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SUMMARY 

 

In this thesis, Interval finite element analysis is being compared with conventional load 

pattern analysis to predict the critical response of a given structure under various load 

combinations. Different load combinations and load patterns that have been widely 

accepted by structural engineering code practices until date are being considered. The 

limitations of such conventional tools will be highlighted and the advantages of Interval 

finite element analysis over existing tools shall be explored.   

Interval finite element analysis is being shown as an efficient tool to analyze large and 

complicated structures which otherwise are impossible to be analyzed for all possible 

load patterns and load combinations. Initial developments in the area of interval 

arithmetic will be discussed. In order to deal with uncertainty associated with the 

presence of live loads, the idea of load being represented as interval quantities will be 

introduced. Basics of interval finite element analysis will be extracted from recent 

research developments. Implementation in the form of a computer program will be 

performed and a comparative analysis of a real portal frame will be considered in order to 

show the advantages of interval finite element analysis over traditionally available load 

pattern analysis methods. 

In general, interval responses always bound corresponding response obtained from 

conventional load pattern analysis. Such interval enclosure of the conventional results 

will be shown first through analyzing a six-bay and seven-floor portal frame and later 

through extending the same frame to ten and fifteen floors frame. 
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It is also shown that load factors can be used as interval quantities. Interval load factor 

quantities contain all the load combinations and load patterns in it and can capture the 

critical response of the structure that is obtained from the interval finite element analysis 

of the structure for all the load combinations. 

In general, interval finite element enclosure comes with sharp and guaranteed results. 

Situations have been identified where the deviation between conventional load pattern 

analysis and bounds obtained through interval finite element analysis may be significant. 

In such cases conventional load pattern analysis will be totally underestimating structural 

response. .  

Interval finite element analysis deals with interval operations as such, special 

computational tools are needed. Such tools are easy to develop in the form of a computer 

program, and the current thesis work focuses on a computer program that is capable of 

analyzing a frame element structure for concentrated and uniformly distributed loads. 

Similarly, once comprehensive and user friendly software are in place, it will be easy to 

adopt such techniques for real world structures. The engineer will be able to estimate 

critical response of the given structure for given load combination without investing 

much time and effort. 
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1. INTRODUCTION: 

 

In structural engineering practice, individual structural members are designed for the 

critical scenarios. Conventionally such critical scenarios are being identified using 

structural analysis for different load combinations.  

Live loads such as human occupancy floor loads can be placed in various ways, some of 

which will result in larger effects than others. Hence, from a live load point of view we 

need to analyze a given structure for all possible placements of loads. Such placements of 

loads are known as load patterns. It is easy to see that the number of live load patterns 

needed in order to find the true critical response of the structure increases exponentially 

with an increase in the number of structural elements. Hence, the analysis of structures 

under all possible live load patterns becomes increasingly difficult or impossible for 

complex multidimensional systems. 

Conventionally dead loads, live loads, earthquake loads and wind loads are the primary 

load types used to analyze a structure for various parameters like span moments, end 

moments, shear, thrust or deflections. The Muller Breslau Principle for influence lines is 

an effective way to obtain critical load patterns. Realizing the fact that the efforts 

required in solving large structures is too much and such efforts further increase as design 

demands multiple analysis of the structure. In a way, such conventional analysis tools 

prove to be realistic only in a qualitative sense.  

Further, combining load combinations and load patterns requires the engineer to do 

multiple iterations of structural analyses in order to capture the critical scenario. Apart 

from being an impractical task in most situations, it is impossible at times. In fact for 
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simplicity standard structural engineering codes of practice have suggested several 

critical load patterns. In practice, engineers have limited themselves to suggested critical 

load patterns (ASCE02/ACI02/UBC/IBC). It is important to emphasize that these load 

combinations are just an effort in order to avoid large number of structural analysis and 

critical scenarios need not necessarily occur under such load combination and load 

patterns. In such cases engineers are supposed to make their own judgment and they have 

to take the risk of missing such critical cases. 

Current thesis work is an effort to show that Interval arithmetic provides a simple, easy, 

exact and efficient way of solving structural problems of all sorts of complexities under 

all possible load patterns and load combinations. It is interesting to find that interval 

finite element analysis is capable of producing results in a quantitative manner.  

In general an interval finite element analysis can be used as an efficient tool to handle 

uncertainties of all sorts of the system parameters (such as uncertain material properties 

or uncertain geometry); however, this work has been limited to deal with load patterns 

and load combinations. Since the live load may or may not be present at a particular 

location, uncertainty in the location of live load can be modeled as an interval load. 

Effectively live loads may be introduced as interval with bound values between zero and 

its full value. Interval finite element analyzes structure under the application of such 

loads. It will be shown that critical response will always be contained within the interval 

response of structure.  

Before interval finite element analysis and its application to deal with live load pattern 

and load combinations, is discussed in detail, a review of conventional load pattern 

analysis adopted so far, needs to be performed. Limitations for use of such conventional 
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tools will be underlined. Later in subsequent sections interval finite element analysis will 

be introduced in order to overcome the disadvantages associated with traditional tools to 

deal with load uncertainty and load combinations. 
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2. LOAD COMBINATIONS AND LOAD PATTERNS 

 

2.1 Load Combinations 

Traditionally, various structural engineering codes of practice have been suggested 

different load combinations that structural engineers need to consider for safe design of 

structure. Different structural engineering codes of practices, such as the American 

Concrete Institute (ACI), American Institute of Steel Construction (AISC), American 

Society of Civil Engineers (ASCE), Uniform Building Code (UBC) and International 

Building Code (IBC) suggest different load factors and load combinations. 

However in recent years, particularly after the development of Load Resistance Factor 

Design (LRFD), attempts have been made in order to adopt same load factors and hence 

load combinations. Load factors have been refined and made more realistic by using tools 

like probabilistic risk and reliability analysis. It is important to note that currently ASCE 

2002 and ACI 2002 both list down same set of load combinations. However, in the 

current thesis references will be restricted to the ACI Building code requirements and the 

ASCE. To illustrate this idea here are complete set of load combinations that are still 

being used in real practice. 

1. Using load and resistance factor design (LRFD), ASCE-7, 98 suggests several 

important load combinations as 

 1.4D 

 1.2 D + 1.6 L 

 1.2 D + (0.5 L or 0.8 W) 

 1.2 D + 1.6 W + 0.5 L 
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 1.2 D + 1.0 E + 0.5 L 

 0.9 D + 1.0 E 

 0.9 D + 1.6 W  

2. Load combinations specified by ACI-02 are listed below: 

 1.4 D 

 1.2 D + 1.6 L 

 1.2 D + L 

 1.2 D + 0.8 W 

 1.2 D + 1.6 W + 1.0 L 

 1.2 D + 1.0 E + 1.0 L 

 0.9 D + 1.6 W 

 0.9 D + 1.0 E 

In above mentioned load combinations: 

D is the dead load. 

L is the live load. 

E is the earthquake load and 

W is the wind load. 

This implies that the engineer must analyze the structure under several load combinations 

and needs to design for the critical load combination. In practice, engineers use several 

load combinations in order to generate an envelope for a given structural parameter. 

These envelopes govern the design of that structure. 

It is clear that such conventional approaches involve multiple analyses of the structure. 

For complicated structures a single analysis may be very tiresome. Additionally due to 
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the iterative nature of the design process, the analysis part may take significant time and 

efforts.  

Conversely, Interval finite element analysis provides an easier way to come up with such 

design parameters envelope. Load combinations can be thought of as combinations of 

presence and absence for certain types of load and can easily be modeled as an interval 

having bounds between zero and the full value of that type of load. The structure needs to 

be analyzed only once, and an envelope can be developed in terms of the bound on 

interval response of the structure. In coming sections we will discuss the process of 

determining the envelope through interval finite element approach in detail. 

2.2 Load Pattern 

Live loads lead to a number of load patterns that identify different critical scenarios 

depending upon the structural parameter of interest. For a simple structure, it is feasible 

to perform an analysis under all possible load patterns and combinations. These analysis 

results can easily be assembled in order to obtain an envelope for the variation of the 

structural parameter in consideration. Such envelopes then can be used to determine 

critical value of various structural parameters.  

However, as the number of structural elements in a structure increases (as in a multi-story 

structure), the number of possible live load patterns increase exponentially. These load 

patterns, when included in suggested load combinations further complicate analysis 

needed to find the critical scenario. Given that for real structures even a single structural 

analysis can be very time consuming, multiple analysis iterations become practically 

infeasible. 
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Figure 1.1 to 1.10 illustrates a five span beam under the application of live load. It is 

customary to think that engineer may be interested in values of reaction at support, 

maximum/ minimum moment at support, or mid-span, or in shear force at some section 

For the five-span continuous beam in consideration, any of these five spans can be loaded 

completely or partially or even not loaded at all. For any load pattern considered, there is 

some critical scenario available for some or other structural parameter (see Figure 1.1b-

1.8b). (These examples have been extracted from the article available at  

http://www.public.iastate.edu/~fanous/ce332/influence/homepage.html) 

These load patterns can be generated using influence lines. Figure 1.1a to 1.10a show 

influence lines for various load patterns that leads to corresponding load patterns as 

shown in 1.1b to 1.10b. There are widely popular conventional tools to draw such 

influence lines such as Mueller-Breslau Principle. 

One of the most important features of the Mueller-Breslau principle is that it allows 

influence lines to be sketched qualitatively. At times this can provide important 

information concerning load placement. 

The Mueller-Breslau principle can be stated as follows: 

If a function at a point on a structure, such as the reaction, shear, or moment is allowed 

to act without restraint, the deflected shape of the structure, to some scale, represents the 

influence line of the function.    

Figure 1.1a shows the influence line for the positive reaction at support 1. Reaction acting 

vertically upward is being considered as positive reaction. The force acting vertically 

downward is being termed as negative reaction. Thus if live load is applied as shown in 

Figure 1.1b, it will lead to the maximum positive reaction at support 1. 
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Figure 1.1a. Influence Line for positive reaction at support 1 

 

Figure 1.1b. Load pattern for maximum positive reaction at support 1 

Similarly Figure 1.2b shows the influence line for the negative reaction at support 1. If 

live load is applied as shown in Figure 1.2b, it will lead to maximum negative reaction at 

support 1 respectively.   

 

Figure 1.2a. Influence Line for negative reaction at support 1 

 

Figure 1.2b. Load pattern for maximum negative reaction at support 1 

R1
-

1 2 3 4 5 6 

R1
+

1 2 3 4 5 6 

1

R1
-

1 2 3 4 5 6 

1

R1
+

1 2 3 4 5 6 
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Next, influence lines are sketched qualitatively in Figure 1.4a and 1.5a for positive and 

negative moment at support 2. Moment causing tension at bottom is labeled positive 

moment and moment causing tension at top is labeled as negative (Figure 1.3).  

 
 

Figure 1.3. Sign convention for positive and negative bending moment 

Figure 1.4b and 1.5b shows live load pattern needed to obtain maximum positive and 

negative moment at support 2. 

 

Figure 1.4a. Influence Line for positive moment at support 2 

1 2 3 4 5 6 

 

Figure 1.4b. Load pattern for maximum positive moment at support 2 

M2
+

1 2 3 4 5 6 

M2
+
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Figure 1.5a. Influence line for negative moment at support 2 

6 

 

Figure 1.5b. Load pattern for maximum negative moment at support 2 

Figure 1.7 to 1.10 focuses at section 7 that is located somewhere between section 1 and 

section 2. In these Figures (Figure 1.7, 1.8, 1.9 and 1.10) load patterns to obtain 

maximum positive shear, maximum negative shear, maximum positive moment and 

maximum negative moment at section 7.  Sign convention for positive shear is shown in 

Figure 1.6. 

 

Figure 1.6. Sign convention for positive shear 

The influence line for positive shear at section 7 is being shown in Figure 1.7a. Figure 

1.7b shows corresponding live load pattern that maximizes positive shear at section 7. 

2 3 4 51 

M2
-

1 2 3 4 5 6 

M2
-
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Figure 1.7a. Influence line for positive shear at 7 

VS1
+

1 2 3 4 5 6 

7 

6 1 2 3 4 5

 

Figure 1.7b. Load pattern for maximum positive shear at 7 

7 
VS1

+

Figure 1.8a shows the influence line for negative shear at section 7. Negative shear at 

section 7 can be maximized if live loads are placed as shown in Figure 1.8b. 

 

Figure 1.8a. Influence line for negative shear at 7 

VS1
-

1 2 3 4 5 6 

7 

 

Figure 1.8b. Load pattern for maximum negative shear at 7 

Figure 1.9a shows these influence lines for positive moment at section 7. Figure 1.9b 

shows live load pattern to obtain maximum positive moment at section 7. 

VS1
-

1 2 3 4 5 6 

7 
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Figure 1.9a. Influence line for positive moment at 7 

MS1
+

1 2 3 4 5 6 

7 

6 

 

Figure 1.9b. Load pattern for maximum positive moment at 7 

Figure 1.10a shows these influence lines for negative moment at section 7. Figure 1.10b 

shows live load pattern to obtain maximum negative moment at section 7. 

 

Figure 1.10a. Influence line for negative moment at 7 

 

Figure 1.10b. Load pattern for maximum negative moment at 7 

 

MS1
-

1 2 3 4 5 6 

7 

MS1
+

1 2 3 4 5

7 

MS1
-

1 2 3 4 5 6 

7 
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The afore-mentioned load patterns are 

not the only patterns possible, nor are 

these sufficient to determine all the 

critical cases. In order to analyze this 

beam completely, we need 25 (32) load 

patterns.  It can be easily verified that 

the remaining 23 load patterns, once 

considered, will also lead to the critical 

value of some or other structural 

parameter. In order to ascertain the 

critical response of structure, a structural 

engineer needs to analyze it 32 times. It 

is apparent that the efforts increase 

exponentially as the number of span 

increase. 

Another example can be demonstrated 

on the portal frame as shown in Figurers 

2.1b, 2.2b and 2.3b. Three of the load 

patterns have been chosen randomly for 

a three-bay and three-floor portal. 

 

 

Figure 2.1a. Influence line for positive 

shear at mid-span of AB 

A B C D

A B C D

 

Figure 2.1b. Load Pattern for 

maximum positive shear at mid-span 

of AB  
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Figure 2.2a. Influence line for negative 

shear at mid-span of AB 

 

 

Figure 2.3a. Influence line for negative 

moment at B 

 

Figure 2.2b. Load Pattern for 

maximum negative shear at mid-span 

of AB 

 

Figure 2.3b. Load Pattern for 

maximum negative moment at B 

 

A B C D

A B C D

A B C D 

A B C D
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Figure 2.1b shows a typical live load pattern that an engineer will consider obtaining the 

maximum positive shear at the mid-span of the beam AB. Similarly, figure 2.2b shows 

the live load pattern used for maximum negative shear at the mid-span of beam AB. The 

live load pattern shown in Figure 2.3b is used to determine the maximum positive 

moment at joint B. Once again influence lines can be used in order to generate these load 

patterns.  

Figure 2.1a to 2.3a shows corresponding influence line diagrams. In order to draw 

influence lines for maximum positive shear at the mid-span of span AB, a unit 

displacement is being given assuming the presence of shear release right at the mid-span 

of beam AB. A qualitative sketch of deflection of the entire frame is shown in Figure 

2.1a. It is important to note that constraint of all the joints must be maintained. This 

deflected shape of the frame gives the influence line for positive shear at the mid-span of 

the beam. In order to maximize positive shear at the mid-span of span, all those portions 

of the beam that have positive ordinate of the deflected curve, have to be loaded. This 

will be defined as the load pattern for maximum positive shear at the mid-span of beam 

AB. Similarly, figure 2.2a gives the influence line for negative shear at the mid-span of 

beam AB. It is important to note that this time qualitative deflected shape requires a shear 

release displaced in the opposite direction. 

