Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Analysis

Rafi L. Muhanna
Georgia Institute of Technology
USA

Collaborative Research Center 528
German National Science Foundation (DFG)
TU Dresden, Germany, June 19, 2007
Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions
Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions
Introduction- Uncertainty

- Uncertainty is unavoidable in engineering system
 - structural mechanics entails uncertainties in material, geometry and load parameters (aleatory-epistemic)

- Probabilistic approach is the traditional approach
 - requires sufficient information to validate the probabilistic model
 - criticism of the credibility of probabilistic approach when data is insufficient (Elishakoff, 1995; Ferson and Ginzburg, 1996; Möller and Beer, 2007)
Introduction- Interval Approach

- Nonprobabilistic approach for uncertainty modeling when only range information (tolerance) is available
 \[t = t_0 \pm \delta \]
- Represents an uncertain quantity by giving a range of possible values
 \[t = [t_0 - \delta, t_0 + \delta] \]
- How to define bounds on the possible ranges of uncertainty?
 - experimental data, measurements, statistical analysis, expert knowledge
Introduction- Why Interval?

- Simple and elegant
- Conforms to practical tolerance concept
- Describes the uncertainty that can not be appropriately modeled by probabilistic approach
- Computational basis for other uncertainty approaches (e.g., fuzzy set, random set, imprecise probability)

- Provides guaranteed enclosures
Outline

- Introduction
- **Interval Arithmetic**
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions
Interval arithmetic — Background

- Archimedes (287 – 212 B.C.)
 - A circle of radius one has an area equal to π
Interval arithmetic — Background

- Archimedes (287 – 212 B.C.)
 - A circle of radius one has an area equal to \(\pi \)
 - \(2 < \pi < 4 \)

\[
\frac{10}{3} < \pi < \frac{1}{7} < \frac{1}{71} < \pi < 3\frac{1}{7}
\]

\(\pi = [3.14085, 3.14286] \)
Interval arithmetic — Background

- Modern interval arithmetic
 - Physical constants or measurements
 \[g \in [9.8045, 9.8082] \]
 - Representation of numbers
 \[1/3 \approx 0.3333\ldots \quad \sqrt{2} \approx 1.4142\ldots \quad \pi \approx 3.1416\ldots \]
 \[1/3 \in [0.3333, 0.3334] \quad \sqrt{2} \in [1.4142, 1.4143] \quad \pi \in [3.1415, 3.1416] \]
 - Rounding errors
 \[1/0.12345 \approx 8.1004 \quad 1/0.12345 \in [8.1004, 8.1005] \]
Interval arithmetic

- Interval number represents a range of possible values within a closed set

\[x \equiv [\underline{x}, \bar{x}] := \{ x \in R \mid \underline{x} \leq x \leq \bar{x} \} \]
Interval Operations

Let $x = [a, b]$ and $y = [c, d]$ be two interval numbers

1. Addition

 $x + y = [a, b] + [c, d] = [a + c, b + d]$

2. Subtraction

 $x - y = [a, b] - [c, d] = [a - d, b - c]$

3. Multiplication

 $xy = \left[\min(ac, ad, bc, bd), \max(ac, ad, bc, bd) \right]$

4. Division

 $1 / x = \left[\frac{1}{b}, \frac{1}{a} \right]$
Properties of Interval Arithmetic

Let x, y and z be interval numbers

1. Commutative Law
 \[x + y = y + x \]
 \[xy = yx \]

2. Associative Law
 \[x + (y + z) = (x + y) + z \]
 \[x(yz) = (xy)z \]

3. *Distributive Law does not always hold, but*
 \[x(y + z) \subseteq xy + xz \]
The **DEPENDENCY** problem arises when one or several variables occur more than once in an interval expression

- $f(x) = x - x, \quad x = [1, 2]$
- $f(x) = [1 - 2, 2 - 1] = [-1, 1] \neq 0$
- $f(x, y) = \{ f(x, y) = x - y \mid x \in x, y \in y \}$

