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IntroductionIntroduction-- UncertaintyUncertainty

Uncertainty is unavoidable in engineering system
structural mechanics entails uncertainties in material, 
geometry and load parameters

Probabilistic approach is the traditional approach
requires sufficient information to validate the 
probabilistic model
criticism of the credibility of probabilistic approach 
when data is insufficient (Elishakoff, 1995; Ferson 
and Ginzburg, 1996)



IntroductionIntroduction-- Interval ApproachInterval Approach
Nonprobabilistic approach for uncertainty modeling when 
only range information (tolerance) is available

Represents an uncertain quantity by giving a range of possible 
values

How to define bounds on the possible ranges of uncertainty?
experimental data, measurements, statistical analysis, 
expert knowledge

0t t δ= ±

0 0[ ,  ]t t tδ δ= − +



IntroductionIntroduction-- Why Interval?Why Interval?

Simple and elegant
Conforms to practical tolerance concept
Describes the uncertainty that can not be appropriately 
modeled by probabilistic approach

Computational basis for other uncertainty approaches 
(e.g., fuzzy set, random set)

Provides guaranteed enclosuresProvides guaranteed enclosures



IntroductionIntroduction-- Finite Element MethodFinite Element Method

Finite Element Method (FEM) is a numerical 
method that provides approximate solutions to 
partial differential equations



IntroductionIntroduction-- Uncertainty & Errors Uncertainty & Errors 

Mathematical model (validation)
Discretization of the mathematical model 
into a computational framework 
Parameter uncertainty (loading, material 
properties)
Rounding errors



OutlineOutline

IntroductionIntroduction
Interval Finite ElementsInterval Finite Elements
ElementElement--byby--ElementElement
ExamplesExamples
ConclusionsConclusions



Interval Finite ElementsInterval Finite Elements
Uncertain Data

Geometry Materials Loads

Interval Stiffness Matrix Interval Load Vector
CB dVBK T∫= dAt NF ii ∫=

K U = FElement Level



= Interval element stiffness matrix
B = Interval strain-displacement matrix
C = Interval elasticity matrix
F = [F1, ... Fi, ... Fn] = Interval element load vector (traction) 

 C B dVBK = T
∫

Ni = Shape function corresponding to the i-th DOF
t = Surface traction

∫= dAtNF ii    

K U = F

Interval Finite ElementsInterval Finite Elements



Interval Finite Elements (IFEM)Interval Finite Elements (IFEM)
Follows conventional FEM
Loads, geometry and material property are expressed as 
interval quantities
System response is a function of the interval variables 
and therefore varies in an interval
Computing the exact response range is proven NP-hard
The problem is to estimate the bounds on the unknown 
exact response range based on the bounds of the 
parameters



IFEMIFEM-- InnerInner--Bound MethodsBound Methods

Combinatorial method (Muhanna and Mullen 1995, 
Rao and Berke 1997)
Sensitivity analysis method (Pownuk 2004)
Perturbation (Mc William 2000)
Monte Carlo sampling method

Need for alternative methods that achieve
Rigorousness – guaranteed enclosure
Accuracy – sharp enclosure
Scalability – large scale problem
Efficiency



IFEMIFEM-- EnclosureEnclosure
Linear static finite element 

Muhanna, Mullen, 1995, 1999, 2001,and Zhang 2004
Popova 2003, and Kramer 2004
Neumaier and Pownuk 2004
Corliss, Foley, and Kearfott 2004

Dynamic
Dessombz, 2000

Free vibration-Buckling
Modares, Mullen 2004, and Billini and Muhanna 2005



Interval arithmetic 

1 2( , ) ([0,1],  [ 2,1])
midpoint, width, absolute value: defined componentwise

T T= = −x x x

Interval number:

Interval vector and interval matrix, e.g.,

Notations

[ ,  ]x x=x

midpoint: ( ) / 2,   width: wid( ) ,
absolute value: | | max{| |,| |}.