Figure 2.3a shows deflected shape of the frame for maximum negative moment at support 

B. In this case a moment release is provided at the section in consideration and a unit 

rotation is imposed on release. Deflected shape of the frame will give the influence line 

for moment at that section. 
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Finally, consider the rigid frame shown in figure 3.1 that might represent a portion of a 

reinforced concrete building. It is usual to consider both dead load (the weight of the 

structure, superimposed dead load) as well as live load (people, equipment, furniture) in 

the design of a structure; there is of course, no question concerning the placement of dead 

load since it must be placed wherever it occurs and it remains there forever. Live load, on 

the other hand, must be placed in such a manner as to produce the most critical effect.  

 

 

A

 
Figure 2.4a. Rigid Frame, qualitative sketch of influence line 
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A

 
Figure 2.4b. Live load pattern for negative moment at section A 

 

The influence line for negative moment at section A is shown in Figure 2.4a. Section A is 

defined as the intersection of the third beam from the bottom and the third column from 

the left, as shown in figure 2.4a. This is done by determining how the structure will 

respond to a unit discontinuity in slope section A. Given this influence line it is necessary 

to determine how to apply load in order to produce the worst possible effect. In this case 

it is clear that the positive areas of the influence line should receive the live load (see 

Figure 2.4b); loading the negative areas too would simply reduce the moment at section 

A. In general such loading patterns are referred to as ‘checkerboard’ loading patterns. 

As more complex and multi-dimensional system are considered, the number of live load 

patterns increase enormously. In such circumstances analyzing the structure for all 

possible load patterns becomes an impossible task. However, various codes of practice 

have suggested a limited set of load patterns that an engineer may consider in predicting 

critical values of the design parameters. 
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From a practical point of view various codes of practices have suggested guidelines to 

find the critical load patterns for typical members of the structure. The American 

rally with the structure may be considered fixed. 

In r

 n all 

actored loads on a single adjacent 

 

columns and of 

 

be considered fixed. 

above and below the 

Concrete Institute (ACI)’s code requirements for Structural Concrete and Commentary 

while analyzing floor or roof member permits the load on a floor or roof member to be  

 Limited to combinations of factored dead load on all spans with full factored live 

load on two adjacent spans.  

 Limited to combinations of factored dead load on all spans with full factored live 

load on alternative spans.  

 Live load to be applied only to the floor or roof under consideration, and the far 

ends of columns built integ

egard to the columns, ACI Code section 8.8 states: 

Columns shall be designed to resist the axial forces from factored loads o

floors or roof and the maximum moment from f

span of the floor or roof under consideration. The loading condition giving the 

maximum ratio of moment to axial load shall also be considered. 

In frames or continuous construction, consideration shall be given to the effect of 

unbalanced floor or roof loads on both exterior and interior 

eccentric loading due to other causes. 

In computing moments in columns due to gravity loading, the far ends of columns 

built integrally with the structure may 

 The resistance to moments at any floor or roof level shall be provided by 

distributing the moment between columns immediately 
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given floor in proportion to the relative column stiffness and conditions of 

restraint. 

niform Building Code similarly states “the loading conditions which cause 

um shear f

The U

maxim orce and bending moments along the member shall be investigated”. 

It is important to note that for a 4 bay 40-story building, the total number of load patterns 

that must be considered is 2160, which is about 1.5 ×1048. Such a calculation would be 

ulation of interval 

impossible even with the most extensive computational resources. Additionally, if an 

engineer relies on analysis based on fewer conventional load patterns, he may not be able 

to capture the critical scenario in the analysis and will be underestimating the response. 

The safety of structure in such cases may be potentially compromised. 

Interval finite element analysis, on the other hand, guarantees that the critical scenario 

will be bounded in the sharp interval response. Before discussing form

finite element analysis, interval arithmetic needs to be reviewed. The next chapter focuses 

on various developments in the area of interval arithmetic, basic features of interval 

arithmetic and its application in engineering.    
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3. INTERVAL ARITHMETIC 

 

Early use of interval representation is associated with the treatment of truncation errors in 

numerical calculations. For example, in a computational system with four decimal digits 

accuracy, the number 4.1231 would be represented as an interval [4.123, 4.124]. This 

approach allows the range of errors introduced by round-off errors to be precisely 

determined. Moore (1966), instead of computing a numerical approximation using 

limited-precision arithmetic, proceeded to construct intervals known in advance to 

contain the desired results. Several authors have bound rounding errors using intervals 

(Dwyer 1951; Sunaga 1958). However, Moore extended the use of interval analysis to 

bind the effects of errors from different sources, including approximation errors and 

errors in data. 

Interval arithmetic was developed as an effective tool to obtain bounds on rounding and 

approximation errors. It is still to be seen how effective this tool can be when the range of 

the number is due to physical uncertainties instead of rounding errors.  

 A number of software libraries and extensions to programming language have been 

developed to implement interval calculations using computers (Blecher et al. 1987; 

Kullisch 1987). Additionally scientific calculators that are capable of dealing with 

interval arithmetic operations in addition to normal arithmetic have been developed very 

recently (GTREP at 2003). 

Definitions of real intervals and operations with intervals can be found in a number of 

references (Hansen 1965; Moor 1966; Alefeld and Herzberger 1983; Neumaier 1990). 
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The fundamental concepts of interval arithmetic that has been seen in engineering 

applications (Mullen and Muhanna 1999) are covered here. 

 An interval number is a closed set in R that includes the possible range of an unknown 

real number, where R denotes the set of real numbers. A real interval is a set of the form  

}~|~{:],[ ulul xxxRxxxx ≤≤∈=⇔  

Based on the above definitions, interval arithmetic is defined on sets of intervals, rather 

than on sets of real numbers. Interval mathematics can be considered a generalization of 

real numbers mathematics. Overestimation is a major drawback in interval computations. 

One reason is that only some of the algebraic laws, valid for real numbers, remain valid 

for intervals; other laws hold only in a weaker form (Neumaier 1990, pp. 19-21). There 

are two general rules for the algebraic properties of interval operations. 

1. Two arithmetic expressions that are equivalent in real arithmetic, are equivalent in 

interval arithmetic when a variable occurs only once on each side. In this case, 

both sides yield the range of the expression. Consequently laws of commutativity, 

associativity, and neutral elements are valid in Interval Arithmetic. 

2. If f and g are two arithmetical expressions that are equivalent in real arithmetic, 

then the inclusion  holds, if every variable occurs only once in f. )()( xgxf ⊆

Also, a dependency problem arises when one or several variables occur more than once 

in an interval expression. Dependency may lead to catastrophic overestimation in interval 

computations. Precautions should be taken, if possible, to eliminate this effect.  

Extending interval algebra in few more dimensions, it is easy to see that interval vectors 

and interval matrices exist in this generalized space. An interval vector is a vector whose 

components are interval numbers. An interval matrix is a matrix whose elements are 
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interval numbers. The interval matrix contains all the real matrices, whose elements are 

obtained from all possible values between the lower and upper bound of its interval 

elements. One important type of the matrix in mechanics is symmetric matrices. A 

symmetric interval matrix is one that contains only those real symmetric matrices whose 

elements are obtained from all possible values between lower and upper bound of its 

interval element. An interval vector is referred to as a box (Hansen 1992). The algebraic 

properties of interval matrix operations are provided by Neumaier (1990), Apostolatos 

and Kulisch (1968), and Mayer (1970).   

Thus interval equations can be formed and solved for unknown interval variables. Such 

formulations and solution algorithms become very efficient tools for analyzing a structure 

if its relevant properties can be written as an interval. Subsequent chapters will introduce 

a specific formulation that will be used for interval finite element analysis for load 

combinations and load patterns. Since interval operations and equations require a 

different kind of treatment, specific computer codes need to be developed in order to 

solve large-scale problems.  

In structural engineering interval arithmetic has already found various important 

applications. Uncertainties in mechanics were introduced as interval values by Muhanna 

and Mullen (2000). In such situations uncertain values were known to lie between two 

values and formulations were developed in order to solve a system of equations that 

involve interval quantities.  

Although interval arithmetic was introduced by Moore (1966) and fuzzy sets theory by 

Zadeh (1965), the application of interval concepts to structural analysis is more recent. 

Koyluoglu, Cakmak and Nielson (1995) developed an interval approach utilizing the 
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finite-element method to deal with pattern loading and structural uncertainties. The 

solutions for the system of linear interval equations were obtained utilizing triangle 

inequalities and linear programming. The results were conservative bounds for the 

response quantities.  Koyluoglu and Elishakoff (1998) introduced a comparison of 

stochastic and interval finite elements applied to shear frame exhibiting uncertain 

stiffness properties. Rao and Sawyer (1995), Rao and Berke (1997), and Rao and Chen 

(1998) developed different versions of an interval based finite element method to account 

for uncertainties in engineering problems. These publications were restricted to narrow 

intervals and approximate numerical results. 

A significant effort has been devoted in the work of Rao and Chen (1998) to develop a 

new algorithm for the solution of linear interval equations. The developed algorithm used 

search-based operations with an accelerated step size and an attempt to find an optimum 

setting of unknown vector components.  

Muhanna and Mullen (1995), Muhanna and Mullen (1996), Muhanna and Mullen (1999), 

and Mullen and Muhanna (1999) developed a finite element analysis procedure that 

utilizes the concept of fuzzy sets through interval calculations. They also computed the 

response of different structural systems due to geometric and loading uncertainties. 

Uncertainties were treated as possible values corresponding to a specific level of 

presumption (α-cut). Results were exact in the case of load uncertainty and sharp for 

geometric uncertainty. Exact bounds on possible node displacements and forces were 

calculated by combinatorial calculations of all loading patterns, when computationally 

feasible. This formulation has been the basis for the current thesis work. In the next 
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section the above mentioned formulations of interval finite element analysis for interval 

loads will be presented. 
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4. INTERVAL FINITE ELEMENT ANALYSIS 

 

Considering all the structural parameters as an interval number, a system of interval 

equations can be formulated in general as  

pqk =.       (1) 

Or in the following explicit form: 
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  (2) 

For the case of interval loads, the stiffness matrix k is the conventional deterministic 

linear stiffness. The loading vector p will be interval quantity. The element generalized 

forces and the generalized displacements will be linear transformations of the interval 

quantities. In conventional finite-element formulations, the nodal load is given by 

cb ppp +=       (3) 

Where pc = vector of concentrated load; and pb = nodal load contribution from an element 

and has the form 

    ∑ ∫= dxxbNLp TT
b )(     (4)

Where L = Boolean connectivity matrix; b(x) =applied Traction; and Ni = shape function 

for node i. Also note that pb itself can be broken in terms of element generalized nodal 

loads pi .  
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∫= dxxbNp T
i )(      (5) 

While analyzing a structure for load patterns and load combinations, only the function 

b(x) (the magnitude of the load) is allowed to be an interval. To correctly evaluate 

inclusive interval values for pi , attention must be paid  to the sign of the terms Ni, as 

whenever Ni is positive, upper limit of interval need to be integrated however whenever 

Ni change sign to negative, the lower limit must be integrated. 

As mentioned previously some of the conventional laws hold weakly in interval algebra, 

care has to be given to the order of multiplication as otherwise it will have a strong 

influence on the width of resulting intervals. One of the challenges that have to be faced 

in interval algebra will be controlling the width of the interval. One way to control width 

effectively will be delaying the use of interval values as much as possible. 

It is important to see that some of the conventional characteristics of various analysis 

parameters still have to be satisfied. As an example, shape function Ni(x) if selected as a 

polynomial, automatically satisfies number of requirement of finite element for 

convergence, compatibility, rigid body motion and stability. Additionally it is practical to 

choose a loading function b(x) on element m in terms of an nth order polynomial: 

∑
=

=

=
nj

j

j
mj xAxb

0
)(      (6) 

The element coefficient Amj for each term of the polynomial n on element m can be 

written in matrix form as Fi with the dimension of (k × 1), where k is the number of 

polynomial coefficients. 
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for i=1,2…m, where m = number of elements; for the whole system F can be expressed 

as  
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     (8) 

Note that the dimension of F is [(m × k) × 1] 

The pb vector now takes following form 

MFpb =      (9) 

with the dimension of (ndof  × 1), where ndof is number of degrees of freedom in the 

system, and where  

][ 21 mi MMMMM LL=   (10) 

with the dimension of [ndof × (m × k)]. The matrix Mi can be written as 

[ ]n
iiiii QQQQM L210=    (11) 

Note that the dimension of Mi is (ndof × k). The expression for Qi may be given as  

midxxNLQ
u

jTT
i

j
i L3,2,1=∀= ∫    (12) 

And the dimension of Qi is (ndof × ndofel). ndofel is element’s number of degrees of 

freedom. 

These expressions have both real and interval numbers embedded in them. As such all 

non-interval values are multiplied first and the last multiplication involves the interval 
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quantities. In this process, width of resulting interval is reduced to the minimum possible 

value. 

Since the formulation of interval finite analysis is already in place, the next step will be to 

see how uncertainty in the presence of live load can be handled using such formulation. 
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5. LOAD TYPES AND INTERVAL TREATMENT 

 

In the current conventional load pattern analysis and interval finite element analysis, the 

following loads will be considered 

1. Dead Load 

2. Live Load  

3. Earthquake Load 

4. Wind Load 

The dead loads and live loads are being considered as uniformly distributed load. Figure 

3.1 shows that all the beams will be loaded all the time as far as dead load is considered. 

Hence, in interval analysis the dead load will be taken as an interval load having lower 

and upper bound equal to the magnitude of uniformly distributed dead load.  

 

Figure 3.1. Dead Load Presence on a Portal Frame 
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For load patterns involving live loads, the absence of load on a given member can be 

Figure 3.2. Live load presence on a portal frame (checker-board pattern) 

 

treated as a load of magnitude equal to zero and the presence of load can be treated as a 

load of magnitude equal to its full value. Figure 3.2 indicates one of the live load patterns 

that an engineer might choose for conventional structural analysis. Even under this 

specific live load pattern, if required, uniformly distributed interval load can still be 

assigned to all the beams. As an example, all the beams that are not loaded will have a 

lower and upper bound of interval load equal to zero and the beams that are loaded will 

have a lower and upper bound of interval to the magnitude of live load. This kind of 

interval assignment will be needed for conventional load pattern analysis as the same 

program is used for conventional and interval FE analysis, and thus it requires entire load 

input to be interval quantities. 
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Figure 3.3. Earthquake/Wind Load (Static Equivalent) presence on a portal frame 

 

Figure 3.3 shows a typical earthquake and/or wind load acting on the frame structure. 

oned above, structure need to be analyzed for number of load combinations. 

+ L 

 L 

These loads are always present on the structure. Hence, such loads will be treated as 

deterministic loads in this work. In spite of their deterministic nature interval joint load 

can still be assigned, with lower and upper bound equal to magnitude of joint load acting 

on that joint. Such interval loads assignment will be needed as the program used to 

perform conventional or interval finite element analysis requires loads to be input as an 

interval. 

As menti

However, if load factors in these load combinations are treated as interval quantities, such 

load combinations can be combined into one interval equation. In current thesis work, 

load combinations suggested by ASCE 2002 are being considered: 

 1.4 D 

  1.2 D 

  1.2 D + 1.6
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  1.2 D + 0.8 W 

  1.2 D + 1.6 W + 1.0 L 

It is ea t ad factor for dead load varies between 0.9 and 1.4, hence an 

[0, 1.6]  

 ate load U can be written as  

E  

ter program that analyzes frame structures for conventional 

  1.2 D + 1.0 E + 1.0 L 

  0.9 D + 1.6 W 

  0.9 D + 1.0 E 

sy o see that the lo

interval α with bounds between 0.9 and 1.4 can be assigned as interval load factor for 

dead load. Similarly some of the load combinations don’t have any live load, however, 

some of the load combinations have load factor for live load as high as 1.6. In this way an 

interval load factor β  i.e. [0, 1.6] can be assigned as an interval load factor for live load. 