- $f(x) = x (1 - 1) \Rightarrow f(x) = 0$
- $f(x) = \{ f(x) = x - x \mid x \in x \}$
Sharp Results – Overestimation

- If a, b and c are interval numbers, then:
 \[a (b \pm c) \subseteq ab \pm ac \]

- If we set
 \[a = [-2, 2]; \quad b = [1, 2]; \quad c = [-2, 1], \]
 we get
 \[a (b + c) = [-2, 2]([1, 2] + [-2, 1]) = [-2, 2] [-1, 3] = [-6, 6] \]

- However,
 \[ab + ac = [-2, 2][1, 2] + [-2, 2][-2, 1] = [-4, 4] + [-4, 4] = [-8, 8] \]
Sharp Results – Overestimation

- Interval Vectors and Matrices
 - An interval matrix is such matrix that contains all real matrices whose elements are obtained from all possible values between the lower and upper bounds of its interval components

\[A = \{ A \in \mathbb{R}^{m \times n} \mid A_{ij} \in A_{ij} \text{ for } i = 1, \ldots, m; \ j = 1, \ldots, n \} \]
Sharp Results – Overestimation

- Let a, b, c and d be independent variables, each with interval $[1, 3]$

\[A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}, \quad A \times B = \begin{pmatrix} [-2, 2] & [-2, 2] \\ [-2, 2] & [-2, 2] \end{pmatrix} \]

\[A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B \text{phys} = \begin{pmatrix} b & -b \\ -b & b \end{pmatrix}, \quad A \times B \text{phys} = \begin{pmatrix} [b-b] & [b-b] \\ [b-b] & [b-b] \end{pmatrix} \]

\[A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B^\ast \text{phys} = b \times \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad A \times B^\ast \text{phys} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]
Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions
Finite Elements

Finite Element Method (FEM) is a numerical method that provides approximate solutions to differential equations (ODE and PDE)
Finite Elements - Uncertainty & Errors

- Mathematical model (validation)
- Discretization of the mathematical model into a computational framework
- Parameter uncertainty (loading, material properties)
- Rounding errors
Interval Finite Elements

Uncertain Data

Geometry
Materials
Loads

Interval Stiffness Matrix
\[K = \int B^T CB \, dV \]

Interval Load Vector

Element Level

\[K U = F \]
Interval Finite Elements

\[K U = F \]

\[K = \int B^T C B \, dV \quad = \text{Interval element stiffness matrix} \]

\[B = \text{Interval strain-displacement matrix} \]

\[C = \text{Interval elasticity matrix} \]

\[F = [F_1, \ldots, F_i, \ldots, F_n] = \text{Interval element load vector (traction)} \]

\[F_i = \int N_i \, t \, dA \]

\[N_i = \text{Shape function corresponding to the } i\text{-th DOF} \]

\[t = \text{Surface traction} \]
Interval Finite Elements (IFEM)

- Follows conventional FEM
- Loads, geometry and material property are expressed as interval quantities
- System response is a function of the interval variables and therefore varies in an interval
- Computing the exact response range is proven NP-hard
- The problem is to estimate the bounds on the unknown exact response range based on the bounds of the parameters
IFEM- Inner-Bound Methods

- Combinatorial method (Muhanna and Mullen 1995, Rao and Berke 1997)
- Sensitivity analysis method (Pownuk 2004)
- Perturbation (Mc William 2000)
- Monte Carlo sampling method

- Need for alternative methods that achieve
 - Rigorousness – guaranteed enclosure
 - Accuracy – sharp enclosure
 - Scalability – large scale problem
 - Efficiency
IFEM- Enclosure

- Linear static finite element
 - Popova 2003, and Kramer 2004
 - Neumaier and Pownuk 2004
 - Corliss, Foley, and Kearfott 2004

- Dynamic
 - Dessombz, 2000

- Free vibration-Buckling
 - Modares, Mullen 2004, and Billini and Muhanna 2005
Interval Finite Elements

