertainty: P-boxes

• A probability box (p-box) bounds a set of probability distributions, much like

an interval bounds a set of real numbers
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Representation of Uncertainty: P-boxes

• A probability box (p-box) bounds a set of probability distributions, much like

an interval bounds a set of real numbers

• A p-box is the set of all CDFs enclosed by two bounding functions F (z) and

G(z):

(F, G) = {H(z) | F (z) ≥ H(z) ≥ G(z) ∀z ∈ R}

• P-boxes may be formulated from

– Known distributions with uncertain parameters (e.g., mean, standard

deviation)

– Any bounds consistent with available information

• Arithmetic operations can be defined in a manner analogous to intervals

• P-box operations are implemented in Risk Calc
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Representation of Uncertainty: P-boxes

• P-boxes provide an interval of probabilities for a corresponding value or an

interval of values for a corresponding probability
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Representation of Uncertainty: P-boxes

• Example of a p-box from a known distribution and uncertain parameter:

– A “uniform” p-box with bounds obtained from a uniform distribution with

fixed mean 0 and interval standard deviation [0.2, 0.3]

– This p-box can be enclosed in the interval [−0.52, 0.52]
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Representation of Uncertainty: P-boxes

• Another example of a p-box from a known distribution / uncertain parameter:

– A “normal” p-box with bounds obtained from a truncated normal

distribution with fixed mean 0 and interval standard deviation [0.2, 0.3]

– This p-box can be enclosed in the interval [−0.78, 0.78]
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Representation of Uncertainty: P-boxes

• An example of a p-box with unknown distribution and certain parameters:

– This “mmms” p-box bounds all CDF’s with known minimum (−0.8),

maximum (0.8), mean (0), and standard deviation (0.3)

– This p-box can be enclosed in the interval [−0.8, 0.8]
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Bounding Solutions of ODE Systems

• Traditional ODE solvers such as Euler’s method or Runge-Kutta are

real-valued and do not provide guaranteed error bounds
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Bounding Solutions of ODE Systems

• Traditional ODE solvers such as Euler’s method or Runge-Kutta are

real-valued and do not provide guaranteed error bounds

• Monte Carlo approaches can estimate effects of interval or non-interval

uncertainties, but cannot sample entire space and do not provide guaranteed

bounds

• Interval and Taylor model ODE solvers compute guaranteed bounds on the

solution, capturing error due to truncation, parameter uncertainty, and

rounding, but do not consider non-interval uncertainty and can be overly

pessimistic

• P-box arithmetic allows for propagation of non-interval (probabilistic)

uncertainties in algebraic models

– There is a need for propagation of probabilistic uncertainties in dynamic

models
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Solution Procedure

• We return to the general ODE initial value problem

y′(t) = f(y, θ), y(t0) = y0 ∈ Y0, θ ∈ Θ
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Θ0, and a deterministic ODE model

– Compute a p-box enclosure of state variables at specific times
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Solution Procedure

• We return to the general ODE initial value problem

y′(t) = f(y, θ), y(t0) = y0 ∈ Y0, θ ∈ Θ

• Overall goal:

– Given p-box enclosures of initial conditions and parameters with Y0 and

Θ0, and a deterministic ODE model

– Compute a p-box enclosure of state variables at specific times

• Solution procedure

– Use VSPODE (Lin and Stadtherr, 2007) to compute a Taylor model

Ty(y0, θ) of the state variables at the desired time

– Substitute p-boxes for y0 and θ into Ty(y0, θ) and use Risk Calc to

compute a p-box enclosure of y
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Solution Procedure

• The first phase of VSPODE guarantees existence and uniqueness of solution

across the time interval [tj , tj+1] using an interval Taylor series (Nedialkov

et. al., 1999)
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• At time tj it is known that y(tj) ∈ Yj (this is a result of the previous time

step)

• To obtain an enclosure at time tj+1, an appropriate time step

hj = tj+1 − tj and a priori enclosure Ỹ ∈ Ỹ 0
j are found to satisfy

Yj +
(
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i=1

[0, hj ]
iF [i](Yj)
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kF [k](Ỹ 0

j ) ⊆ Ỹ 0
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Solution Procedure