x x x x
x x

= + = −
=

x x
x

(

intervals: boldface, e.g., , , 
real: non-boldface, ,x A∈ ∈

x b A
x A



Linear interval equation
Linear interval equation
Ax = b ( A∈ A, b ∈ b)

Solution set
Σ(A, b) = {x ∈ R | ∃A∈A ∃b∈ b: Ax = b}

Hull of the solution set Σ(A, b) 
AHb := ◊ Σ(A, b)



Linear interval equation
Example

1

2

2 [ 1,  0] 1.2
[ 1,  0] 2 1.2

−     
=    − −    

x
x

x2

−1.0

x1

−0.5

0.5 1.0

Enclosure

Solution set

Hull
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Naïve interval FEA

1 2 2 1 1 1

2 2 2 2 2

[2.85,  3.15] [ 2.1,  1.9] 0.5
[ 2.1,  1.9] [1.9,  2.1] 1

k k k u p
k k u p
+ − − −         

= ⇒ =         − − −         

u
u

1 1 1 1

2 2 2 2

1 2

/ [0.95,  1.05],   
/ [1.9,  2.1],
0.5,    1

E A L
E A L
p p

= =
= =

= =

k
k

exact solution: u1= [1.429, 1.579],        u2 = [1.905, 2.105]
naïve solution: u1 = [－0.052, 3.052],    u2 = [0.098, 3.902]
interval arithmetic assumes that all coefficients are 
independent
uncertainty in the response is severely overestimated 

p 1

E2, A2 , L2

1 2

E1, A1 , L1

1 2
p 2

3



Element-By-Element 
Element-By-Element (EBE) technique 

elements are detached – no element coupling
structure stiffness matrix is block-diagonal (k1 ,…, kNe)
the size of the system is increased

u = (u1, …, uNe)T

need to impose necessary constraints for compatibility 
and equilibrium

1 2 3 4

E1, A1, L1

u1
u2

u3 u4

1 2

E2, A2, L2

Element-By-Element model



Element-By-Element
Suppose the modulus of elasticity is interval: 

(1 )                                                     
: zero-midpoint interval

The element stiffness matrix can be split 

E= +                       E δ
δ

(

into two parts, 

                 ( )

: deterministic part, element stiffness matrix evalued using ,

: interval part
: interval diagonal m

k I k k

k E

k

= + = +k d d                                              

d
d

( ( (

( (

(

atrix, diag( ,..., ).δ δ



Element-By-Element

1 1 1

Structure stiffness matrix:   

                         ( )                               
or

e ee
N NN

K I K K

k
I

k

= + = +

     
     

= = +     
           

K D D

k d
K

k d

( ( (

(

O O O
(

:

:

Element stiffness matrix:    ( )k I= +k d
(



Constraints

Impose necessary constraints for compatibility 
and equilibrium

Penalty method
Lagrange multiplier method

Element-By-Element model

1 2 3 4

E1, A1, L1

u1
u2

u3 u4

1 2

E2, A2, L2



Constraints – penalty method
Constraint conditions: 0
Using the penalty method:
                       ( )                

:  penalty matrix, 
:  diagonal matrix of penalty number 

Requires a

T

i

c

Q
Q Q c cη
η η

=

+ =

=

u

K u p                            

 careful choice of the penatly number

A spring of large stiffness is added 
to force node 2 and node 3 to have 
the same displacement.

1 2 3 4
1 2

E1, A1, L1 E2, A2, L2



Constraints – Lagrange multiplier

Constraint conditions: 0
Using the Lagrange multiplier method:

                                                        
00

:  Lagrange multiplier vector, introdued as new unk

T

c

c
c

=

    
=    

    

u

u pK
λ

λ nowns



Load in EBE
Nodal load applied by elements pb

1

0

                              ( ,..., )                             

where ( )

Suppose the surface traction ( ) is described by 

an interval function: ( ) .