- Interval Linear System of Equations

\[A \mathbf{x} = \mathbf{b} \]

\[
\begin{pmatrix}
2 & [-1, 0] \\
[-1, 0] & 2
\end{pmatrix}
\times
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
= \begin{pmatrix} 1.2 \\ -1.2 \end{pmatrix}
\]

Then \(A \in A \) iff

\[
A: = \begin{pmatrix}
2 & -\alpha \\
-\beta & 2
\end{pmatrix}
\]

with \(\alpha, \beta \in [0, 1] \)
Interval Finite Elements

\[A^H b = \Diamond S(A, b) = \begin{bmatrix} [0.3, 0.6] \\ [-0.6, -0.3] \end{bmatrix} \]

\[A^{-1} b = \begin{bmatrix} [0.2, 0.8] \\ [-0.8, -0.2] \end{bmatrix} \neq \but \supset A^H b \]

\[\Diamond S_{sym}(A, b) = \begin{bmatrix} [0.4, 0.6] \\ [-0.6, -0.4] \end{bmatrix} \neq A^H b \]

Points:

\[P_1 = (0.3, -0.6) \]
\[P_2 = (0.6, -0.6) \]
\[P_3 = (0.6, -0.3) \]
\[P_4 = (0.4, -0.4) \]
Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions
Naïve interval FEA

\[
\begin{pmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \Rightarrow \begin{pmatrix} [2.85, 3.15] & [-2.1, -1.9] \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 1 \end{pmatrix}
\]

- exact solution: \(u_2 = [1.429, 1.579], \quad u_3 = [1.905, 2.105] \)
- naïve solution: \(u_2 = [-0.052, 3.052], \quad u_3 = [0.098, 3.902] \)
- interval arithmetic assumes that all coefficients are independent
- uncertainty in the response is severely overestimated (1900%)
Element-By-Element (EBE) technique

- elements are detached – no element coupling
- structure stiffness matrix is block-diagonal \((k_1, \ldots, k_{Ne})\)
- the size of the system is increased

\[
u = (u_1, \ldots, u_{Ne})^T
\]

- need to impose necessary constraints for compatibility and equilibrium

Element-By-Element model
Element-By-Element

Suppose the modulus of elasticity is interval:

\[E = \hat{E}(1 + \delta) \]

\(\delta \): zero-midpoint interval

The element stiffness matrix can be split into two parts,

\[k = \hat{k}(I + d) = \hat{k} + \hat{kd} \]

\(\hat{k} \): deterministic part, element stiffness matrix evaluated using \(\hat{E} \),

\(\hat{kd} \): interval part

\(d \): interval diagonal matrix, diag(\(\delta \),...,\(\delta \)).
Element-By-Element

- Element stiffness matrix: \(k = \hat{k}(I + d) \)
- Structure stiffness matrix:
 \[
 K = \hat{K}(I + D) = \hat{K} + \hat{K}D
 \]
 or
 \[
 K = \begin{pmatrix}
 k_1 & & \\
 & \ddots & \\
 & & k_{Ne}
 \end{pmatrix} = \begin{pmatrix}
 \hat{k}_1 & & \\
 & \ddots & \\
 & & \hat{k}_{Ne}
 \end{pmatrix} \begin{pmatrix}
 I + \\
 & \ddots \\
 & & d_{Ne}
 \end{pmatrix}
 \]
Constraints

Impose necessary constraints for compatibility and equilibrium
- Penalty method
- Lagrange multiplier method

Element-By-Element model
Constraints – penalty method

Constraint conditions: $cu = 0$

Using the penalty method:

$$(K + Q)u = p$$

Q: penalty matrix, $Q = c^T \eta c$

η: diagonal matrix of penalty number η_i

Requires a careful choice of the penalty number

A spring of large stiffness is added to force node 2 and node 3 to have the same displacement.
Constraints — Lagrange multiplier

Constraint conditions: \(cu = 0 \)