Continuing in the same direction, γ and δ can be defined an interval load factors for 

earthquake load and wind load respectively. 

α = [0.9, 1.4], β = [0, 1.6], γ = [0, 1] and δ = 

Using these interval load factors, interval equation for ultim

    U = α D + β L + γ EQ + δ W    (13) 

quation 13 contains all the load combination in itself. Later, interval finite element

analysis will be done for this interval equation and results in terms of the interval 

response will be presented. 

In the next chapter a compu

load pattern and interval FE analysis will be explored. 
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6. C++ PROGRAM AND A TEST RUN  

 

A C++ program has been developed in order to carry out conventional structural analysis 

or interval finite element analysis for load patterns and load combinations. In this section, 

various features of the program will be explored and later some test runs will be 

presented in order to illustrate validity of the program. 

This C++ program was initially written by Dr. Rafi Muhanna, Associate Professor at 

Georgia Institute of Technology, Atlanta, for carrying out interval finite element analysis 

under joint load and distributed load for frame element (See Appendix). The program was 

designed to take care of one set of joint loads, dead load and live load. The program 

accepts input load as deterministic and interval as well. The deterministic as well as the 

interval response for each of the three loading cases are being produced separately as the 

output file. To define response of the structure, bending moment, axial force and shear 

force at start node and end nodes, maximum span moment and its location within span 

and deflections of various joints are listed in the output file. This program was later been 

re-structured by Hao Zhang, PhD student at Georgia Institute of Technology, to make it 

efficient through the use of Object Oriented Programming.  

The current analysis requires two types of joint loads (wind load and earthquake load) 

and load combinations. As such, the program has been further enhanced to accommodate 

two types of joint load and at the same time to accommodate load combinations involving 

dead load, live load, earthquake load and wind load. In addition, load factors can be 

entered as the interval quantities. 
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In its current form, the program is capable of computing span moment, end moment, 

shear force, axial force and deflection for various nodes or members for a given load 

combination.  The load factors are given as interval input, so whenever lower and upper 

bound of the entire interval input is equal, the same program analyzes the structure for 

deterministic loads. 

As a part of object oriented programming, the program has a frame class and its objects 

are created in main program. The frame class has been written in order to develop a 

typical “frame” data structure and it encapsulates essential characteristic of a real frame 

like number of nodes, number of members and various other parameters as protected 

variables. Public methods have been provided in order to perform any necessary 

operation like finding global stiffness matrix, incorporating boundary conditions, 

calculating element forces and joint displacements. In the main part of program, an object 

of frame is created and these public methods are called to perform interval finite element 

analysis. 

A number of test cases have been run and tested against manual results in order to verify 

validity of this program, however only two such examples are being presented in this 

section. 

Example 1: 

The first example focuses on load pattern analysis of a three spans continuous beam 

under the application of live load (Figure 4.1a) 
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1 2 3

 
 

4m 4m 4m

Live load = 6KN/m 4

Figure 4.1a. Finite Element consisting four nodes and three beam elements 
 

The following structural parameters are given input data: 

Cross-sectional area of the beam = 0.125 m2

Moment of inertia of the beam = 0.00260417 m4

Modulus of elasticity = 2 ×106 KN/ m2

Live load = 6 KN/m 

Length of each of the three spans = 4m 

Here the envelope for bending moments due to live load pattern is being considered 

throughout the beam. Maximum and minimum span moments and maximum and 

minimum end moments are only needed in order to draw such envelope. Traditionally, 

the engineer will be analyzing the structure under 23 (i.e. eight) live load patterns 

(including no loading case). Taking combinations of presence and absence of live load on 

every span, eight live load patterns can be generated. For this example, GTSTRUDL is 

used in order to analyze the beam for all eight load patterns. Figure 4.1b shows the direct 

output for the envelope of bending moments assembled from eight load patterns using 

GTSTRUDL.  

Interval finite element analysis is capable of determining this envelope in one run. As 

stated in previous sections, absence and presence of live load on a span can be written as 

zero value and full value of live load occurring on that span, respectively. If the live load 

for every span is represented as an interval having bounds between zero and full value of 
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live load at that span, the interval live load on the structure will contain all the 

combinations of live load’s presence and absence; and hence the interval response will 

capture all possible live load patterns in itself. So if an interval live load of [0, 6] KN/m is 

assigned to each of the three spans, this beam once solved for interval load quantity using 

finite element analysis, will give results accumulated from all the possible load patterns.  

MZ ENVELOPE 9.72

-11.2

0.0

7.20

f
-11.2

1.60 9.72

-11.2

1.60

0.0

X

Y

Meters KiloNewtons

 

Figure 4.1b. Moment envelope for all possible live load patterns (GTSTRUDL)  

 

Table 1. Interval Finite Element Analysis results for three spans continuous beam  
 

 Interval span moment 

Span 1 Span 2 Span 3 

[-2.08, 9.707] [-4.8, 7.2] [-2.08, 9.707] 

Interval end moment at start 

Span 1 Span 2 Span 3 

[0, 0] [-1.6, 11.2] [-1.6, 11.2] 

Interval end moment at end 

Span 1 Span 2 Span 3 

 

 

 

Interval Finite 

Element Analysis 

[-11.2, 1.6] [-11.2, 1.6] [0, 0] 
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It is important to note that interval maximum span moment bounds the results obtained 

from the eight load patterns. Table 1 gives the result from finite element analysis under 

the application of the interval load. It lists down interval response in terms of the interval 

span moment, interval end moment at start and end section of the beam. The lower and 

upper bounds of these interval end and span moments are in full agreement to the 

moments shown in corresponding values of moment envelope obtained from 

GTSTRUDL. However after the first decimal, slight difference between two results exists 

because of the fineness of the mesh used in GTSTRUDL.  

Example 2: 

In this example the steel frame shown in Figure 5 is being analyzed first for interval load 

application and later for various load combinations. The frame is under the application of 

three concentrated loads. It is assumed that any of these three concentrated loads may be 

present or absent at any time. This way these three joint loads lead to eight loading 

scenarios. By introducing the three loads as intervals with values between zero and 

maximum magnitude of the load, the entire eight-load scenario can be obtained in one 

interval run. Interval finite analysis performed with the interval form of concentrated 

loads captures all possible cases within the interval results. Here are the member 

properties for the various finite elements. 

Beam properties:  

1. Section: W21×57 

2. Cross-sectional Area = 16.7 in2 = 0.010774 m2 

3. Moment of Inertia = 1170 in4 = 0.0004869 m4 

Column properties:  
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1. Section: W16×100 

2. Cross-sectional Area = 29.7 in2 = 0.01916 m2 

3. Moment of Inertia = 1500 in4 =0.0006243 m4 

Due to the presence of concentrated load within the span, the frame is broken into five 

finite elements. 

 Table 2 shows the results for axial force, shear force and moment at start and end nodes 

of all the five finite element of this frame from interval FE analysis. Further, the same 

frame has been analyzed for all the combination of presence and absence of each of the 

three joint loads leading to eight conventional structural analyses. These results when 

assembled to form an envelope give the maximum and minimum value of all the 

structural parameters. 

Table 3 shows the minimum and maximum value of these parameters. It is important to 

note that table 2 and 3 are identical and it ensures the fact that interval finite element 

analysis is capable of accounting for all load scenarios in the interval response of the 

structure.  
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Table 2. Interval load input for interval finite element analysis 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Interval Force Interval Moment 

Node No. FX (KN) FY (KN) M z (KN-m) 

1 [0, 0] [0, 0] [0, 0] 

2   [0, 10] [0, 0] [0, 0] 

3 [0, 0] [-15, 0] [0, 0] 

4 [0, 0] [0, 0] [0, 0] 

5 [-20, 0] [0, 0] [0, 0] 

6 [0, 0] [0, 0] [0, 0] 
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Table 3. Interval finite element analysis results for frame example (using C++ Program) 

 
Element  1 2 3 4 5 

FiX (KN) [-5.00487, 7.48309] [0, 12.4782] [0, 12.4782] [0, 12.4782] [-14.1157, 6.59393] 

FiY (KN) [-5.08176, 12.0171] [-5.08176, 12.0171] [-12.5818, 4.51712] [-12.5818, 4.51712] [-12.5818, 4.51712] 

MiZ (KN-m) [-48.7983, 34.6306] [-25.4278, 40.9988] [-24.7222, 5.61638] [-16.9692, 38.1866] [-40.5064, 11.8109] 

FjX (KN) [-7.48309, 5.00487] [-12.4782, 0] [-12.4782, 0] [-12.4782, 0] [-6.59393, 14.1157] 

FjY (KN) [-12.0171, 5.08176] [-12.0171, 5.08176] [-4.51712, 12.5818] [-4.51712, 12.5818] [-4.51712, 12.5818] 

MjZ (KN-m) [-40.9988, 25.4278] [-5.61638, 24.7222] [-38.1866, 16.9692] [-11.8109, 40.5064] [-72.4193, 40.9405] 
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Table 4. Conventional structural analysis results for frame example 

Element       1 2 3 4 5

Conventional Analysis Min Max Min        Max Min Max Min Max Min Max

FiX (KN) -5.00487         7.48309 0 12.4782 0 12.4782 0 12.4782 -14.1157 6.59393

FiY (KN) -5.08176          12.0171 -5.08176 12.0171 -12.5818 4.51712 -12.5818 4.51712 -12.5818 4.51712

MiZ (KN-m) -48.7983          34.6306 -25.4278 40.9988 -24.7222 5.61638 -16.9692 38.1866 -40.5064 11.8109

FjX (KN) -7.48309         5.00487 -12.4782 0 -12.4782 0 -12.4782 0 -6.59393 14.1157

FjY (KN) -12.0171          5.08176 -12.0171 5.08176 -4.51712 12.5818 -4.51712 12.5818 -4.51712 12.5818

MjZ (KN-m) -40.9988          25.4278 -5.61638 24.7222 -38.1866 16.9692 -11.8109 40.5064 -72.4193 40.9405
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7. INTERVAL ANALYSIS VS CONVENTIONAL 
ANALYSIS: LOAD COMBINATIONS & LOAD 

PATTERNS 
 

 
In this chapter a comparative study between conventional load pattern analysis and 

interval finite element analysis will be performed through the analysis of a portal frame 

for various load combinations and load patterns. A six-bay, seven-floor concrete frame 

structure has been chosen. The frame will be analyzed first for selected load patterns with 

specific load combinations; the response will be noted for selected members. Later, an 

interval value will be assigned to live load and the frame will be analyzed for the same 

load combinations, but this time under the application of interval load quantities using 

interval finite element analysis. 

Since conventional analysis involves analyzing a structure through specific load patterns, 

various load patterns need to be considered. Ten load combinations are considered while 

analyzing a column; however, beam is being limited to only three load combinations as 

after study of several load combinations, not much deviation between two types of 

analysis is reported. Hence columns in particular are the major emphasis of this section. 

The analysis will cover several columns for axial force, shear force and maximum and 

minimum end moment. The results for the beam are being shown only in terms of 

maximum and minimum span moment. As there have been widely accepted load patterns 

for getting maximum and minimum span moment, only those particulars patterns are 

being considered for beams. For columns, three different load patterns have been chosen 

for determining maximum positive and maximum negative end moment. 
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7.1  Formulation 
 

The formulation of the problem will begin with identification of various structural 

parameters and important details of frame. In the next subsection, dead load, live load, 

wind load and earthquake load will be computed; only critical calculations are shown 

here.  

27 inch 

27 ft 

27 ft 

27 ft 

27 ft 

21 ft 21 ft  21 ft 

27 ft 

 

Figure 6.1. Typical floor plans 
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The last subsections of current chapters provide the significant analysis results for various 

finite elements. In the subsequent chapters these results will be assembled together in 

order to perform a comparative analysis. 

 

27 ft @each of 6 spans 

11 ft 4 inch 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. Portal Frame in consideration (six bays & seven stories) 

Figure 6.1 shows the plan of the building. Figure 6.2 gives the elevation of a s

seven-floor frame that is analyzed in subsequent subsection of this chapter.

numbering and member numbering is shown in Figure 6.3 and 6.4 respectively. 
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Figure 6.3. Joints numbering for seven-floor frame 

 

Figure 6.4. Frame elements numbering for seven-floor frame 

7.1.1 Frame Data 

Six bay Seven Floor Concrete Hospital Building -RCC 
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Here are the various properties of the frame that may be of interest to the engineer. Since 

the real data is being used, units for this frame will also follow the actual data, which is 

an English standard.  

1. Total Height = 70 ft 8 inch 

2. Total span length = 162 ft 

3. All beam are 24 inch by 1 8 inch 

1. Cross-sectional Area A = 432 inch2 

2. Moment of Inertia I xx = 20736 inch4 

4. All columns are 30 inch by 30 inch 

1. Cross-sectional Area A = 900 inch2 

2. Moment of Inertia I xx = 67500 inch4 

5. Modulus of elasticity for concrete is E concrete = 3600 ksi 

7.1.2 Load Type/ Combinations: 

The following load types and load combinations are being considered in current interval 

finite element and conventional load pattern analysis. 

1. Dead Load (D) 

2. Live Load (L) 

3. Earthquake Load (Static Equivalent) (EQ) 

4. Wind load (W) 

5. Load Combinations according to ASCE02  

a. 1.4D 

b. 1.2 D + 1.6 L 

c. 1.2 D + L 
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d. 1.2 D + 0.8 W 

e. 1.2 D + 1.6 W + L 

f. 1.2 D +/- 1.0 E + L 

g. 0.9 D + /- 1.0 E 

h. 0.9 D + 1.6 W  

7.2  Load Computation 

7.2.1 Dead Load and Live Load 

Table 5 shows the location of building, seismic design category, type of frame, seismic 

use group and computed dead load and live load.  

Table 5. Dead load and live load for frame in consideration 

Location: Atlanta, GA 

Seismic Design Category: C 

Seismic Use Group: III 

Seismic Force Resisting System: Intermediate Reinforced Concrete Moment Frames 

Thickness of Slab t = 10 inch 

Density of concrete ρ = 0.15 k/ft3

Dead Load W DL = 18.2 k/ft 

Live Load W LL = 18.0 k/ft 

 
  

7.2.2 Earthquake Load 

Table 6(a) shows important information that is needed in order to evaluate earthquake 

load. Section 1615-1617 of IBC-16 is being used in order to evaluate earthquake load 

present on frame. 
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Table 6(b) shows contribution of every floor towards total statically equivalent joint 

load present on frame.   

Table 7 has the final statically equivalent joint load for earthquake load existing on 

the five-story structure. 

Table 6a. Computation of earthquake load 

Weight of the Structure W = 4000 Kips 

Design Spectral Response Acceleration at Short Period SDS = 0.1387 g  

Response Modification Factor R = 4.5 

Importance Factor IE = 1.5  

Number of floors N = 7  

Natural Time Periods T =0.1N = 0.7 seconds 

If T < 0.5 sec => k = 1 & If T > 2.5 sec => k = 2    

Interpolating for values of k in between for T = 0.7 => k = 1.1 

 
 
 

As per the “Equivalent Lateral Force Procedure” of the International Building Code, 

the static equivalent of the total earthquake load acting at structure is being given as 

WCV s ×=      (14) 

Where Cs is being given as: 

E

DS
s IR

S
C

/
=      (15) 

And W is the weight of the structure.  