• The first phase of VSPODE guarantees existence and uniqueness of solution

across the time interval [tj , tj+1] using an interval Taylor series (Nedialkov

et. al., 1999)

• At time tj it is known that y(tj) ∈ Yj (this is a result of the previous time

step)

• To obtain an enclosure at time tj+1, an appropriate time step

hj = tj+1 − tj and a priori enclosure Ỹ ∈ Ỹ 0
j are found to satisfy

Yj +
(

k−1
∑

i=1

[0, hj ]
iF [i](Yj)

)

+ [0, hj ]
kF [k](Ỹ 0

j ) ⊆ Ỹ 0
j

• Here, F [i](Yj) is the interval extension of the ith Taylor coefficient of f

• If this condition holds, then there is a unique solution y(t; tj , yj , θ) ∈ Ỹj for

all t ∈ [tj , tj+1], all yj ∈ Yj , and all θ ∈ Θ
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Solution Procedure

• In the second phase of VSPODE, we obtain a tighter enclosure, so we

represent uncertain initial states and parameters using Taylor models Ty0

and Tθ, with components

Tyi0 = (m(Yi0) + (yi0 − m(Yi0)), [0, 0]), i = 1, · · · , m

Tθi
= (m(Θi) + (θi − m(Θi)), [0, 0]), i = 1, · · · , p
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Solution Procedure

• In the second phase of VSPODE, we obtain a tighter enclosure, so we

represent uncertain initial states and parameters using Taylor models Ty0

and Tθ, with components

Tyi0 = (m(Yi0) + (yi0 − m(Yi0)), [0, 0]), i = 1, · · · , m

Tθi
= (m(Θi) + (θi − m(Θi)), [0, 0]), i = 1, · · · , p

• The interval Taylor series coefficients F [i] from the first phase are computed

using Taylor models Tf [i]

• The “wrapping effect” is reduced using a new type of Taylor model involving a

parallelepiped remainder bound

• This results in a Taylor model Tyj+1 in terms of the initial states y0 and

parameters θ

• The interval enclosure Yj+1 is computed by bounding Tyj+1 over Y0 and Θ
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Solution Procedure

• For the time of interest t, VSPODE passes the Taylor model Ty(y0, θ) to

Risk Calc to evaluate a p-box enclosure of the Taylor model
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Solution Procedure

• For the time of interest t, VSPODE passes the Taylor model Ty(y0, θ) to

Risk Calc to evaluate a p-box enclosure of the Taylor model

• This Taylor model is a function of the initial states and parameters, so the

p-box representation of these is now used

• This process is completed using standard independent p-box arithmetic

– The computations are done by discretizing the p-box for different

probabilities

– Using an optional procedure known as subinterval reconstitution (SIR), the

p-boxes are partitioned in both directions, to reduce what is analogous to

the “dependency” effect in intervals, and the resulting p-box has a tighter

enclosure
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Examples: Lotka-Volterra Model

• Simulate a simple predator-prey model with the ODE system with uncertainty

in parameters

dx1

dt
= θ1x1(1 − x2), x1(0) = 1.2, θ1 ∈ [2.99, 3.01]

dx2

dt
= θ2x2(x1 − 1), x2(0) = 1.1, θ2 ∈ [0.99, 1.01]

over the interval t = [0, 10]

• The variables x represent the biomasses of the prey and predator

• The parameters θ affect the growth and death of each species

• The distribution of uncertainties in θ1 and θ2 is described by uniform p-boxes

with means equal to the interval midpoints and standard deviations in

[0.0050, 0.0057]
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Example: Lotka-Volterra Model

• VSPODE enclosure of variable trajectory over [0, 10] based on interval

uncertainty

0 1 2 3 4 5 6 7 8 9 10
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0.9
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t

x

x
1

x
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Example: Lotka-Volterra Model

• P-box inputs into Taylor model at time t = 10

Quantity Taylor Model P-box

θ1 3 + [−0.01, 0.01] 3+uniform(mean= 0, s.d. ∈ [0.050, 0.057])

θ2 1 + [−0.01, 0.01] 1+uniform(mean= 0, s.d. ∈ [0.050, 0.057])
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Example: Lotka-Volterra Model

• P-box enclosure of variable x1 at time t = 10 computed with Risk Calc,

using Taylor model from VSPODE
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Example: Lotka-Volterra Model