Using the Lagrange multiplier method:

\[
\begin{pmatrix}
K & c^T \\
c & 0
\end{pmatrix}
\begin{pmatrix}
u \\
\lambda
\end{pmatrix}
=
\begin{pmatrix}
p \\
0
\end{pmatrix}
\]

\(\lambda \): Lagrange multiplier vector, introduced as new unknowns
Load in EBE

Nodal load \(p_b \)

\[p_b = (p_1, \ldots, p_{N_e})^T \]

where \(p_i = \int N^T \phi(x) dx \)

Suppose the surface traction \(\phi(x) \) is described by an interval function:

\[\phi(x) = \sum_{j=0}^{m} a_j x^j. \]

\(p_b \) can be rewritten as

\[p_b = WF \]

\(W \): deterministic matrix

\(F \): interval vector containing the interval coefficients of the surface traction
Fixed point iteration

- For the interval equation $Ax = b$,
 - preconditioning: $RAx = Rb$, R is the preconditioning matrix
 - transform it into $g(x^*) = x^*$:
 \[Rb - RAx_0 + (I - RA)x^* = x^*, \quad x = x^* + x_0 \]
- **Theorem** (Rump, 1990): for some interval vector x^*,
 - if $g(x^*) \subseteq \text{int}(x^*)$
 - then $A^Hb \subseteq x^* + x_0$
- Iteration algorithm:
 - iterate: $x^{*(l+1)} = z + G(e \cdot x^{*(l)})$
 - where $z = Rb - RAx_0$, $G = I - RA$, $R = \hat{A}^{-1}$, $\hat{A}x_0 = \hat{b}$
- No dependency handling
Fixed point iteration

- Interval FEA calls for a modified method which exploits the special form of the structure equations

\[(K + Q)u = p \text{ with } K = \hat{K} + \hat{K}D\]

- Choose \(R = (\hat{K} + Q)^{-1} \), construct iterations:

\[
u^{*(l+1)} = Rp - R(K + Q)u_0 + (I - R(K + Q))(\varepsilon \cdot u^{*(l)})
\]

\[= Rp - u_0 - \hat{K}D(u_0 + \varepsilon \cdot u^{*(l)})\]

\[= Rp - u_0 - \hat{K}M^{(l)}\Delta\]

if \(u^{*(l+1)} \subseteq \text{int}(u^{*(l)}) \), then \(u = u^{*(l+1)} + u_0 = Rp - \hat{K}M^{(l)}\Delta \)

\(\Delta \): interval vector, \(\Delta = (\delta_1, ..., \delta_{N_e})^T \)

The interval variables \(\delta_1, ..., \delta_{N_e} \) appear only once in each iteration.
Convergence of fixed point

- The algorithm converges if and only if $\rho(|G|) < 1$.
 - Smaller $\rho(|G|) \Rightarrow$ less iterations required, and less overestimation in results.
- To minimize $\rho(|G|)$:
 - Choose $R = \hat{A}^{-1}$ so that $G = I - RA$ has a small spectral radius.
 - Reduce the overestimation in G:
 $$G = I - RA = I - (\hat{K} + Q)^{-1}(\hat{K} + Q + \hat{K}D) = -R\hat{K}D$$
Stress calculation

- Conventional method:
 \[\sigma = CBu_e, \text{ (severe overestimation)} \]
 \(C \): elasticity matrix, \(B \): strain-displacement matrix

- Present method:
 \[E = (1 + \delta)\hat{E}, \quad C = (1 + \delta)\hat{C} \]
 \[\sigma = CBLu \]
 \[= CBL(Rp - R\hat{C}M^{(l)}\Delta) \]
 \[= (1 + \delta)(\hat{CBLR}p - \hat{CBLR}\hat{K}M^{(l)}\Delta) \]

\(L \): Boolean matrix, \(Lu = u_e \)
Element nodal force calculation

- Conventional method:
 \[f = T_e (k u_e - p_e), \quad \text{(severe overestimation)} \]