For the structure being considered, Cs turns out to be 0.0831. 

Vertical distribution of equivalent static earthquake force is given as 
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VCF VXx ×=     (16) 

where V is the total design lateral force or shear. Note that the parameter CVX accounts 

for the vertical distribution of equivalent static forces. The “Equivalent Lateral Force 

Procedure” gives the following expression in order to evaluate CVX. 

∑
=

×

×
= N

i

k
ii

k
ix

VX

hw

hwC

1

    (17) 

where hi is the height from base to level i and N is the number of stories in frame. 

Considering the symmetric nature of frame with respect to all floors, weight of the 

frame W is distributed equally among all floors.  

If wi is the weight corresponding to ith floor and n are the total number of floors then   

ninWwi ...1/ =∀=⇒         (18) 

Table 6b. Computation of earthquake load (cont.) 

Story Story Height Story Height from Base hi hi 
k CVX

1 16 16 21.11 0.04 

2 8.66 24.66 33.98 0.07 

3 8.66 33.33 47.33 0.10 

4 8.66 42 61.03 0.14 

5 8.66 50.66 75.02 0.17 

6 8.66 59.33 89.25 0.20 

7 11.33 70.66 108.17 0.24 

    Summation 435.92  
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Table 7. Earthquake loads as statically equivalent joint load 

Static Equivalent of Earthquake Load: QE

W = 4000 Kips 

Cs = 0.0831 

V = 332.4 Kips 

Floor i Joint Load At floor i, Vi (kips) 

1 16.09 

2 25.91 

3 36.09 

4 46.54 

5 57.20 

6 68.05 

7 82.48 

 

7.2.3 Wind Load 

Section 6 of ASCE-7/2002 is used to develop appropriate static equivalent joint loads for 

wind load acting on the frame in consideration.  

The minimum wind load = 10 lb/ft2 is multiplied by the area of the building or structure 

projected on a vertical plane normal to the wind direction.  

As per the Section 6.5.10 of ASCE-7/2002, velocity pressure, qZ evaluated at height z 

shall be calculated by the following equation: 

)/(00256.0 22 ftlbIVKKKq dZtZz ×××××=      (19) 

where  

KZ is the velocity pressure exposure coefficient. 
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KZt is the topographic factor. 

Kd is the wind directionality factor. 

V is the design wind speed. 

And qz is the velocity pressure at mean roof height z. 

Design wind pressure on components and cladding for all buildings with h > 60 ft shall 

be determined from the following equation: 

)/)(( 2ftlbCGqCGqp piip ××−××=       (20) 

Where 

q = qi = qz is being calculated at windward or leeward walls at a height z above the 

ground. 

G is the gust factor and Cp & Cpi are external pressure coefficients. 

Design wind loads for open buildings and other structures shall be determined by the 

following formula: 

)(lbACGqF ffz ×××=         (21) 

Where 

qz = velocity pressure evaluated at height z of the centroid of area Af using the exposure 

defined in Section 6.5.6.3.2 of ASCE7-02. 

Cf = net force coefficients from tables 6-9 through 6-12 of ASCE7-02. 

Af = projected area normal to the wind except where Cf is specified for the actual surface. 
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Table 8a. Wind pressure calculations 

Wind Pressure Calculations 
Method 2: Analytical procedure from ASCE 7-98 

Basic Wind Speed, V (mph) = 90 
Exposure: A 

Importance Factor, I = 1.15 
Wind Directionality Factor, Kd = 0.85 

Kzt = 1 
Gf = 0.85 

For Exposure A, α= 5 
Zg (ft.) = 1500 

 
 
 

Table 8b. Wind pressure calculations (cont.) 
 

Calculate Kz & qz for each height 

Floor Level Height (ft) Z (ft.) Kz qz (lbs/ft2) 
Foundation 0 0 0.680 16.22 

1 16 16 0.680 16.22 
2 8.66 24.66 0.680 16.22 
3 8.66 33.33 0.680 16.22 
4 8.66 42 0.680 16.22 
5 8.66 50.67 0.680 16.22 
6 8.66 59.33 0.680 16.22 

Roof 11.33 70.67 0.680 16.22 
     L/B Cp   L/B Cp      
    2 -0.3         

L (ft) 162 2.57 X         
B (ft) 63 4 -0.2 Cp -0.27     
 

Tables 8 (a), 8 (b) and 8 (c) give the calculations done in order to obtain the statically 

equivalent joint loads for wind loads present on a seven-story frame. Table 9 contains the 

final wind load present on the frame in consideration. 
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Table 8c. Wind pressure calculations (cont.) 
 

Calculate the wind pressure from the two directions 
Wind From Ends pz (psf) 

Z (ft.) Windward End Leeward End Sides Total pz (psf) 
L/B = 2.57 Cp = 0.8 Cp = -0.271 Cp = -0.7   

0 11.03 -3.74 -9.65 14.77 
16 11.03  -3.74 -9.65 14.77 

24.66667 11.03  -3.74 -9.65 14.77 
33.33333 11.03  -3.74 -9.65 14.77 

42 11.03  -3.74 -9.65 14.77 
50.67 11.03  -3.74 -9.65 14.77 
59.33 11.03  -3.74 -9.65 14.77 
70.67 11.03  -3.74 -9.65 14.77 

 
 

Table 9. Static equivalent of wind load 
 

Calculate the static equivalent of wind pressure 
Effective Width 21  

Height Pressure Design Wind Load 
Ft Psf Kips 
0 14.77  

16 14.77 4.96 
24.66 14.77 2.68 
33.33 14.77 2.68 

42 14.77 2.68 
50.67 14.77 2.68 
59.33 14.77 2.68 
70.67 14.77 3.51 

 
Table 10 summarizes earthquake load and wind load as statically equivalent joint load 

occurring on various joints. 
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Table 10. Summary of loads 

  Summary of Loads   
Dead Load U.D.L at all beam = 18.2 kips/Ft 
Live Load U.D.L at all beam = 18 kips/ft 

Earthquake Load Joint Load  
Wind Load Joint Load  

Joint  Height (ft) 
Earthquake Load 

(kips) Wind Load (kips) 
2 16 16.1 4.96 
3 24.66 26 2.68 
4 33.33 36.1 2.68 
5 42 46.6 2.68 
6 50.67 57.2 2.68 
7 59.33 68.1 2.68 
8 70.67 82.5 3.51 

 

Remarks: 

As per the section 1617.1 of IBC-16, the seismic load effect E for use in above specified 

load combinations, shall be determined as follows: 

DSQE DSE ×+×= 2.0ρ         (22) 

Where: 

D = the effect of dead load 

E = the combined effect of horizontal and vertical earthquake-induced forces 

Factor ρ = a reliability factor based on system  

QE = the effects of horizontal seismic forces 

SDS = the design spectral response acceleration at short periods 

For the seismic design category C, ρ = 1 

For the site and soil in consideration, SDS = 0.1387. This implies that expression for E 

turn out to be 
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DQE E ×+= 02774.0         (23)  

Note that, E once included in the expressions of load combination, will modify the load 

factors of Dead Load and Horizontal Seismic Loads as computed above. 

Sign Convention: 

 
 

Figure 7.0. Sign convention for positive and negative bending moment 
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7.3 Comparative Analysis for Load Patterns & Load Combinations 

7.3.1 Case 1-Maximum Span Moment in a beam 

In this case the maximum span moment in beam 64 (figure 7.1) is the current design 

parameter. Using the general principle of influence the structure may be analyzed for this 

particular live load pattern in association with a number of load combinations: 

64

 

Figure 7.1. Case 1: Live load pattern for maximum span moments in beam 
 
 

Table 11. Maximum Span Moment in beam  
 

Beam 64 Interval Analysis Conventional Analysis 

Load Combination Interval Span Moment (kips-inch) Maximum Span Moment (kips-inch) 

1.4D [9295, 9295] 9295 

1.2D+1.6L [7016,19420] 19410 

1.2D+L [7373,15130] 15120 
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Maximum span moments obtained from conventional load patterns are within the interval 

span moment calculated using interval FE analysis (Table 11). This shows enclosure of 

conventional result in the interval FE analysis result. It is important to note that not only 

this particular load pattern is bounded by the enclosure, but every load as well. Span 

moment is chosen as one of the representative parameters in this case. One more 

parameter, end moment, will also be considered in a subsequent section. However, 

deflection at any point, shear force and axial force are all equally valid parameters that 

can be chosen to demonstrate this kind of concept. 

7.3.2 Case 2-Minimum Span Moment in a beam 

In this case the minimum moment at the starting node of beam 64 (figure 7.2) is the 

current design parameter. Using the general principle of influence lines structure may be 

analyzed for this particular live load pattern in association with a number of load 

combinations: 

64 

 

Figure 7.2. Case 2: Live load pattern for minimum span moment in beam 
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Table 12. Minimum Span Moment in beam 

 
Beam 64 Interval Analysis Conventional Analysis 

Load Combination Interval Span Moment (kips-inch) Minimum Span Moment (kips-inch) 

1.4D [9295, 9295] 9295 

1.2D+1.6L [7016,19420] 7028 

1.2D+L [7373,15130] 7380 

 

Once again, enclosure of the results from the load pattern chosen for minimum span 

moment in a beam, within the results from Interval FE Analysis, can be seen. The results 

in table 12 indicate that the minimum span moment obtained from live load pattern is 

within the interval value of span moment computed using interval finite element analysis. 

In these cases only three load combinations have been considered, but in the next section 

column is analyzed for 10 load combinations to show the general tendency of getting 

enclosure within interval FE results.  

7.3.3 Case 3- Maximum/Minimum End Moments in a Column 

In this case maximum end moment of a column is the current design parameter. End 

moments for column 1, 4, 7 and 8 will be presented. Using general principle of influence 

lines structure may be analyzed for some definite live load pattern in association with 

number of load combinations. Here are three widely used load patterns that will be 

considered for maximum and minimum end moment in the column: 
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Figure 7.3. Case 3: Live load pattern A for maximum/minimum end moment in a 
column 

 

 

Figure 7.4. Case 3: Live load pattern B for maximum/minimum end moment in a 
column  
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8 

7 

4 

1 

 

Figure 7.5. Case 3: Live load pattern C for maximum/minimum end moment in a 
column  
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Table 13 End Moment in column element 8 as an effect of Live Load pattern A, B 
and C 

 
Column 8 Interval Analysis Conventional Analysis Conventional Analysis Conventional Analysis 

Load Combination Interval End 

Moment (kips-inch) 

End Moments  

(kips-inch) 

Load Pattern “A” 

End Moments  

(kips-inch) 

Load Pattern “B” 

End Moments  

(kips-inch) 

Load Pattern “C” 

1.4D [-1293, -1293] -1293 -1293 -1293 

1.2D+1.6L [-12193.5, 8515.77] 4927.87 -8307.41 -11568.9 

1.2D+L [-8036.55, 4906.75] 2664.31 -5607.74 -7646.14 

1.2D+0.8W [-955.202, -955.202] -955.202 -955.202 -955.202 

1.2 D + 1.6 W +  L [-7730.38, 5212.92] 2970.49 -5301.56 -7339.97 

1.2 D + 1.0 E1 +  L [-5591.51, 7351.79] 5109.36 -3162.69 -5201.09 

1.2 D + 1.0 E2 + L [-5563.06, 7380.24] 5137.8 -3134.25 -5172.65 

0.9 D + 1.0 E1 [1590.55, 1590.55]   1590.55 1590.55 1590.55 

0.9 D + 1.0 E2 [1642.27, 1642.27]   1642.27 1642.27 1642.27 

0.9 D + 1.6 W [-525.043, -525.043] -525.043 -525.043  

load factors as Interval [-15419.8, 14588.3]    

 
 

Figure 7.3, 7.4 and 7.5 shows the live load pattern A, B and C respectively, used in order 

to calculate end moment in various columns. Table 13 focuses on column element 8 and 

gives the interval end moment obtained from Interval Finite Element Analysis and end 

moments from load pattern A, B and C respectively.  The last row of the table 13 shows 

the interval end moment at the end of column 8 as per the interval load factors. In this 

particular case, all the load combinations have been combined into one interval equation 

and interval finite element analysis is done under one interval load combination equation. 
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The interval end moments obtained in this way contain all the interval end moments that 

are obtained from specific load combination.  

 
Table 14. Axial Force in column 8 as an effect of Live Load pattern A, B and C 

 
Column  8 Interval Analysis Conventional Analysis Conventional Analysis Conventional Analysis 

Load Combination Interval Axial force 

(kips) 

Axial Force (kips) 

Load Pattern “A” 

Axial Force (kips) 

Load Pattern “B” 

Axial Force (kips) 

Load Pattern “C” 

1.4D [4798.24, 4798.24] 4798.24 4798.24 4798.24 

1.2D+1.6L [4110.8, 9537] 6837.8 6821.76 6826.16 

1.2D+L [4111.54, 7502.92] 5815.91 5805.89 5808.64 

1.2D+0.8W [4112.82, 4112.82] 4112.82 4112.82 4112.82 

1.2 D + 1.6 W + L [4111.64, 7503.01] 5816.01 5805.98 5808.74 

1.2 D + 1.0 E1 + L [4123.01, 7514.38] 5827.38 5817.36 5820.11 

1.2 D + 1.0 E2 + L [4017.45, 7408.82] 5721.82 5711.8 5714.55 

0.9 D + 1.0 E1 [3182.42, 3182.42] 3182.42 3182.42 3182.42 

0.9 D + 1.0 E2 [2990.49, 2990.49] 2990.49 2990.49 2990.49 

0.9 D + 1.6 W [3084.68, 3084.68]  3084.68 3084.68 3084.68 

Load factors as Interval [3081.83, 10225.2]    

 
The interval axial forces obtained from interval finite element analysis and axial force 

from load pattern A, B and C respectively for column element 8 are given in table 14. It 

is important to note that as shown for interval span moment, the interval response for 

axial force again bounds conventional results. The last row of Table 14 and Table 15 

show the interval axial force and interval shear force when load factors are taken as 

interval. Interval shear force obtained from interval load factor equation, bounds all the 
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interval shear force that is obtained using finite element analysis for a given load 

combination. Note that load pattern A results in the maximum axial force in column 8 for 

all the load combinations; this is the same load pattern that resulted in the maximum 

positive end moment in the same column (Table 13 and 14). Table 13 shows that the 

maximum negative moment for the column in consideration occurs due to load pattern C. 

However, this load pattern does not yield the maximum axial force. The three load 

patterns used here are the most popular ones, do not necessarily give the critical scenario; 

however, interval results will always capture critical response of the structure.  

 

Table 15. Shear Force in column 8 as an effect of Live Load pattern A, B and C 
 

Column 8 Interval Analysis Conventional Analysis Conventional Analysis Conventional Analysis 

Load Combination Interval Shear force 

(kips) 

Shear Force (kips) 

Load Pattern A 

Shear Force (kips) 

Load Pattern B 

Shear Force (kips) 

Load Pattern C 

1.4D [13.2359, 13.2359] 13.2359 13.2359 13.2359 

1.2D+1.6L [-63.0328, 100.68] -35.014 71.1735 94.8429 

1.2D+L [-35.1411, 67.1795] -17.6294 48.7378 63.5312 

1.2D+0.8W [8.59973, 8.59973] 8.59973 8.59973 8.59973 

1.2 D + 1.6 W +  L [-40.6318, 61.6888] -23.12 43.2472 58.0406 

1.2 D + 1.0 E1 +  L [-85.0459, 17.2747] -67.5342 -1.16695 13.6264 

1.2 D + 1.0 E2 + L [-85.3371, 16.9835] -67.8254 -1.45814 13.3353 

0.9 D + 1.0 E1 [-41.1578, -41.1578] -41.1578 -41.1578 -41.1578 

0.9 D + 1.0 E2 [-41.6872, -41.6872] -41.6872 -41.6872 -41.6872 

0.9 D + 1.6 W [3.01813, 3.01813] 3.01813 3.01813 3.01813 

Load factors as Interval [-144.797, 126.077]    
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Table 15 indicates how different shear force values obtained from load pattern A, B and 

C are contained within the interval shear force calculated using interval finite element 

analysis. Table 13, Table 14 and Table 15 clearly show that the end moments, axial force 

and shear force in column 8 obtained from specific live load patterns are non-

conservative.  