 can be rewritten 

e

T
b N

T
i

m
j

j
j

b

N x dx

x

x x

φ

φ

φ
=

=

=

=

∫

∑

p p p

p

a

p as
                                                                        

: deterministic matrix
: interval vector containing the interval coefficients of

the surface tractiton

b W
W

=p F

F



Fixed point iteration 
For the interval equation Ax = b, 

preconditioning: RAx = Rb, R is the preconditioning matrix

transform it into g (x* ) = x*:

R b – RA x0+ (I – RA) x* = x*,  x = x* + x0

Theorem (Rump, 1990): for some interval vector x* ,

if g (x* ) ⊆ int (x* )
then AH b ⊆ x* + x0

Iteration algorithm: 

No dependency handling

*( 1) *( )

1
0 0

iterate:    ( ) 

where ,  , ,  

l l

R R x I R R A Ax b

+

−

= + ⋅

= − = − = =

x z G ε x

z b A G A
(( (



Fixed point iteration

1

*( 1)
0

Interval FEA calls for a modified method which exploits
the special form of the structure equations

           ( ) with 

Choose ( ) ,  construct iterations:
( ) ( ( )l

Q K K

R K Q
R R Q u I R Q

−

+

+ = +

= +

= − + + − +

K u p K = D

u p K K

( (

(

*( )

*( )
0 0

( )
0

*( 1) *( ) *( 1) ( )
0

1

1

)( )

         ( )

         

int( ),  then 

: interval vector, ,...,

The interval variables ,...,  appear only o
e

e

l

l

l

l l l l

T
N

N

R u RK u

R u RK

u R RK

δ δ

δ δ

+ +

⋅

= − − ⋅

= − −

⊆ + = −

∆

if  ∆

∆ ∆ = ( )

ε u

p D + ε u

p M

u u u = u p M

(

(

(

nce in each iteration.

Most sources of dependence are eliminated.

,

,



Convergence of fixed point 
The algorithm converges if and only if

To minimize ρ(|G|):
:

1

1choose  so that  
has a small spectral radius

R A I R−= = −G A
(

(| |) 1ρ <G

1

reduce the overestimation in 
( ) ( )I R K Q K Q K RK−− − + + + = −

G
G = A = I D D

( ( ( (

smaller (| |)  less iterations required, 
and less overestimation in results

ρ ⇒G



Stress calculation
Conventional method:

Present method:

                   , (severe overestimation)
: elasticity matrix, : strain-displacement matrix

eB
B

=σ C u
C

( )

( )

(1 ) ,   (1 )

  ( )

  (1 )( )

l

l

E C
BL

BL R RK

CBLR CBLRK

= + = +
=

−

+ −

∆

∆

E δ C δ
σ C u

= C p M

= δ p M

((

(

( ( (

:  Boolean matrix, eL L =u u



Element nodal force calculation
Conventional method:

Present method:

( ),    (severe overestimation)e e eT= −f ku p

1 1 1 1( ) ( ( ) ( ) )
in the EBE model, ( )

( ) ( ( ) ( ) )
e e e e

e e e

b

e N N e N e N

T
 −
 

− =  
 − 

T k u p
Ku p

T k u p
M

from ( ) ( ) ( )
Calculate ( ) to obtain the element nodal forces 
for all elements.

c b b c

c

Q T T Q
T Q
+ = + ⇒ − = −

−
K u p p Ku p p u

p u
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Numerical example
Examine the rigorousness, accuracy, scalability, and 
efficiency of the present method
Comparison with the alternative methods 

the combinatorial method, sensitivity analysis method, 
and Monte Carlo sampling method
these alternative methods give inner estimation

x
xi

x
xo

i o: exact solution, : inner bound, : outer boundx x x



Truss structure

4.5m4.5m 4.5m4.5m

4.5m

1
2 5 6

8

743

1

2
3

4

5

6

7

8

9

10

11

12

14

13
15

P1P2 P3

P4

2
1 2 3 13 14 15

2

, , , , :  [9.95,  10.05] cm (1% uncertainty) 
cross-sectional area 
of all other elements:     [5.97,  6.03] cm (1% uncertainty) 
modulus of elasticity of all elements: 200,000 MPa 