- Present method:
 \[
 \begin{align*}
 \left(T_e \right)_1 (k_1 u_e)_1 & - (p_e)_1 \\
 \vdots \\
 \left(T_e \right)_{N_e} (k_{N_e} u_e)_{N_e} & - (p_e)_{N_e}
 \end{align*}
 \]
 in the EBE model, \(T(Ku - p_b) = \)
 \[
 \begin{align*}
 \left(T_e \right)_1 (k_1 u_e)_1 & - (p_e)_1 \\
 \vdots \\
 \left(T_e \right)_{N_e} (k_{N_e} u_e)_{N_e} & - (p_e)_{N_e}
 \end{align*}
 \]
 from \((K + Q)u = p_c + p_b \Rightarrow T(Ku - p_b) = T(p_c - Qu)\)
 Calculate \(T(p_c - Qu) \) to obtain the element nodal forces for all elements.
Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions
Numerical example

- Examine the rigorousness, accuracy, scalability, and efficiency of the present method
- Comparison with the alternative methods
 - the combinatorial method, sensitivity analysis method, and Monte Carlo sampling method
 - these alternative methods give inner estimation

\[x : \text{exact solution, } x_i : \text{inner bound, } x_o : \text{outer bound} \]
Examples – Load Uncertainty

- Four-bay forty-story frame
Examples – Load Uncertainty

- Four-bay forty-story frame

Loading A Loading B Loading C Loading D
Examples – Load Uncertainty

- Four-bay forty-story frame

Total number of floor load patterns

\[2^{160} = 1.46 \times 10^{48}\]

If one were able to calculate

10,000 \textit{patterns} / \text{s}

there has not been sufficient time since
the creation of the universe (4-8) billion
years? to solve all load patterns for this
simple structure

Material \textit{A36}, Beams \textit{W24 x 55},
Columns \textit{W14 x 398}
Examples – Load Uncertainty

- Four-bay forty-story frame

Four bay forty floor frame - Interval solutions for shear force and bending moment of first floor columns

<table>
<thead>
<tr>
<th>Elements</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
| Combination solution | Total number of required combinations = $1.461501637 \times 10^{48}$
| Interval | Axial force (kN) | [-2034.5, 185.7] | [-2161.7, 0.0] | [-2226.7, 0.0] | | |
| solution | Shear force (kN) | [-5.1, 0.9] | [-5.8, 5.0] | [-5.0, 5.0] |
| Moment (kN m) | [-10.3, 4.5] | [-15.3, 5.4] | [-10.6, 9.3] | [-17, 15.2] | [-8.9, 8.9] | [-16, 16] |
Examples — Load Uncertainty

> Ten-bay truss

\[A = 0.006 \text{ m}^2 \]
\[E = 2.0 \times 10^8 \text{ kPa} \]

\[F = [-4.28, 28.3] \text{ kN} \]

\[F_{\text{min}} = -(0.062 + 0.139 + 0.113) \times 20 = -4.28 \text{ kN} \]

\[F_{\text{max}} = (0.464 + 0.309 + 0.258 + 0.192 + 0.128 + 0.064) \times 20 = 28.3 \text{ kN} \]
Examples – Load Uncertainty

➢ Three-Span Beam

![Diagram of a three-span beam with load distribution and bending moments.](image)
Truss structure

$A_1, A_2, A_3, A_{13}, A_{14}, A_{15} : [9.95, 10.05] \text{ cm}^2 (1\% \text{ uncertainty})$

cross-sectional area

of all other elements: $[5.97, 6.03] \text{ cm}^2 (1\% \text{ uncertainty})$

modulus of elasticity of all elements: 200,000 MPa

$p_1 = [190, 210] \text{ kN}, p_2 = [95, 105] \text{ kN}$

$p_3 = [95, 105] \text{ kN}, p_4 = [85.5, 94.5] \text{ kN} (10\% \text{ uncertainty})$
Truss structure - results