Additionally similar results are presented for few selected columns present at 1st, 4thand 

7th floor. Columns 1, 4 and 7 have been chosen from these floors. For each of the load 

combinations, table 16 gives interval end moments and end moments in column 1 

obtained from three live load pattern. Table 17 and Table 18 provide the similar results 

for axial force and shear force in column 1. Table 19, 20 and 21 present a comparison of 

interval response in terms of the end moment, axial force and shear force in column 4 

with corresponding conventional load pattern analysis results. Similar results are 

presented for column 7 in Table 22, Table 23 and Table 24. 
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Table 16. End Moment in column 1 as an effect of Live Load A, B and C 
 

Column 1 Interval Analysis Conventional 

Analysis 

Conventional 

Analysis 

Conventional Analysis 

Load Combination Interval End 

Moment (kips-inch) 

End Moments  

(Kips-inch) 

Load Pattern A 

End Moments  

(Kips-inch) 

Load Pattern B 

End Moments  

(Kips-inch) 

Load Pattern C 

1.4D [-8097.51, -8097.51] -8097.51 -8097.51 -8097.51 

1.2D+1.6L [-17727.6, -5304.45] -15045.4 -7840.98 -6373.14 

1.2D+L [-13682.5, -5918.05] -12006.1 -7503.38 -6332.37 

1.2D+0.8W [-6813.91, -6813.91] -6813.91 -6813.91 -6813.91 

1.2 D + 1.6 W + L [-13428.9, -5664.43] -11752.5 -7249.77 -6332.37 

1.2 D + 1.0 E1 + L [-12164.6, -4400.18] -10488.2 -5985.51 -5068.11 

1.2 D + 1.0 E2 + L [-11986.5, -4222.03] -10310.1 -5807.36 -4889.96 

0.9 D + 1.0 E1 [-3833.42, -3833.42] -3833.42 -3833.42 -3833.42 

0.9 D + 1.0 E2 [-3509.52, -3509.52] -3509.52 -3509.52 -3509.52 

0.9 D + 1.6 W [-4951.92, -4951.92] -4951.92 -4951.92 -4951.92 

Load factors as Interval [-19401.5, -1264.45]    
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Table 17. Axial Force in column 1 as an effect of Live Load pattern A, B and C 
 

Column 1 Interval Analysis Conventional 

Analysis 

Conventional 

Analysis 

Conventional 

Analysis 

Load Combination Interval Axial 

force (kips) 

Axial Force (kips) 

Load Pattern A 

Axial Force (kips) 

Load Pattern B 

Axial Force (kips) 

Load Pattern C 

1.4D [2420.95, 2420.95] 2420.95 2420.95 2420.95 

1.2D+1.6L [2063.23, 4822.78] 4794.58 3249.73 3246.95 

1.2D+L [2067.68, 3792.4] 3774.77 2809.24 2801.13 

1.2D+0.8W [2071.92, 2071.92] 2071.92 2071.92 2071.92 

1.2 D + 1.6 W + L [2061.31, 3786.02] 3768.4 2802.87 2801.13 

1.2 D + 1.0 E1 + L [1991.28, 3716] 3698.37 2732.84 2731.11 

1.2 D + 1.0 E2 + L [1938.02, 3662.74] 3645.11 2679.58 2677.85 

0.9 D + 1.0 E1 [1523.51, 1523.51] 1523.51 1523.51 1523.51 

0.9 D + 1.0 E2 [1426.67, 1426.67] 1426.67 1426.67 1426.67 

0.9 D + 1.6 W [1549.95, 1549.95] 1549.95 1549.95 1549.95 

Load factors as Interval [1453.08, 5172.38]    
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Table 18. Shear Force in column 1 as an effect of Live Load pattern A, B and C 
 

Column 1 Interval Analysis Conventional Analysis Conventional Analysis Conventional Analysis 

Load Combination Interval Shear 

force (kips) 

Shear Force (kips) 

Load Pattern A 

Shear Force (kips) 

Load Pattern B 

Shear Force (kips) 

Load Pattern C 

1.4D [68.7488, 68.7488] 68.7488 68.7488 68.7488 

1.2D+1.6L [48.8848, 146.66] 126.165 68.7097 58.4322 

1.2D+L [52.6509, 113.76] 100.951 65.0414 53.4437 

1.2D+0.8W [56.3404, 56.3404] 56.3404 56.3404 56.3404 

1.2 D + 1.6 W + L [47.4766, 108.586] 95.7765 59.8672 53.4437 

1.2 D + 1.0 E1 + L [9.97928, 71.0887] 58.2792 22.3698 15.9464 

1.2 D + 1.0 E2 + L [8.4668, 69.5762] 56.7667 20.8574 14.4339 

0.9 D + 1.0 E1 [2.76157, 2.76157] 2.76157 2.76157 2.76157 

0.9 D + 1.0 E2 [0.0116125, 

0.0116125] 

0.0116125 0.0116125 0.0116125 

0.9 D + 1.6 W [39.0214, 39.0214] 39.0214 39.0214 39.0214 

Load factors as  Interval [-17.0043, 159.655]    
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Table 19. End Moment in column element 4 as an effect of Live Load pattern A, B 
and C 

 

Column 4 Interval Analysis Conventional 

Analysis 

Conventional 

Analysis 

Conventional 

Analysis 

Load Combination Interval End 

Moment (kips-inch) 

End Moments  

(Kips-inch) 

Load Pattern A 

End Moments  

(Kips-inch) 

Load Pattern B 

End Moments  

(Kips-inch) 

Load Pattern C 

1.4D [-9584.83, -9584.83] -9584.83 -9584.83 -9584.83 

1.2D+1.6L [-21985.5, -5276.96] -18564.9 -20517.3 -18843.5 

1.2D+L [-16821.8, -6378.94] -14683.9 -15904.2 -14717.2 

1.2D+0.8W [-8145.17, -8145.17] -8145.17 -8145.17 -8145.17 

1.2 D + 1.6 W + L [-16681, -6238.15] -14543.1 -15763.4 -14717.2 

1.2 D + 1.0 E1 + L [-15110.6, -4667.73] -12972.7 -14192.9 -13146.8 

1.2 D + 1.0 E2 + L [-14899.7, -4456.86] -12761.8 -13982.1 -12936 

0.9 D + 1.0 E1 [-4623, -4623] -4623 -4623 -4623 

0.9 D + 1.0 E2 [-4239.6, -4239.6] -4239.6 -4239.6 -4239.6 

0.9 D + 1.6 W [-6020.89, -6020.89] -6020.89 -6020.89 -6020.89 

Load factors as Interval [-24319, -387.651]    
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Table 20. Axial Force in column element 4 as an effect of Live Load pattern A, B 
and C 

 

Column 4 Interval Analysis Conventional Analysis Conventional Analysis Conventional Analysis 

Load Combination Interval Axial force 

(kips) 

Axial Force (kips) 

Load Pattern A 

Axial Force (kips) 

Load Pattern B 

Axial Force (kips) 

Load Pattern C 

1.4D [1385.81, 1385.81] 1385.81 1385.81 1385.81 

1.2D+1.6L [1175.96, 2765.75] 2741.33 1973.25 1971.89 

1.2D+L [1180.42, 2174.03] 2158.77 1678.72 1675.45 

1.2D+0.8W [1186.63, 1186.63]   1186.63 1186.63 1186.63 

1.2 D + 1.6 W + L [1177.99, 2171.61] 2156.35 1676.3 1675.45 

1.2 D + 1.0 E1 + L [1148.5, 2142.12] 2126.86 1646.81 1645.96 

1.2 D + 1.0 E2 + L [1118.02, 2111.63] 2096.37 1616.32 1615.47 

0.9 D + 1.0 E1 [883.911, 883.911] 883.911 883.911 883.911 

0.9 D + 1.0 E2 [828.479, 828.479] 828.479 828.479 828.479 

0.9 D + 1.6 W [888.457, 888.457] 888.457 888.457 888.457 

Load factors as Interval [838.144, 2967.48]    
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Table 21. Shear Force in column 4 as an effect of Live Load pattern A, B and C 
 

Column 4 Interval Analysis Conventional Analysis Conventional Analysis Conventional Analysis 

Load Combination Interval Shear force 

(kips) 

Shear Force (kips) 

Load Pattern A 

Shear Force (kips) 

Load Pattern B 

Shear Force (kips) 

Load Pattern C 

1.4D [186.075, 186.075] 186.075 186.075 186.075 

1.2D+1.6L [111.718, 417.541] 360.488 396.684 264.905 

1.2D+L [129.634, 320.773] 285.115 307.737 223.791 

1.2D+0.8W [158.7, 158.7] 158.7 158.7 158.7 

1.2 D + 1.6 W + L [128.049, 319.188] 283.53 306.152 223.791 

1.2 D + 1.0 E1 + L [107.52, 298.66] 263.001 285.624 203.262 

1.2 D + 1.0 E2 + L [103.427, 294.566] 258.908 281.53 199.169 

0.9 D + 1.0 E1 [100.856, 100.856] 100.856 100.856 100.856 

0.9 D + 1.0 E2 [93.4126, 93.4126] 93.4126 93.4126 93.4126 

0.9 D + 1.6 W [118.035, 118.035] 118.035 118.035 118.035 

Load factors as Interval [26.1216, 465.777]    
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Table 22. End Moment in column 7 as an effect of Live Load pattern A, B and C 
 

Column 7 Interval Analysis Conventional 

Analysis 

Conventional 

Analysis 

Conventional 

Analysis 

Load Combination Interval End 

Moment (kips-

inch) 

End Moments  

(Kips-inch) 

Load Pattern A 

End Moments  

(Kips-inch) 

Load Pattern B 

End Moments  

(Kips-inch) 

Load Pattern C 

1.4D [-17120, -17120] -17120 -17120 -17120 

1.2D+1.6L [-35710.4, -12984.6] -33965.2 -34342.1 -16521.6 

1.2D+L [-27821.8, -13618.2] -26731.1 -26966.7 -14459 

1.2D+0.8W [-14645.1, -14645.1] -14645.1 -14645.1 -14645.1 

1.2 D + 1.6 W + L [-27763.5, -13559.9] -26672.7 -26908.3 -14459 

1.2 D + 1.0 E1 + L [-27012.3, -12808.7] -25921.6 -26157.1 -13707.8 

1.2 D + 1.0 E2 + L [-26635.7, -12432.1] -25544.9 -25780.5 -13331.2 

0.9 D + 1.0 E1 [-10504.3, -10504.3] -10504.3 -10504.3 -10504.3 

0.9 D + 1.0 E2 [-9819.55, -9819.55] -9819.55 -9819.55 -9819.55 

0.9 D + 1.6 W [-10947.4, -10947.4] -10947.4 -10947.4 -10947.4 

Load factors as Interval [-38690.1, -7879.94]    
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Table 23. Axial Force in column 7 as an effect of Live Load pattern A, B and C 
 

Column 7 Interval Analysis Conventional 

Analysis 

Conventional 

Analysis 

Conventional 

Analysis 

Load Combination Interval Axial 

force (kips) 

Axial Force (kips) 

Load Pattern A 

Axial Force (kips) 

Load Pattern B 

Axial Force (kips) 

Load Pattern C 

1.4D [338.857, 338.857] 338.857 338.857 338.857 

1.2D+1.6L [275.775, 688.048] 676.414 681.523 282.461 

1.2D+L [281.278, 538.948] 531.677 534.87 285.108 

1.2D+0.8W [290.274, 290.274] 290.274 290.274 290.274 

1.2 D + 1.6 W + L [280.929, 538.599] 531.328 534.521 285.108 

1.2 D + 1.0 E1 + L [276.904, 534.574] 527.303 530.496 281.082 

1.2 D + 1.0 E2 + L [269.449, 527.119] 519.848 523.041 273.627 

0.9 D + 1.0 E1 [219.562, 219.562] 219.562 219.562 219.562 

0.9 D + 1.0 E2 [206.007, 206.007] 206.007 206.007 206.007 

0.9 D + 1.6 W [217.488, 217.488] 217.488 217.488 217.488 

Load factors as Interval [193.125, 741.093]    
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Table 24. Shear Force in column 7 as an effect of Live Load pattern A, B and C 
 

Column 7 Interval Analysis Conventional Analysis Conventional Analysis Conventional Analysis 

Load Combination Interval Shear 

force (kips) 

Shear Force (kips) 

Load Pattern A 

Shear Force (kips) 

Load Pattern B 

Shear Force (kips) 

Load Pattern C 

1.4D [193.168, 193.168] 193.168 193.168 193.168 

1.2D+1.6L [129.096, 420.338] 385.646 333.921 227.535 

1.2D+L [142.775, 324.801] 303.119 270.79 203.878 

1.2D+0.8W [165.362, 165.362] 165.362 165.362 165.362 

1.2 D + 1.6 W + L [142.353, 324.379] 302.697 270.369 203.878 

1.2 D + 1.0 E1 + L [137.617, 319.642] 297.96 265.632 194.891 

1.2 D + 1.0 E2 + L [133.367, 315.393] 293.711 261.382 194.891 

0.9 D + 1.0 E1 [122.498, 122.498] 122.498 122.498 122.498 

0.9 D + 1.0 E2 [114.771, 114.771] 114.771 114.771 114.771 

0.9 D + 1.6 W [123.758, 123.758] 123.758 123.758 123.758 

Load factors as Interval [62.6055, 467.065]    
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Table 16, 19 and 22 show that for a given load combination and a given load pattern, end 

moments increase from lower floor columns to upper floor columns. However table 17, 

20 and 23 shows that axial force decreases from lower level columns to upper level 

columns. Additionally, the same nature of behavior can be observed for the lower and 

upper bounds of the interval response. Alternatively, it can be deduced that for a given 

load combination and a given load pattern, the lower bound on end moments decreases 

from lower level columns to upper level columns and at the same time the upper bound 

on column end moments increase from lower level column to upper level column. 

Consequently, for a given load combination that involves a live load, the width of the 

interval moments increases from lower level column to upper level column.  
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8. COMPARATIVE STUDY OF INTERVAL FE & 
CONVENTIONAL ANALYSIS: EFFECTS OF 

NUMBER OF FLOOR 
 
 

In this section, structure will be analyzed for varying height and objective is to identify 

the nature of deviation between interval response and conventional structural response. 

The frame that we have been using since last section will be considered once again. This 

frame will be modified to increase number of floors up to ten and fifteen. Structure will 

be analyzed under various load combinations, first for interval finite element analysis and 

then we will study the same parameters for few chosen representative load patterns. A 

comparative study will be presented in order to show advantages of interval FE analysis 

over what has been suggested conventionally by various structural engineering code 

practices. 

8.1 Case A: Number of Floors = 10 

Following points need to be reiterated for modified frame. 

1) Three floors are being added on the top of existing original frame. 

2) Each of the added are of height 11 ft 4 inch. 

3) Properties of added beams and columns are same as that of the top floor of 

original frame. 

4) Dead load and Live load for added floor is same as of previously existing 

floors. 

5) Weight of the structure has been increased in proportion to number of floors. 

6) Earthquake loads have been calculated based on IBC code of practices. 
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7)  Wind load have been revised for modified structure using ASCE6 codes of 

practices. 