A A A , A A A

1 2

3 4

[190, 210] kN, [95,105] kN 
[95,105] kN, [85.5,94.5] kN (10% uncertainty)

= =
= =

p p
p p



Truss structure - results
Table: results of selected responses

0.15%0.19%0.11%0.19%δ

327%362%146.18%163.45%δ
1297.124– 717.1520.048636– 0.011216Naïve IFEA

304.037273.0490.0197780.017642Present IFEA

303.584273.5620.0197560.017676Combinatorial
N7(UB)N7(LB)u5(UB)u5(LB)Method

unit: u5 (m), N7 (kN). LB: lower bound; UB: upper bound.



0.017

0.018

0.018

0.019

0.019

0.020

0.020

0.021

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Uncertainty in cross-sectional area

u
5 (

m
)

Comb. LB
Comb. UB
IFEA LB
IFEA UB

Truss structure – results

5

 for moderate uncertainty ( 5%), very sharp bounds are obtained
 for relatively large uncertainty, reasonable bounds are obtained 

  in the case of 10% uncertainty:
  Comb.: = [0.017711,0.019811],  I

• ≤
•

u 5FEM: = [0.017252,0.020168] 
  (relative difference: 2.59%, 1.80% for LB,  UB, respectively)

u



Frame structure

14.63m6.1m

6.1m

4.57m

C1 C2 C3

C4 C5 C6

B1 B2

B3 B4

w1 w2

w3 w4

1 2 3

4 5
6

7 8
9

W18×40B3

W27×94B4

W36×135B2

W27×84B1

W14×109C6

W14×109C5

W10×12C4

W14×109C3

W14×132C2

W12×19C1

ShapeMember

2results listed: nodal forces at the left node of member B



Frame structure – case 1

2Table: Nodal forces at the left node of member B

1 2

3 4

Case 1: load uncertainty
[105.8,113.1] kN/m,      [105.8,113.1] kN/m, 
[49.255,52.905] kN/m,  [49.255,52.905] kN/m, 

= =
= =

w w
w w

UBLBUBLBNodal force

1974.951847.211974.951847.21Moment (kN·m)
891.90833.61891.90833.61Shear (kN)
239.37219.60239.37219.60Axial (kN)

Present IFEACombinatorial

 exact solution is obtained in the case of load uncertainty•



Frame structure – case 2
Case 2: stiffness uncertainty and load uncertainty
1% uncertainty introduced to , , and  of each element.
Number of interval variables: 34.

A I E

2Table: Nodal forces at the left node of member B

UBLBUBLBNodal force

1982.631839.011979.321842.86Moment (kN.m)
892.47832.96892.24833.34Shear (kN)
242.67219.35240.98218.23Axial (kN)

Present IFEAMonte Carlo sampling*

*106 samples are made.



Truss with a large number of interval variables

A B

m@L

n@L

C D

p p

p

p

p

p p

8×40

7×40

6×40

6×35

6×30

5×30

5×22

4×20

4×12

3×10
story×bay

22541127

25761288

1932966

1692846

1452726

1210605

890445

648324

392196

246123
NvNe

0

0

[0.995,1.005] ,  
[0.995,1.005]   for 1,...,

i

i e

A
E i N

=

= =

A
E



Scalability study

0 0

vertical displacement at right upper corner (node D): D
PL

E A
=v a

Table: displacement at node D

3.56%0.45%0.48%6.65866.42596.62896.45708×40
3.37%0.37%0.40%5.81665.62365.79545.64617×40
3.19%0.29%0.32%4.98954.83264.97514.84826×35

2.84%0.16%0.18%3.34713.25323.34183.25924×20
3.02%0.22%0.25%4.16244.03864.15324.04865×30