Table: results of selected responses

<table>
<thead>
<tr>
<th>Method</th>
<th>u_5(LB)</th>
<th>u_5(UB)</th>
<th>N_7(LB)</th>
<th>N_7(UB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinatorial</td>
<td>0.017676</td>
<td>0.019756</td>
<td>273.562</td>
<td>303.584</td>
</tr>
<tr>
<td>Naïve IFEA</td>
<td>-0.011216</td>
<td>0.048636</td>
<td>-717.152</td>
<td>1297.124</td>
</tr>
<tr>
<td>δ</td>
<td>163.45%</td>
<td>146.18%</td>
<td>362%</td>
<td>327%</td>
</tr>
<tr>
<td>Present IFEA</td>
<td>0.017642</td>
<td>0.019778</td>
<td>273.049</td>
<td>304.037</td>
</tr>
<tr>
<td>δ</td>
<td>0.19%</td>
<td>0.11%</td>
<td>0.19%</td>
<td>0.15%</td>
</tr>
</tbody>
</table>

unit: u_5 (m), N_7 (kN). LB: lower bound; UB: upper bound.
Truss structure – results

- for moderate uncertainty (≤ 5%), very sharp bounds are obtained
- for relatively large uncertainty, reasonable bounds are obtained

in the case of 10% uncertainty:
Comb.: $\mathbf{u}_5 = [0.017711, 0.019811]$, IFEM: $\mathbf{u}_5 = [0.017252, 0.020168]$
(relative difference: 2.59%, 1.80% for LB, UB, respectively)
Truss with a large number of interval variables

\[A_i = [0.995, 1.005] A_0, \]
\[E_i = [0.995, 1.005] E_0 \] for \(i = 1, \ldots, N_e \)

<table>
<thead>
<tr>
<th>story (\times) bay</th>
<th>(N_e)</th>
<th>(N_v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (\times) 10</td>
<td>123</td>
<td>246</td>
</tr>
<tr>
<td>4 (\times) 12</td>
<td>196</td>
<td>392</td>
</tr>
<tr>
<td>4 (\times) 20</td>
<td>324</td>
<td>648</td>
</tr>
<tr>
<td>5 (\times) 22</td>
<td>445</td>
<td>890</td>
</tr>
<tr>
<td>5 (\times) 30</td>
<td>605</td>
<td>1210</td>
</tr>
<tr>
<td>6 (\times) 30</td>
<td>726</td>
<td>1452</td>
</tr>
<tr>
<td>6 (\times) 35</td>
<td>846</td>
<td>1692</td>
</tr>
<tr>
<td>6 (\times) 40</td>
<td>966</td>
<td>1932</td>
</tr>
<tr>
<td>7 (\times) 40</td>
<td>1127</td>
<td>2254</td>
</tr>
<tr>
<td>8 (\times) 40</td>
<td>1288</td>
<td>2576</td>
</tr>
</tbody>
</table>
Scalability study

vertical displacement at right upper corner (node D): $v_D = a \frac{PL}{E_0 A_0}$

Table: displacement at node D

<table>
<thead>
<tr>
<th>Story \times bay</th>
<th>Sensitivity Analysis</th>
<th>Present IFEA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LB*</td>
<td>UB*</td>
</tr>
<tr>
<td>3 \times 10</td>
<td>2.5143</td>
<td>2.5756</td>
</tr>
<tr>
<td>4 \times 20</td>
<td>3.2592</td>
<td>3.3418</td>
</tr>
<tr>
<td>5 \times 30</td>
<td>4.0486</td>
<td>4.1532</td>
</tr>
<tr>
<td>6 \times 35</td>
<td>4.8482</td>
<td>4.9751</td>
</tr>
<tr>
<td>7 \times 40</td>
<td>5.6461</td>
<td>5.7954</td>
</tr>
<tr>
<td>8 \times 40</td>
<td>6.4570</td>
<td>6.6289</td>
</tr>
</tbody>
</table>

$\delta_{LB} = \frac{|LB - LB^*|}{LB^*}$, $\delta_{LB} = \frac{|UB - UB^*|}{UB^*}$, $\delta_{LB} = \frac{(LB - LB^*)}{LB^*}$
Efficiency study