Once again analyze modified frame will be analyzed for three different cases. Case A 

corresponds to maximum span moment in a beam, Case B refers to minimum span 

moment in the same beam and Case 3 focuses on a column element. Modified values of 

earthquake force and wind force acting on modified frame need to be re-calculated before 

structure can be analyzed for load combinations and load patterns. 

Table 25 a. Earthquake load calculation for modified frame (ten floor frame) 
 

Story  Story Height Story Height from Base hi hi k C vx

1 16 16 21.11 0.0240 
2 8.66 24.66 33.98 0.0387 
3 8.66 33.33 47.33 0.0539 
4 8.66 42 61.03 0.0696 
5 8.66 50.66 75.02 0.0855 
6 8.66 59.33 89.25 0.1017 
7 11.33 70.66 108.17 0.1233 
8 11.33 82 127.40 0.1452 
9 11.33 93.33 146.90 0.1675 

10 11.33 104.66 166.64 0.1900 
    Total 876.87   

  
 

Table 25a and 25b show necessary calculation in order to evaluate earthquake load as 

statically equivalent joint load acting on various nodes. It is important to note that actual 

earthquake force that appears in various load combination includes combined effect of 

this horizontal force and additionally vertically induced force due to dead load as well. 
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Table 25 b. Earthquake Load Calculation for modified frame (ten floors frame) 
 

Static Equivalent of Earthquake Load 
W = 5714.28 Kips 

Cs = 0.0831 
V = 474.8571429 Kips 

Floor i Joint Load At floor i, Vi (kips) 
1 11.43 
2 18.40 
3 25.63 
4 33.051 
5 40.62 
6 48.33 
7 58.58 
8 68.99 
9 79.55 

10 90.24 
 
 
 

Table 26. Wind Load Calculation for modified frame (ten floor frame) 
 

Calculate the static equivalent of wind pressure 

Effective Width 21  

Height Pressure Design Wind Load 

Ft P s f Kips 

0 14.77  

16 14.77 4.96 

24.66 14.77 2.68 

33.33 14.77 2.68 

42 14.77 2.68 

50.67 14.77 2.68 

59.33 14.77 2.68 

70.67 14.77 3.51 

82 14.77 3.51 

93.333 14.77 3.51 

104.66 15.85 3.64 
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Table 27. Summary of Earthquake Load and Wind Load for modified frame (ten 
floors) 

 
  Summary of Loads   

Dead Load U.D.L at all beam 18.2 kips/ft   
Live Load U.D.L at all beam 18 kips/ft   

Earthquake Load Joint Load     
Wind Load Joint Load     

Joint  Height (ft) 
Earthquake Load 

(kips) Wind Load (kips) 
2 16 11.43 4.96 
3 24.66 18.4 2.68 
4 33.33 25.63 2.68 
5 42 33.05 2.68 
6 50.67 40.62 2.68 
7 59.33 48.33 2.68 
8 70.67 58.58 3.51 
9 82 68.99 3.51 

10 93.33 79.55 3.51 
11 104.66 90.24 3.64 
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Figure 8.1. Joints numbering for ten floors frame 
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Figure 8.2. Frame elements numbering for ten floors frame 
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8.1.1 Case 1- Maximum Span Moment of a Beam 
 

Maximum span moment in a beam for the modified ten floors structure is the primary 

focus of this subsection. 

64

 
 
 
 

Figure 9.1. Case 1: Live load pattern for maximum span moment in beam – ten 
floors frame 
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Table 28. Maximum Span Moment in beam 64(ten floor frame) 
 

Beam 64 Interval Analysis Conventional Analysis 

Load Combination Interval Span Moment (kips-inch) Maximum Span Moment (kips-inch) 

1.4D [9297, 9297] 9297 

1.2D+1.6L [7009, 19430] 19410 

1.2D+L [7369, 15130] 15120 

 
 
 

 

For the current ten-floor frame, span moments have been again evaluated using Interval 

FE analysis and load pattern as shown in Figure 9.1. The first load combination (1.4D) 

has the same lower and upper bound of interval span moment and it matched with what 

load pattern has calculated. This is simply due to the fact that there is no live load pattern 

involved. However, other two load combinations have different lower and upper bounds 

of interval span moment (table 28) as they involve effect of live load pattern, maximum 

span moment for load pattern in consideration is again within the interval. 

 
8.1.2 Case 2- Minimum Span Moment of a Beam 
 
In this subsection interval finite element analysis is being compared with conventional 

load pattern analysis through analyzing modified ten-frame structure for the minimum 

span moments in the beam. 
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64 

 

Figure 9.2. Case 2: Live load pattern for minimum span moment in beam – ten-floor 
frame 

 
Table 29. Minimum Span Moment in beam 64 (10 floor frame) 

 
Beam 64 Interval Analysis Conventional Analysis 

Load Combination Interval Span Moment (kips-inch) Minimum Span Moment (kips-inch) 

1.4D [9297, 9297] 9297 

1.2D+1.6L [7009, 19430] 7030 

1.2D+L [7369, 15130] 7382 

 
 

Interval FE analysis still hold the same result for ten-floor frame as far as span moment in 

beam 64 is concerned as this analysis cover all the load pattern in itself by the nature of 
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interval arithmetic however, engineer would like to consider a different load pattern for 

analyzing the beam 64. Load pattern shown in Figure 9.2 is most general load pattern that 

is being widely used in industry and also being suggested by various codes of practices 

(see chapter for load combinations and load patterns), in this load pattern beam in 

consideration is unloaded and every alternative beam is also unloaded. This will give 

minimum span moment in beam under consideration and table 29 shows that this is 

contained within interval span moment. 
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8.1.3 Case 3 - Comparison for Maximum End Moments for Column 8 
 

Once again, following three load patterns are being considered in order to get the 

maximum and minimum end moments at the end of column. Column in which we are 

interested is member 8. 

 
Load Pattern A 

 

8 

 

Figure 9.3. Case 3: Live load pattern A for end moment at the end of column 
element – ten floors frame 
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Table 30. End Moments in column 8 as an effect of Live Load Pattern A, B and C 
(ten-floor frame) 

 
 Interval Analysis Conventional Analysis 

  Load pattern A Load pattern B Load pattern C 

Load Combination Interval End Moment 

(Kips-inch) 

End Moment  

(Kips-inch) 

End Moment  

(Kips-inch) 

End Moment  

(Kips-inch) 

1.4D  [-1390.09,  -1390.09]  -1390.09  -1390.09  -1390.09 

1.2D+1.6L [-12495.5, 8541.63] 4847.61  -8464.98  -11687.2 

1.2D+L [-8256.52, 4891.7] 2582.94  -5737.43  -7751.31 

1.2D+0.8W [-981.16,  -981.16]  -981.16  -981.16  -981.16 

1.2 D + 1.6 W + L [-7835.82, 5312.4] 3003.64  -5316.73  -7330.61 

1.2 D + 1.0 E1 + L [-4887.83, 8260.4] 5951.64  -2368.74  -4382.61 

1.2 D + 1.0 E2 + L [-4857.24, 8290.98] 5982.22  -2338.15  -4352.03 

0.9 D + 1.0 E1 [2450.04, 2450.04] 2450.04 2450.04 2450.04 

0.9 D + 1.0 E2 [2505.64, 2505.64] 2505.64 2505.64 2505.64 

0.9 D + 1.6 W [-472.932,  -472.932]  -472.932  -472.932  -472.932 

Load factors as Interval [-15770.2, 15707.8]      
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Live Load Pattern B 
 

8 

 

Figure 9.4. Case 3: Live load pattern B for end moment at the end of column– ten 
floors frame 
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Live Load Pattern C 
 
 

8 

 

Figure 9.5. Case 3: Live load pattern C for end moment at the end of column– ten 
floors frame 

 
 

 
It is important to note that in real practice analyzing a structure for three load pattern just 

in order to get maximum or minimum end moment in one particular column may prove to 

be a tiresome task and since using all possible load pattern for such cases are so 

computation intensive and require enormous man time and computer time, it makes it 

almost an impossible and impractical task. 
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Table 22 shows that interval end moment width obtained in column 8 for every load 

pattern and load combination is increasing (e.g. compare table 14 and 22) and it is not 

difficult to show that it hold true for all the column and for all the structural parameter 

like axial force, bending moment, axial force and then for every structural element as 

beam or column. These results will be later explained in details in conclusion section. 

8.2 Case B: Number of Floor = 15 
 

1. Five floors have been added on the top of previously existing ten floors frame to 

form a fifteen story portal frames. 

2. Each of the added are of height 11 ft 4 inch.  

3. Numbering of added joints and members is being in such a way so that joints and 

members that we had in Case B, holds the same number, for the new ones, 

column is being numbered first and then all remaining beams. This way there is a 

minimal change to the input file. 

4. Dead load and Live load for added floor is same as of previously existing floors. 

5. Weight of the structure has been increased in proportion to number of floors. 

6. Earthquake loads have been calculated based on IBC code of practices. 

7.  Wind load have been revised for modified structure using ASCE6 codes of 

practices. 
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Table 31 a. Earthquake load calculation for modified frame (fifteen floors frame) 
 

Story  Story Height Story Height from Base hi hik Cvx 
1 16 16 21.11 0.01048 
2 8.66 24.66 33.98 0.01688 
3 8.66 33.33 47.33 0.02351 
4 8.66 42 61.03 0.03031 
5 8.66 50.66 75.02 0.03726 
6 8.66 59.33 89.25 0.04433 
7 11.33 70.66 108.17 0.05373 
8 11.33 82 127.40 0.0632 
9 11.33 93.33 146.90 0.07297 

10 11.33 104.66 166.64 0.0827 
11 11.33 116 186.59 0.09269 
12 11.33 127.33 206.74 0.10270 
13 11.33 138.66 227.07 0.11279 
14 11.33 150 247.57 0.12298 
15 11.33 161.33 268.22 0.1332 

  Total 2013.09   

 
Table 31 b. Earthquake load calculation for modified frame (fifteen floor frame) 

 
Static Equivalent of Earthquake Load 

W = 8571.428571 Kips 
Cs = 0.0831 

V = 712.2857143 Kips 
Floor i Joint Load At floor i, Vi (kips) 

1 7.47 
2 12.02 
3 16.74 
4 21.59 
5 26.54 
6 31.58 
7 38.27 
8 45.08 
9 51.97 

10 58.96 
11 66.02 
12 73.15 
13 80.34 
14 87.59 
15 94.90 
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Table 32. Wind load calculation for modified frame (fifteen floor frame) 
Calculate the static equivalent of wind pressure 

Effective Width 21  
Height Pressure Design Wind Load 

Ft P s f Kips 
0 14.77  

16 14.77 4.961 
24.66 14.77 2.687 
33.33 14.77 2.687 

42 14.77 2.687 
50.66 14.77 2.687 
59.33 14.77 2.687 
70.66 14.77 3.514 

82 14.77 3.514 
93.33 14.77 3.514 

104.66 15.85 3.643 
116 15.85 3.773 

127.33 16.94 3.902 
138.66 16.94 4.031 

150 17.81 4.134 
161.33 18.68 4.341 

 
Table 33. Summary of Earthquake load and Wind load for modified frame (fifteen 

floor frame) 
  Summary of Loads   

Dead Load U.D.L at all beam 18.2 kips/ft   
Live Load U.D.L at all beam 18 kips/ft   

Earthquake and wind Load Joint Load     
Joint  Height (ft) Earthquake Load (kips) Wind Load (kips) 

2 16 7.47 4.961 
3 24.66 12.02 2.687 
4 33.33 16.74 2.687 
5 42 21.59 2.687 
6 50.67 26.54 2.687 
7 59.33 31.58 2.687 
8 70.67 38.27 3.514 
9 82 45.08 3.514 

10 93.33 51.97 3.514 
11 104.66 58.96 3.643 
12 104.66 66.02 3.773 
13 104.66 73.15 3.902 
14 104.66 80.34 4.031 
15 104.66 87.59 4.1349 
16 104.66 94.9 4.341 
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Figure 10.1. Joints numbering for fifteen-floor portal frame 
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Figure 10.2. Frame elements numbering for fifteen floor frame 
 
 
 
 
 
 

1 

2 

3 

4 

5 

6 

7 

8 
43 

49 

51 52 53 54 55 

56 

50 

15 22 29 36 

91 86 

64 

24 

92 

93 

94 

95 

96 

97 

98

99 

100

101

102

103

104

105

106

107

108

109

110 

112 

113 111 118 

171 

130 

190 191 192 193 194 195 

165 
135 140 145

131 

132 

133 

134 

166 167 168 

164 

163 

169 170 162 

125 127 161 

   10/5/2005 94



   

 
8.2.1 Case 1 - Maximum Span Moment for Beam 

am 64, first through 

Figure 11.1. Case 1: live load pattern for aximum span moment in beam– fifteen- 
floor frame 

In this section maximum span moment is being calculated in a be

interval FE analysis for 3 load combinations and then same member will be analyzed for 

the load pattern shown in Figure 11.1. 

 
 

64 

m
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A  

e) 
 

Beam 64 lysis 

s before this time again a load pattern that is conventionally being used for maximizing

span moment in beams, will be considered (Figure 11.2). Note that interval width has 

increased as compared to what was obtained in seven floor or ten floor cases in earlier 

sections (Table 10, 18 and 26). This is because of the fact that Interval FE analysis of 

fifteen-floor frame covers 290 load patterns while seven and ten floor had 242 and 260 

hence it cause lower and upper limit of span moment to deviate. However, maximum 

span moment from conventional analysis can deviate in either way depending upon the 

ratio of dead load and live load. In later part of work it will be shown about how the 

maximum and minimum values of parameters such as span moment or end moment in a 

member deviate from lower and upper limit of corresponding interval value.  

Table 34. Maximum span moment in beam 64 (fifteen floors fram

Interval Analysis Conventional Ana

Load tion Interval s-inch) Maxim nch)  Combina  Span Moment (kip um Span Moment (kips-i

1.4D [9293, 9293] 9293 

1.2 L D+1.6 [6991, 19440] 19410 

1.2D+L [7356, 15140] 15120 

 

8.2.2 Case 2 - Minimum Span Moment for Beam 

at cause minimum span moment in 

 
 

Same frame has been analyzed for load pattern th

beam. Same beam element has been picked up for the minimum span moment and only 

three load combinations have been picked up. 
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64 

 

Figure 11.2. Case 2: Live load pattern for minimum span moment in beam element 
– fifteen floors frame 

 
 

It is important to note that results from interval FE analysis contain the results from 

conventional analysis but difference between maximum span moment and upper limit of 

interval span moment (Table 26) or minimum span moment and lower limit of interval 

span moment (Table 27) is not significant enough, this is the reason that efforts has not 
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been put for analysis of all the 10 load combination, however column end moment show 

a significant difference in this regard and hence in such cases results from all the 10 load 

combinations are being used. 

 
Table 35. Minimum span moment in beam 64 (fifteen floor frame) 

 
Beam 64 Interval Analysis Conventional Analysis 

Load Combination Interval Span Moment (kips-inch) Minimum Span Moment (kips-inch) 

1.4D [9293, 9293] 9293 

1.2D+1.6L [6991, 19440] 7025 

1.2D+L [7356, 15140] 7378 
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8.2.3 Case 3 - Comparison for End Moments in Column 8 
 

In this case maximum and minimum end moments in column 8 are design parameters. 

Three live load patterns will be taken into consideration in order to analyze column 

conventionally. Figure 11.3, 11.4 and 11.5 shows live load pattern A, B and C. 

8  

Figure 11.3. Case 3: Live load pattern A for maximum/minimum end moment in 
column– fifteen-floor frame 
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Results from Interval FE Analysis will then be compared for upper and lower bound of 

interval end moments obtained from these three load patterns.  