0.10%

δUB

0.12%

δLB

2.5782

UB

2.5112

LB

Present IFEA

wid/d0UB *LB*Story×ba
y

2.64%2.57562.51433×10

Sensitivity Analysis

δLB = |LB－ LB*|/ LB*, δLB = |UB－ UB*|/ UB* , δLB = (LB－ LB*)/ LB*



Efficiency study
Table: CPU time for the analyses with the present method (unit: seconds)

90.0%9.2%528.45475.7248.454725768×40
90.1%9.1%358.76323.1432.53622547×40
89.7%9.7%156.27140.2315.11616926×35

80.5%12.4%10.178.801.2756484×20
89.1%10.2%59.7053.176.09612105×30

19.5%

ti/t

0.72

t

0.56

tr

0.14

ti tr/tIteratio
n

NvStory×bay

78.4%42463×10

ti : iteration time, tr : CPU time for matrix inversion, t : total comp. CPU time 

 majority of time is spent on matrix inversion•



Efficiency study

0

5000

10000

15000

20000

25000

30000

35000

0 500 1000 1500 2000 2500

Number of interval variables

C
PU

 ti
m

e 
(s

ec
)

Sensitivity Analysis method

Present interval FEA

2576

2254

1692

1210

648

246
Nv

358.814450

528.4532402

156.34100

59.7965.86

10.1764.05

0.721.06
PresentSens.

Computational time: a comparison of  the senstitivity analysis method
 and the present method

Computational time (seconds)



Plate with quarter-circle cutout

 

thickness: 0.005m
Possion ratio: 0.3
load: 100kN/m
modulus of elasticity: 

= [199, 201]GPaE 

number of element: 352
element type: six-node isoparametric quadratic triangle
results presented: , ,  and  at node FA E xx yyu v σ σ



Plate – case 1

Table: results of selected responses

Case 1: the modulus of elasticity for each element varies independently
in the interval [199, 201] GPa.

13.69012.69913.22313.164σxx (MPa)

UBLBUBLBResponse

2.0901.5921.8821.803σyy (MPa)

－0.41940－0.42894－0.42238－0.42638vE (10－5 m)

1.203871.187681.200811.19094uA (10－5 m)

Present IFEAMonte Carlo sampling*

*106 samples are made.



Plate – case 2
Case 2: each subdomain has an independent modulus of elasticity.

[199, 201] GPa, for 1, ...,8i i= =E

E1 E2

E3

E4

E5 E6

E7 E8

0.025m 0.025m 0.025m 0.025m

0.025m

0.025m



Plate – case 2

Table: results of selected responses

13. 51312.87513.23013.158σxx (MPa)

UBLBUBLBResponse

1.9961.6861.8851.797σyy (MPa)

－0.42040－0.42824－0.42183－0.42689vE (10－5 m)

1.203681.188191.201971.19002uA (10－5 m)

Present IFEACombinatorial
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ConclusionsConclusions
Development and implementation of IFEM

uncertain material, geometry and load parameters are described by 
interval variables
interval arithmetic is used to guarantee an enclosure of response

Enhanced dependence problem control 
use Element-By-Element technique
use the penalty method or Lagrange multiplier method to impose 
constraints
modify and enhance fixed point iteration to take into account the 
dependence problem
develop special algorithms to calculate stress and element nodal force



ConclusionsConclusions
The method is generally applicable to linear 
static FEM, regardless of element type
Evaluation of the present method

Rigorousness: in all the examples, the results obtained by 
the present method enclose those from the alternative 
methods
Accuracy: sharp results are obtained for moderate 
parameter uncertainty (no more than 5%); reasonable 
results are obtained for relatively large parameter 
uncertainty (5%~10%)



ConclusionsConclusions
Scalability: the accuracy of the method remains at the 
same level with increase of the problem scale
Efficiency: the present method is significantly superior 
to the conventional methods such as the combinatorial, 
Monte Carlo sampling, and sensitivity analysis method

The present IFEM represents an efficient method 
to handle uncertainty in engineering applications
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