Table: CPU time for the analyses with the present method (unit: seconds)

<table>
<thead>
<tr>
<th>Story × bay</th>
<th>(N_v)</th>
<th>Iteration</th>
<th>(t_i)</th>
<th>(t_r)</th>
<th>(t)</th>
<th>(t_i/t)</th>
<th>(t_r/t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 × 10</td>
<td>246</td>
<td>4</td>
<td>0.14</td>
<td>0.56</td>
<td>0.72</td>
<td>19.5%</td>
<td>78.4%</td>
</tr>
<tr>
<td>4 × 20</td>
<td>648</td>
<td>5</td>
<td>1.27</td>
<td>8.80</td>
<td>10.17</td>
<td>12.4%</td>
<td>80.5%</td>
</tr>
<tr>
<td>5 × 30</td>
<td>1210</td>
<td>6</td>
<td>6.09</td>
<td>53.17</td>
<td>59.70</td>
<td>10.2%</td>
<td>89.1%</td>
</tr>
<tr>
<td>6 × 35</td>
<td>1692</td>
<td>6</td>
<td>15.11</td>
<td>140.23</td>
<td>156.27</td>
<td>9.7%</td>
<td>89.7%</td>
</tr>
<tr>
<td>7 × 40</td>
<td>2254</td>
<td>6</td>
<td>32.53</td>
<td>323.14</td>
<td>358.76</td>
<td>9.1%</td>
<td>90.1%</td>
</tr>
<tr>
<td>8 × 40</td>
<td>2576</td>
<td>7</td>
<td>48.454</td>
<td>475.72</td>
<td>528.45</td>
<td>9.2%</td>
<td>90.0%</td>
</tr>
</tbody>
</table>

\(t_i \): iteration time, \(t_r \): CPU time for matrix inversion, \(t \): total comp. CPU time

- majority of time is spent on matrix inversion
Efficiency study

Computational time: a comparison of the sensitivity analysis method and the present method

<table>
<thead>
<tr>
<th>N_v</th>
<th>Sens.</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>246</td>
<td>1.06</td>
<td>0.72</td>
</tr>
<tr>
<td>648</td>
<td>64.05</td>
<td>10.17</td>
</tr>
<tr>
<td>1210</td>
<td>965.86</td>
<td>59.7</td>
</tr>
<tr>
<td>1692</td>
<td>4100</td>
<td>156.3</td>
</tr>
<tr>
<td>2254</td>
<td>14450</td>
<td>358.8</td>
</tr>
<tr>
<td>2576</td>
<td>32402</td>
<td>528.45</td>
</tr>
</tbody>
</table>

0 500 1000 1500 2000 2500

CPU time (sec)

0 5000 10000 15000 20000 25000 30000 35000

Number of interval variables

9 hr 9 min
Plate with quarter-circle cutout

- thickness: 0.005m
- Possion ratio: 0.3
- load: 100kN/m
- modulus of elasticity: $E = [199, 201]$ GPa

- number of element: 352
- element type: six-node isoparametric quadratic triangle
- results presented: u_A, v_E, σ_{xx} and σ_{yy} at node F
Plate with quarter-circle cutout

Case 1: the modulus of elasticity for each element varies independently in the interval [199, 201] GPa.

<table>
<thead>
<tr>
<th>Response</th>
<th>Monte Carlo sampling*</th>
<th>Present IFEA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LB</td>
<td>UB</td>
</tr>
<tr>
<td>u_A (10^{-5} m)</td>
<td>1.19094</td>
<td>1.20081</td>
</tr>
<tr>
<td>v_E (10^{-5} m)</td>
<td>-0.42638</td>
<td>-0.42238</td>
</tr>
<tr>
<td>σ_{xx} (MPa)</td>
<td>13.164</td>
<td>13.223</td>
</tr>
<tr>
<td>σ_{yy} (MPa)</td>
<td>1.803</td>
<td>1.882</td>
</tr>
</tbody>
</table>