• P-box enclosure (using SIR with 100 partitions) of variable x1 at time t = 10
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Example: Microbial Bioreactor with Haldane Kinetics

• ODE model of cells with biomass X consuming substrate with mass S

dX

dt
= (µ − αD)X

dS

dt
= D(Sf − S) − kµX

• The growth rate µ is given by

µ =
µmaxS

KS + S + KIS2
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Example: Microbial Bioreactor with Haldane Kinetics

• Parameter and initial condition values

Value Units Value Units

α 0.5 µmax [1.15, 1.25] day−1

k 10.53 (g S)/(g X) KS [6.8, 7.2] (g S)/L

D 0.36 day−1 KI [0.0025, 0.01] L /(g S)

Sf 5.7 (g S)/L X0 [0.794, 0.864] (g X)/L

S0 0.80 (g S)/L

• Integrate over the time interval [0, 10]

• These interval values in both initial conditions and parameters are the

maximums and minimums of the p-boxes that describe the uncertainties

– P-boxes are mmms distributions with means at the midpoint of the interval

and standard deviations one-tenth the width of the interval
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Example: Microbial Bioreactor with Haldane Kinetics

• VSPODE enclosure of variable trajectory over [0, 10] based on interval

uncertainty

0 1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

t (days)

X
 (

g/
L)
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Example: Microbial Bioreactor with Haldane Kinetics

• P-box inputs into Taylor model at time t = 10

Quantity Taylor Model P-box

µmax 1.2 + [−0.05, 0.05] mmms(mean= 0, s.d.= 0.01)

KS 7 + [−0.2, 0.2] mmms(mean= 0, s.d.= 0.04)

KI 0.00625 + [−0.00375, 0.00375] mmms(mean= 0, s.d.= 0.00075)

X0 0.829 + [−0.035, 0.035] mmms(mean= 0, s.d.= 0.007)
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Example: Microbial Bioreactor with Haldane Kinetics

• P-box enclosure of variable X across [0, 10] computed with Risk Calc using

Taylor model from VSPODE
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Example: Three-State Bioreactor

• Consider cells of biomass x1 that consume substrate of mass x2 and create

product of mass x3

dx1

dt
= (µ − D)x1

dx2

dt
= D(x2f − x2) −

µx1

Y

dx3

dt
= −Dx3 + (αµ + β)x1,

where the growth rate is a function of both substrate and product

concentrations

µ =
µmax [1 − (x3/x3m)]x2

ks + x2

29



Example: Three-State Bioreactor

• Real-valued parameters and initial conditions

Value Units Value Units

x20 5 g/L x30 15 g/L

Y 0.4 g/g β 0.2 hr−1

D 0.202 hr−1 α 2.2 g/g

x3m 50 g/L x3f 20 g/L
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Example: Three-State Bioreactor

• Uncertain parameters and initial conditions

Quantity Interval Units Taylor Model

x10 [6.4549, 6.5676] g/L 6.51125 + [−0.05635, 0.05635]

µmax [0.46, 0.47] g/(g hr) 0.465 + [−0.005, 0.005]

ks [1.03, 1.1] g/L 1.065 + [−0.035, 0.035]
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Example: Three-State Bioreactor

• VSPODE enclosure of trajectory of x1 over [0, 20] based on interval

uncertainty
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Example: Three-State Bioreactor

• Uncertain parameters and initial conditions

Quantity P-box

x10 6.51125+uniform(mean= 0, s.d.= [0.02817, 0.032533])

µmax 0.465+normal(mean= 0, s.d.= [0.0282, 0.0325])

ks 1.065+mmms(max= 0.035, min= 0.035, mean= 0, s.d.= 0.007)
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Example: Three-State Bioreactor

• P-box enclosure of variable x1 at t = 10 computed with Risk Calc using

Taylor model from VSPODE
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Concluding Remarks

• VSPODE (Lin and Stadtherr, 2007) is a powerful tool to propagate interval

uncertainties through nonlinear ODEs

• By using Taylor models from VSPODE and p-box arithmetic from Risk Calc,

we can propagate probabilistic uncertainties (represented by p-boxes)

through nonlinear ODE models
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