 

8 

 

Figure 11.4. Case 3: Live load pattern B for maximum/minimum end moment in 
column– fifteen-floor frame 
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Table 36. End Moment in Column 8 as per effect of Live Load Pattern A, B and C 
(fifteen floor frame) 

 
Column 8 Interval Analysis Conventional Analysis 

  Load Pattern A Load Pattern B Load Pattern C 

Load Combination Interval End Moment 

(Kips-inch) 

End Moment 

 (Kips-inch) 

End Moment  

(Kips-inch) 

End Moment  

(Kips-inch) 

1.4D [-1542.88, -1542.88]    -1542.88 -1542.88 -1542.88 

1.2D+1.6L [-12968, 8579.49] 4715.4 -8662.33 -11923.8 

1.2D+L [-8600.9, 4866.26]   2451.2 -5909.88 -7948.28 

1.2D+0.8W [-1000.84, -1000.84] -1000.84 -1000.84 -1000.84 

1.2 D + 1.6 W + L [-7957.64, 5509.52] 3094.46 -5266.62 -7305.02 

1.2 D + 1.0 E1 + L [-3647.8, 9819.36] 7404.3 -956.777 -2995.18 

1.2 D + 1.0 E2 + L [-3613.85, 9853.3] 7438.25 -922.833 -2961.23 

0.9 D + 1.0 E1 [3933.48, 3933.48] 3933.48 3933.48 3933.48 

0.9 D + 1.0 E2 [3995.19, 3995.19] 3995.19 3995.19 3995.19 

0.9 D + 1.6 W [-348.592, -348.592] -348.592 -348.592 -348.592 

Load factors as Interval [-16317.8, 17639]    
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8 

 

Figure 11.5. Case 3: Live load pattern C for maximum/minimum end moment in 
column– fifteen-floor frame 

 
 

Results obtained from three conventional load patterns analysis and their comparison 

with interval FE analysis has been explained in details in subsequent section. However, 

all the results obtained until this point clearly shows that interval analysis guarantee to 

contain the results from all possible load pattern and it hold equally valid for all type of 
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load combinations. How close conventional analysis results can lie to the lower or upper 

bound of interval results is still a moot point as exact nature of deviation of conventional 

results from the bound of interval response, will depend on the type of load combination, 

ratio of dead load to live load, ratio of horizontal to vertical forces and on structural 

member properties itself. However, in next chapter efforts have been made in order to 

study the nature of such deviations. 
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9.  DISCUSSION 
 

In this section, results from all previous Interval FE Analysis and various conventional 

load pattern analysis that had already been done, will be studied in detail. Table 31 focus 

on beam element (beam 64), in the column A of table 31, interval span moments are 

being listed for three load combinations and for three type of frames, seven floors, ten 

floors and fifteen floors frame. First of all it is interesting to see that lower bound of 

interval span moment decreases and at the same time upper bound increase numbers of 

floors are increased. It happened because of the fact of increase in live load pattern that 

Interval FE analysis is accounting for.  

Table 37. Beam 64: Percentage deviation Vs number of floor 
 

Beam 64 
Column A Column B  Column C 

Interval FE Analysis Conventional Analysis % Deviation 
        

C
om

pa
ri

so
n 

fo
r 

Sp
an

 M
om

en
t 

Floors 
Interval FE Span 

Moment Minimum Maximum Maximum Minimum 
            
            
7 [7016, 19420] 7028 19410 0.05152 0.170746 

10 [7009, 19430] 7030 19410 0.10304 0.29872 
15 [6991, 19440] 7025 19410 0.15456 0.483986 
            Lo

ad
 C

om
bi

na
tio

n 
   

   
   

   
   

 
1.

2D
 +

 1
.6

L 

            
            
            
            
7 [7373, 15130] 7380 15120 0.066138 0.094851 

10 [7369, 15130] 7382 15120 0.066138 0.176104 
15 [7356, 15140] 7378 15120 0.132275 0.298184 
            Lo

ad
 C

om
bi

na
tio

n 
   

   
   

   
   

 
1.

2D
 +

 L
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Column B of table 31 lists the minimum and maximum span moment obtained from two 

typical load patterns (refer to earlier sections for details). Column C of table 31 shows 

percentage deviation of maximum span moment obtained from conventional analysis 

with upper bound on interval span moment. This percentage deviation in this particular 

case (beam 64) is not significant, however Figure 12a and 12b shows that this deviation is 

increasing as number of floors are increased, in fact for almost all the load combination 

that have been listed in table 31, this deviation build up to 300% as we increase number 

of floor from 7 to 15. 

 
Interval FE Analysis Vs Conventional Analysis

Span moment in beam 64 
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Figure 12a. Maximum and Minimum Span Moment in Beam 64 - Percentage 
deviation Vs number of floor for load combination 1.2 D + 1.6 L 

 
 
 
 
 

   10/5/2005 105



   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interval FE Analysis Vs Conventional Analysis
Span moment in beam 64 
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Figure 12b. Maximum and Minimum Span Moment in Beam 64 - Percentage 

deviation Vs number of floor for load combination 1.2 D + L 
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Table 38. Column 8: (Interval result – Conventional Result)*100/ Conventional Result Vs number of floor 
 
 

Comparison of Upper & Lower Bounds from Interval FE Analysis with corresponding Max & Min values for End Moment 
from Conventional Analysis 

  Column 8             
Interval FE Analysis Conventional Analysis Max +ve/-ve End Moment from Load Patterns  

              % Deviation 

C
pa

ri
so

n 
fo

r 
M

ax
im

um
 E

nd
 

M
om

en
t 

om

Floors Interval End Moment 

Load 
Pattern 

A 

Load 
Pattern 

B 

Load 
Pattern 

C Maximum +ve Maximum –ve Max +ve 
Max -

ve 
                  
7 [-12193.5, 8515.77] 4927.87 -8307.41 -11568.9 4927.87 -11568.9 72.80  5.39

10 [-12495.5, 8541.63] 4847.61 -8464.98 -11687.2 4847.61 -11687.2 76.20  6.91
15 [-12968, 8579.49] 4715.4 -8662.33 -11923.8 4715.4 -11923.8 81.94  8.75

L
ad

 
C

om
bi

na
tio

n 
 

1.
2D

 +
 1

.6
L 

o
  

                  
                  
7 [-7730.38, 5212.92] 2970.49 -5301.56 -7339.97 2970.49 -7339.97 75.49  5.31

10 [-7835.82, 5312.4] 3003.64 -5316.73 -7330.61 3003.64 -7330.61 76.86  6.89
15 [-7957.64, 5509.52] 3094.46 -5266.62 -7305.02 3094.46 -7305.02 78.04  8.93

L
ad

 
C

om
bi

na
tio

n 
   

 
1.

2D
 +

 L
 +

 1
.6

W
 

o

                  
                  
7 [-5563.06, 7380.24] 5137.8 -3134.25 -5172.65 5137.8 -5172.65 43.64  7.54

10 [-4857.24, 8290.98] 5982.22 -2338.15 -4352.03 5982.22 -4352.03 38.59  11.60
15 [-3613.85, 9853.3] 7438.25 -922.833 -2961.23 7438.25 -2961.23 32.46  22.03

L
ad

 
C

om
bi

na
tio

n 
   

 
1.

2D
 +

 L
 +

 E
2 

 

o
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Comparison of Upper & Lower Bounds from Interval FE Analysis with corresponding Max & Min values for End Moment from 
Conventional Analysis 

  Column 8             
Interval FE Analysis Conventional Analysis Max +ve/-ve End Moment from Load Patterns  

              % Deviation 

C
pa

ri
so

n 
fo

r 
xi

m
um

 E
nd

 
M

om

om

en
t 

M
a

Floors Interval End Moment 

Load 
Pattern 

A 

Load 
Pattern 

B 

Load 
Pattern 

C Maximum +ve Maximum -ve Max +ve 
Max -

ve 
                  
7 [-5591.51, 7351.79] 5109.36 -3162.69 -5201.09 5109.36 -5201.09 43.88  7.50

10 [-4887.83, 8260.4] 5951.64 -2368.74 -4352.03 5951.64 -4382.61 39.30  10.83
15 [-3647.8, 9819.36] 7404.3 -956.777      -2995.18 7404.3 -2995.18 32.61 21.78
                  

Lo
ad

 C
bi

na
tio

n 
   

   
   

   
 

1.
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 +
 L

 
1 

 
om

+ 
E
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However, these trends become dominant when results obtained from column 8 are 

studied. Table 32 lists down interval end moment and end moment obtained from three 

different load pattern. In previous sections, results are shown for ten load combination, 

however for the time being only these four load combinations have been extracted as 

these are the best representative of all the load combinations in order to show the 

capability of Interval FE Analysis.  

Once again interval end moment width increases as we increase number of floors.  For 

load combination 1.4 D + 1.6 L deviation of maximum positive end moment from upper 

bound of interval end moment is quite significant, for seven floor frame it is about 72%, 

this indicate the fact that at times conventional structural analysis may prove to be very 

underestimating and results can be drastically wrong.   

Interval FE Analysis Vs Conventional Analysis
End moments in column 8
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Figure 13a. Bounds on End Moment in Column 8- Percentage Deviation Vs number 
of floor for load combination 1.2D+1.6L 
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Interval FE Analysis Vs Conventional Analysis
End moments in column 8
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Figure 13b. Bounds on End Moment in Column 8- Percentage Vs number of floor 
for load combination 1.2D+1.0L+1.6W 

 

Interval FE Analysis Vs Conventional Analysis
End moments in column 8

0

5

10

15

20

25

30

35

40

45

50

5 7 9 11 13 15 17

Number of Floor

(IN
TR

VL
-C

O
N

V)
*1

00
/C

O
N

V

1.2D+1.0E2+L & Max +ve End
Moment

1.2D+1.9E2+L & Max -ve End
Moment

 
 

Figure 13c. Bounds on End Moment in Column 8- Percentage Deviation Vs number 
of floor for load combination 1.2D+1.0E2+L 
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In this specific example the deviation of conventional result from interval bounds for end 

moment in column 8, does not build up to that extent as it was for beam element 64. 

Table 32 shows that for 1.2D+1.6L, deviation grow up from 72.8% only up to 81.9% as 

we move from seven-story frame to fifteen-story frame. For the load combination 

1.2D+L+E2 and seven story frame, maximum negative end moment is about 7% of lower 

bound of interval end moment, and it grow up to 22% as we move to fifteen floor frame. 

However, for the same combination 1.2D+L+E2, deviation of maximum end moment 

from upper bound of interval end moment drops from 43% to 32.5%, and such drops can 

be attributed to the nature of earthquake load involved in the load combination, however 

it is important to note that in situations where it deviate a lot, safety of structure is 

potentially threatening.  

Additionally it is interesting to see that in order to capture exact critical scenario, interval 

FE analysis need only one interval run instead of running several load pattern. This can 

be verified as all the tables presented so far clearly show that the results obtained from 

conventional load pattern is strictly in between the lower and upper bounds of interval 

response. At the same time interval response will guarantee the enclosure of exact 

response within the sharp interval bounds. This kind of guarantee can never be assured by 

analyzing structure for few selected load patterns. Since interval response always contain 

all conventional structural analysis result that at times engineer would not even think to 

consider just because of the time and efforts needed, this is the most efficient and easiest 

approach available so far in order to find critical scenario for large and complicated real 

structures. Adoption of this technique in real analysis and design work will make life of 
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an engineer a lot simpler and hence will help them in ensuring safety of large-scale 

structures. 
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10.  Conclusions 
 
 

The presented work shows that structural response obtained from interval finite element 

analysis bounds the structural response from conventional structural analysis for all 

possible load patterns. Load combinations that don’t involve the presence of live load 

result in analyses that are identical as far as these two procedures (Interval finite element 

analysis and conventional load pattern analysis) are concerned. This is due to the fact that 

in such cases loads are considered completely deterministic and each method corresponds 

to one structural analysis iteration. 

However due to presence of live load, a number of live load patterns come into picture 

and multiple analyses are needed. Since interval loads can capture all the combinations of 

presence and absence of individual load, interval finite element analysis gives a lower 

and upper bound on the structural response. 

The difference between lower and upper bound can be related to the number of possible 

live load patterns. As we increase the number of floors in a frame, the numbers of load 

patterns also increases. In the current thesis work, it has been verified that the width of 

interval increases as we increase number of floors. 

The structural response obtained from a few selected live load patterns is not necessarily 

a critical scenario for all the design parameters that an engineer may need in a design. 

Thus, unless a complete load pattern analysis is done, the critical response predicted 

through such load patterns can vary significantly from the actual critical response. 

However the lower or/and upper bound of interval response if used in design practices, 
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will ensure that correct values of all the design parameters are used. In such cases, design 

will be more accurate and economic. 

The deviation of conventional load pattern analysis results from the bounds of interval 

response is independent of structural element type. It does not make any difference which 

structural element is picked up as the design element.  

Additionally all the structural parameters like span moments, end moments, shear force, 

axial force and joint displacements can be evaluated for lower and upper bounds through 

interval finite element analysis. Since all the parameters obtained in one run show 

interval enclosure on all the critical scenarios obtained from different load pattern 

analysis, interval finite element analysis proves to be very efficient as compared to 

conventional load pattern analysis. 

Interval finite element analysis provides a way to combine all the load patterns and load 

combinations through interval load factors and interval load. In current thesis work 

results obtained using interval load factors and interval loads are highly conservative as 

interval load factors has been formulated in a crude way. A more complex formulation 

for interval load factors would result in a much sharper interval response. 
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APPENDIX A 

Here is the computer program written in C++ for analyzing a portal frame under joint 

load and continuous loads and for load combination using interval finite element 

technique. Chapter 6 discusses this program in details. Here is the computer code 

attached. 