*10^6 samples are made.
Outline

- Introduction
- Interval Arithmetic
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions
Conclusions

- Development and implementation of IFEM
 - uncertain material, geometry and load parameters are described by interval variables
 - interval arithmetic is used to guarantee an enclosure of response

- Enhanced dependence problem control
 - use Element-By-Element technique
 - use the penalty method or Lagrange multiplier method to impose constraints
 - modify and enhance fixed point iteration to take into account the dependence problem
 - develop special algorithms to calculate stress and element nodal force
Conclusions

- The method is generally applicable to linear static FEM, regardless of element type
- Evaluation of the present method
 - Rigorousness: in all the examples, the results obtained by the present method enclose those from the alternative methods
 - Accuracy: sharp results are obtained for moderate parameter uncertainty (no more than 5%); reasonable results are obtained for relatively large parameter uncertainty (5%~10%)
Conclusions

- Scalability: the accuracy of the method remains at the same level with increase of the problem scale
- Efficiency: the present method is significantly superior to the conventional methods such as the combinatorial, Monte Carlo sampling, and sensitivity analysis method
- The present IFEM represents an efficient method to handle uncertainty in engineering applications
Center for Reliable Engineering Computing (REC)

We handle computations with care
Frame structure

<table>
<thead>
<tr>
<th>Member</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>W12×19</td>
</tr>
<tr>
<td>C₂</td>
<td>W14×132</td>
</tr>
<tr>
<td>C₃</td>
<td>W14×109</td>
</tr>
<tr>
<td>C₄</td>
<td>W10×12</td>
</tr>
<tr>
<td>C₅</td>
<td>W14×109</td>
</tr>
<tr>
<td>C₆</td>
<td>W14×109</td>
</tr>
<tr>
<td>B₁</td>
<td>W27×84</td>
</tr>
<tr>
<td>B₂</td>
<td>W36×135</td>
</tr>
<tr>
<td>B₃</td>
<td>W18×40</td>
</tr>
<tr>
<td>B₄</td>
<td>W27×94</td>
</tr>
</tbody>
</table>

results listed: nodal forces at the left node of member B₂
Frame structure – case 1

Case 1: load uncertainty
\[w_1 = [105.8, 113.1] \text{kN/m}, \quad w_2 = [105.8, 113.1] \text{kN/m}, \]
\[w_3 = [49.255, 52.905] \text{kN/m}, \quad w_4 = [49.255, 52.905] \text{kN/m}, \]

Table: Nodal forces at the left node of member B_2

<table>
<thead>
<tr>
<th>Nodal force</th>
<th>Combinatorial</th>
<th>Present IFEA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LB</td>
<td>UB</td>
</tr>
<tr>
<td>Axial (kN)</td>
<td>219.60</td>
<td>239.37</td>
</tr>
<tr>
<td>Shear (kN)</td>
<td>833.61</td>
<td>891.90</td>
</tr>
<tr>
<td>Moment (kN·m)</td>
<td>1847.21</td>
<td>1974.95</td>
</tr>
</tbody>
</table>

- exact solution is obtained in the case of load uncertainty
Frame structure – case 2

Case 2: stiffness uncertainty and load uncertainty
1% uncertainty introduced to A, I, and E of each element.
Number of interval variables: 34.

Table: Nodal forces at the left node of member B_2

<table>
<thead>
<tr>
<th>Nodal force</th>
<th>Monte Carlo sampling*</th>
<th>Present IFEA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LB</td>
<td>UB</td>
</tr>
<tr>
<td>Axial (kN)</td>
<td>218.23</td>
<td>240.98</td>
</tr>
<tr>
<td>Shear (kN)</td>
<td>833.34</td>
<td>892.24</td>
</tr>
<tr>
<td>Moment (kN.m)</td>
<td>1842.86</td>
<td>1979.32</td>
</tr>
</tbody>
</table>

*10^6 samples are made.