//Load Combination Frame finite element program 
//use conventional FEM formula for BASIC 
//LOAD: interval nodal load and element uniform load 
//use PROFIL to solve the system equation 
// by Dr. Rafi Muhanna / Hao Zhang / Vishal Saxena 
// June 25, 2002 
 
#include "intmat.h" 
#include "util.cpp" 
#include "func.h" 
#include <iostream.h> 
#include <fstream.h> 
#include <stdio.h> 
#include <math.h> 
 
class FRAME 
{ 
protected: 
 int NELE;//number of elements 
 int NNOD;//number of nodes 
 char* filename;//the inputdata filename 
 
 MATRIX mNode_info; 
 //node information, store:node number,support information,x and y coordinates 
 //MATRIX mEleInfo;//element connectivity and element uniform load,store: ele 
 number, connectivity, and uniform distribute load( positive, if the element 
 direction counterclockwize 90 to the uniform load direction) 
 MATRIX mEleInfo;//element connectivity 
 //MATRIX mNodalLoad;//nodal external load, store: x,y and theta 3 terms 
 repectively 
 //Dead Load 
 INTERVAL_VECTOR ivEleLoadDL;//element load,in our program, only 
 interval uniform load are allowed 
 //Live Load 
 INTERVAL_VECTOR ivEleLoadLL;//element load,in our program, only interval 
 uniform load are allowed 
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 //Earthquake Load : EQ coming from one direction 
 INTERVAL_MATRIX imNodalLoadEL;//interval nodal load, x y and theta 
 //Wind Load 
 INTERVAL_MATRIX imNodalLoadWL;//interval nodal load, x y and theta 
 //Load factor 
 INTERVAL_VECTOR loadFactor ; 
 INTERVAL_VECTOR ivPc;//assembled system nodal load,only include the 
 external loadal load 
 INTEGER_MATRIX IBOU;//record boundary conditions, 0:fixed, 1: free 
 MATRIX GSTF; 
 MATRIX mMaterial;//material, include: A,I and E 
 MATRIX mMatrix;//m matrix 
 MATRIX mMatrix_noBC;//m matrix without BC imposed, used in element force 
 calculation 
 INTERVAL_VECTOR ivDisplacement;//nodal displacement 
 INTERVAL_VECTOR LOAD_EBE_expand;//nodal load, assembled by imPc 
 public: 
 FRAME(); 
 void InitialData();//used in constructor 
 void ReadData(); 
 void Boundary();//construct IBOU,used in Calculation() 
 void Calculation();//assemble GSTF, calculate displacement, and element internal 
 forces 
 void ElementForce();//calculate element force 
 MATRIX Estf_Calculation( int );//this function return the element stiffness 
 MATRIX M_Matrix_Calculation(); 
 
}; 
 
FRAME::FRAME() 
{ 
 filename=new char[100]; 
 InitialData(); 
 Resize(mNode_info,NNOD,6);//stor the node number,support infor, x coordinate 
 and y coordinate 
 Clear (mNode_info); 
 Resize(mEleInfo,NELE,3);//store the ele #, connectivity 
 Clear (mEleInfo); 
 Resize (mMaterial,NELE,3);//store the A,I,E 
 Clear (mMaterial); 
  
 Resize (ivEleLoadDL,NELE);//store the interval dead load terms on x,y,theta 
 dofs, respectively 
 Clear (ivEleLoadDL); 
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 Resize (ivEleLoadLL,NELE);//store the interval live load terms on x,y,theta dofs, 
 respectively 
 Clear (ivEleLoadLL); 
 
 Resize (imNodalLoadEL,NNOD,3);//store the interval earthquake load  terms on 
 x,y,theta dofs, respectively 
 Clear (imNodalLoadEL); 
  
 Resize (imNodalLoadWL,NNOD,3);//store the interval wind load terms on 
 x,y,theta dofs, respectively 
 Clear (imNodalLoadWL); 
 
 Resize(loadFactor,4); 
 Clear(loadFactor); 
  
 Resize (ivPc,NNOD*3); 
 Clear (ivPc); 
 
 Resize (GSTF,NNOD*3,NNOD*3); 
 Clear (GSTF); 
 
 Resize (mMatrix,NNOD*3,NELE); 
 Clear (mMatrix); 
 
 Resize (mMatrix_noBC,NNOD*3,NELE); 
 Clear (mMatrix_noBC); 
 
 Resize (IBOU,NNOD,3); 
 Clear (IBOU); 
 
} 
 
void FRAME::InitialData() 
{ 
  fstream INFILE; 
      char *string=new char[80]; 
  cout<<"please specify the input data filename."<<endl; 
  scanf("%s",filename); 
  INFILE.open(filename,ios::in|ios::nocreate,1); 
  if (! INFILE){//in case the mistyped data file name 
   cout<<"Data file does not exit! program terminated, please try   
   later!"<<endl; 
   exit(0); 
  } 
 
  INFILE.getline(string,80); 
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  INFILE.getline(string,80); 
  INFILE >> NNOD>>NELE;//number of elements,number of nodes 
  
  INFILE.close(); 
} 
 
 
void FRAME::ReadData() 
{  
 fstream INFILE; 
 INFILE.open(filename,ios::in,1); 
 char *string=new char[180]; 
 INFILE.getline(string,180);//eliminate the first comment line 
 INFILE.getline(string,180); 
 INFILE >> NNOD; 
 INFILE >> NELE; 
 INFILE.getline(string,180); 
 INFILE.getline(string,180); 
 INFILE >> mNode_info; 
 INFILE.getline(string,180); 
 INFILE.getline(string,180); 
 INFILE >> mEleInfo; 
 INFILE.getline(string,180); 
 INFILE.getline(string,180); 
 INFILE >>mMaterial; 
 //Dead Load Information 
 INFILE.getline(string,180); 
 INFILE.getline(string,180); 
 INFILE >>ivEleLoadDL; 
 //Live Load Information  
 INFILE.getline(string,180); 
 INFILE.getline(string,180); 
 INFILE >>ivEleLoadLL; 
 //Earthquake Load Information 
 INFILE.getline(string,180); 
 INFILE.getline(string,180); 
 INFILE >>imNodalLoadEL; 
 //Wind Load Information 
 INFILE.getline(string,180); 
 INFILE.getline(string,180); 
 INFILE >>imNodalLoadWL; 
 //Load Factor Information 
 INFILE.getline(string,180); 
 INFILE.getline(string,180); 
 INFILE >>loadFactor; 
 INFILE.close(); 
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} 
 
void FRAME::Boundary() 
{ 
 Clear (IBOU); 
 for (int i=1;i<=NNOD;i++) 
  for (int j=1;j<=3;j++) 
  IBOU(i,j)=int (mNode_info(i,j+1)); 
} 
 
MATRIX FRAME::Estf_Calculation(int IE) 
{ 
 VECTOR vQie(6); 
 MATRIX ESTF(6,6); 
 MATRIX ESTT(6,6); 
 Clear (ESTT); 
 Clear (ESTF); 
 int I1= int(mEleInfo(IE,2)); 
 int I2= int(mEleInfo(IE,3)); 
 
 double X1= mNode_info(I1,5); 
 double Y1= mNode_info(I1,6); 
 double X2= mNode_info(I2,5); 
 double Y2= mNode_info(I2,6); 
 
 double AL= Sqrt(Sqr(X2-X1) + Sqr(Y2-Y1)); 
 double AA = mMaterial(IE,1);// material const: A (area of the element) 
 double AI = mMaterial(IE,2);//material const: I (moment of inertia) 
 double AE = mMaterial(IE,3);///material const: E (elastic modulus) 
     
        ESTF(1, 1) = AA*AE/AL; 
         ESTF(4, 1) = - ESTF(1, 1); 
         ESTF(2, 2) = 12.0*AE*AI/(AL*AL*AL); 
         ESTF(3, 2) = 6.0*AE*AI/(AL*AL); 
         ESTF(4, 2) = 0.0; 
         ESTF(5, 2) = -ESTF(2, 2); 
         ESTF(6, 2) = ESTF(3, 2); 
         ESTF(3, 3) = 4.0*AE*AI/AL; 
         ESTF(5, 3) = -ESTF(3, 2); 
         ESTF(6, 3) = ESTF(3, 3)/2.0; 
         ESTF(4, 4) = ESTF(1, 1); 
         ESTF(5, 5) = ESTF(2, 2); 
         ESTF(6, 5) = ESTF(5, 3); 
         ESTF(6, 6) = ESTF(3, 3); 
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 //calculate the element stiffness, 6x6,beam element, see the fomula of structural 
 mechanics PP317 
         int k=1; 
 for (int i = 1;i <= 6; i++,k++){ 
  for(int j= k; j <= 6; j++) 
                 ESTF(i, j) = ESTF (j, i); 
     } 
 //symetric element stiffness 
    
         double CO = (X2-X1)/AL; 
         double SI = (Y2-Y1)/AL; 
 MATRIX T (6,6); 
 Clear (T); 
         T(1, 1) = CO; 
         T(2, 1) = -SI; 
         T(1, 2) = SI; 
         T(2, 2) = CO; 
         T(3, 3) = 1.0;   
         T(4, 4) = CO; 
         T(5, 4) = -SI; 
         T(4, 5) = SI; 
         T(5, 4) = -SI; 
         T(4, 5) = SI; 
         T(5, 5) = CO; 
         T(6, 6) = 1.0;//calculate the transformation matrix 
 
 ESTT = Transpose(T) * ESTF * T; 
 vQie(1)=vQie(4)=0.; 
 vQie(2)=vQie(5)=AL/2; 
 vQie(3)=AL*AL/12; 
 vQie(6)=-AL*AL/12; 
  
 INTEGER_MATRIX IBOU_ELE (2, 3); 
 Clear (IBOU_ELE); 
 
 for ( int j=1;j<=3;j++){ 
  IBOU_ELE(1,j)=IBOU(I1,j); 
  IBOU_ELE(2,j)=IBOU(I2,j); 
 } 
 
 vQie=Transpose(T)*vQie; 
 for (i=1;i<=3;i++){ 
  mMatrix_noBC((I1-1)*3+i,IE)=vQie(i); 
  mMatrix_noBC((I2-1)*3+i,IE)=vQie(i+3); 
 } 
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 vQie=T*vQie; 
 for (i=1;i<=2;i++) 
 for (int j=1;j<=3;j++) 
 if (0==IBOU_ELE(i,j)) vQie((i-1)*3+j) = 0.;   
 vQie=Transpose(T)*vQie; 
 for (i=1;i<=3;i++){ 
  mMatrix((I1-1)*3+i,IE)=vQie(i); 
  mMatrix((I2-1)*3+i,IE)=vQie(i+3); 
 } 
return ESTT; 
} 
 
void FRAME::Calculation() 
{ 
 //here to get the material information 
 //here to get the nodal load information 
 int NDOF = 3 * NNOD; 
 VECTOR vP(NDOF); 
 Clear (vP); 
 
 //system stiffness matrix 
 //now do element loop, to calculate the element stiffness->assembly to system 
 stiffness matrix; 
 for (int IE=1;IE<=NELE;IE++){ 
  MATRIX ESTT(6,6); 
  ESTT = Estf_Calculation(IE); 
//==============================================================
============ 
//   Assembling the Global Stiffness Matrix, and load vector vP 
  int I1= int(mEleInfo(IE,2)); 
  int I2= int(mEleInfo(IE,3)); 
  INTEGER_VECTOR LM(6); 
  Clear (LM); 
  for (int I=1;I<=3;I++){ 
   LM(I)=I + 3*I1-3; 
   LM(I+3)= I + 3*I2-3; 
  } 
  for (I=1;I<=6;I++){ 
   int NN= LM(I); 
   //vP(NN)+=Pe(I); 
   for (int J=1;J<=6;J++){ 
    int MM=LM(J); 
    GSTF(NN,MM)+=ESTT(I,J); 
   } 
  } 
 }//the end of element loop, here we get GSTF 

   10/5/2005 121



   

 
//Next to introduce BC in GSTF to eliminat the singularity of GSTF  
//    rows and columns corresponding 
//    to the restrained ith DOF are zeros, GSTF(i,i)=1 
 for (int I=1;I<=NNOD;I++){ 
  for (int J=1;J<=3;J++){ 
   int MM=IBOU(I,J); 
   if (0==MM){ 
    int K=3*I-3+J; 
    for (int mm=1; mm<=NDOF;mm++){ 
     GSTF(mm,K)=0.; 
     GSTF(K,mm)=0.; 
    } 
    GSTF(K,K)=1.; 
   } 
  } 
 } 
 
 
 INTERVAL_VECTOR U(NDOF); 
 INTERVAL_VECTOR U1(NDOF); 
 INTERVAL_VECTOR U2(NDOF); 
 
 for (int i=1;i<=NNOD;i++){ 
  for (int j=1;j<=3;j++){ 
   int NN=(i-1)*3+j; 
   int MM=IBOU(i,j); 
  
 ivPc(NN)=loadFactor(2)*imNodalLoadEL(i,j)+loadFactor(4)*imNodalLoadWL(I
 ,j); 
   if(0==MM){ 
    ivPc(NN)=0.;//assemble nodal load  
   } 
  } 
 } 
   
 //now we have GSTF and ivPc,and introduced BC, next , to get displacement 
 // COMPUTATION OF SYSTEM DISPLACEMENTS 
 //U=Inverse(GSTF)*(ivPc+mMatrix*ivEleLoadLL);//have overestimation??!! 
 U1=Inverse(GSTF)*ivPc; 
  
 
 U2=Inverse(GSTF)*mMatrix*(loadFactor(1)*ivEleLoadDL+loadFactor(3)*ivEle
 LoadLL); 
 U=U1+U2; //Displacement for current Load Combination 
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 fstream Uoutput; 
 Uoutput.open("U-ISA-OUT.TESTEX2.txt",ios::out,1); 
 Uoutput<<"now output the interval nodal displacement."<<endl; 
 for (int IN=1;IN<=NNOD;IN++){ 
  Uoutput<<"Node: "<<IN<<"  "; 
  for ( int i=1;i<=3;i++) 
   Uoutput<<U((IN-1)*3+i)<<"   " ; 
  Uoutput<<endl; 
 
 } 
 Uoutput.close(); 
} 
 
void FRAME::ElementForce() 
{ 
  int NDOF = 3 * NNOD; 
   
  //Added by Vishal Saxena : 07/05/2003 
  //Parameters used in order to compute maximum Bending Moment within  
  the span of beam - Start 
  MATRIX EL(6,NELE); 
  VECTOR R1(NELE); 
  VECTOR R2(NELE); 
  VECTOR R3(NELE); 
  VECTOR R4(NELE); 
  VECTOR R5(NELE); 
  REAL dist; 
  REAL D; 
  INTERVAL max, max1, max2; 
  //Parameters used in order to compute maximum Bending Moment within  
  the span of beam - End 
 
  fstream Feoutput; 
  Feoutput.open("F-ISA-OUT.TESTEX2.txt",ios::out,1); 
  Feoutput<<"now output the interval element interval force"<<endl; 
 
  for (int IE=1;IE<=NELE;IE++){ 
   //if(IE == 8 || IE == 64){ 
   INTERVAL_VECTOR ivEF(6);//element force 
   INTERVAL iEleLoad;      
  
 iEleLoad=loadFactor(1)*ivEleLoadDL(IE)+loadFactor(3)*ivEleLoadLL(IE) ; 
   int el=(iEleLoad!= 0)?1:0; 
   int I1= int(mEleInfo(IE,2)); 
   int I2= int(mEleInfo(IE,3)); 
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   MATRIX mL(6,NDOF);//boolean matrix, mL*U=Ue 
   Clear (mL); 
   for (int i=1;i<=3;i++){ 
    mL(i,(I1-1)*3+i)=1; 
    mL(i+3,(I2-1)*3+i)=1; 
   } 
    
   //formula: see the structural mechanics book:P339, Fe=KeUe+Fp*/ 
  
 ivEF=Estf_Calculation(IE)*mL*Inverse(GSTF)*ivPc+(Estf_Calculation(IE)*Ml
 *Inverse(GSTF)*mMatrixel*mL*mMatrix_noBC)*(loadFactor(1)*ivEleLoadDL
 +loadFactor(3)*ivEleLoadLL); 
 
 EL = (Estf_Calculation(IE)*mL*Inverse(GSTF)*mMatrix-
 el*mL*mMatrix_noBC); 
     
   R1   = Row(EL,2); 
   R2   = Row(EL,3); 
   dist  = R1(IE); 
   D    = (dist * dist)/2.; 
   R3   = dist * R1;   
      Clear (R4); 
   R4(IE)= D; 
   R5   = R3 - R4;  
   max1 = (R5 - R2) * (loadFactor(1)*ivEleLoadDL); 
   max2 = (R5 - R2) * (loadFactor(3)*ivEleLoadLL); 
   max  = max1 + max2; 
 
    
   Feoutput<<"ELEMENT # "<<IE<<endl; 
   for (i=1;i<=6;i++){ 
    Feoutput<<ivEF(i)<<"       "; 
    Feoutput<<endl; 
   } 
   Feoutput << " Max-Min-DS span moments = " << max <<endl; 
   //} 
 
 
  }//End  of Element Loop 
 
 
  Feoutput.close(); 
  cout<<"Please see the results in the output file\n"; 
 
} 
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int main() 
{ 
 FRAME* pFRAME=new FRAME(); 
 pFRAME->ReadData(); 
 pFRAME->Boundary(); 
 pFRAME->Calculation(); 
 pFRAME->ElementForce(); 
 delete pFRAME; 
 return 0; 
 
} 
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