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Introduction- Uncertainty

Q Uncertainty 1s unavoidable 1n engineering system

o structural mechanics entails uncertainties in material,
geometry and load parameters

Q Probabilistic approach 1s the traditional approach

a requires sufficient information to validate the
probabilistic model

o criticism of the credibility of probabilistic approach
when data 1s insufficient (Elishakoff, 1995; Ferson

and Ginzburg, 1996)
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Introduction- Interval Approach

O Nonprobabilistic approach for uncertainty modeling when
only range information (tolerance) is available

t=t, £ 0

O Represents an uncertain quantity by giving a range of possible
values

t=[t,— 35, t,+0]

0 How to define bounds on the possible ranges of uncertainty?

o experimental data, measurements, statistical analysis,
expert knowledge
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Introduction- Why Interval?

O Simple and elegant
0 Conforms to practical tolerance concept

QO Describes the uncertainty that can not be appropriately
modeled by probabilistic approach

O Computational basis for other uncertainty approaches

(e.g., fuzzy set, random set)

d Provides guaranteed enclosures
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Introduction- Finite Element Method

Finite Element Method (FEM) 1s a numerical
method that provides approximate solutions to

partial differential equations
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Introduction- Uncertainty & Errors

0 Mathematical model (validation)

a Discretization of the mathematical model
into a computational framework

Q Parameter uncertainty (loading, material
properties)
a Rounding errors
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Interval Finite Elements

Uncertain Data

Geometry Materials Loads
Interval Stiffness Matrix Interval Load Vector
K=[B'"CBdV F.=[N. tdA
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Interval Finite Elements

KU=F

K =] B' C B dV= Interval element stiffness matrix

B = Interval strain-displacement matrix

C = Interval elasticity matrix

F =[F, ... F, ... F ] = Interval element load vector (traction)

F.=[N.tdA
N, = Shape function corresponding to the i-t4 DOF
t = Surface traction
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Interval Finite Elements (IFEM)

a Follows conventional FEM

QO Loads, geometry and material property are expressed as
interval quantities

Q System response 1s a function of the interval variables
and therefore varies 1n an interval

0 Computing the exact response range i1s proven NP-hard

Q The problem 1s to estimate the bounds on the unknown
exact response range based on the bounds of the
parameters
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IFEM- Inner-Bound Methods

0 Combinatorial method (Muhanna and Mullen 1995,
Rao and Berke 1997)

Q Sensitivity analysis method (Pownuk 2004)
Q0 Perturbation (Mc William 2000)
Q Monte Carlo sampling method

Q Need for alternative methods that achieve
QO Rigorousness — guaranteed enclosure
Q Accuracy — sharp enclosure
Q Scalability — large scale problem
Q Efficiency ;
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IFEM- Enclosure

O Linear static finite element

O Muhanna, Mullen, 1995, 1999, 2001,and Zhang 2004
a Popova 2003, and Kramer 2004

0 Neumaier and Pownuk 2004

a Corliss, Foley, and Kearfott 2004

Q Dynamic
0 Dessombz, 2000

Q Free vibration-Buckling
0 Modares, Mullen 2004, and Billin1 and Muhanna 2005
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Interval arithmetic

QO Interval number: x =[x, X]

midpoint: x = (x+x)/2, width: wid(x) =X —x,

absolute value: | x |=max{| x|,| X |}.

Q Interval vector and interval matrix, e.g.,
X = (xla xz)T = ([Oa 1]9 [_29 1])T

midpoint, width, absolute value: defined componentwise

Q Notations
intervals: boldface, e.g., x, b, A

real: non-boldface, xe x,4 € A ;
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Linear interval equation

Q Linear interval equation

Ax=b (A€ A, b € b)
Q Solution set

2(A, b)={x € R|d4€A dbe b: Ax = b}
Q Hull of the solution set 2(A, b)

A1b =0 X(A, b)




Linear interval equation

Q Example
0.5
—t+—
Hull
2 [—1, 0]\( x, _ 1.2 —_J,./LL__J__
-1, 0] 2 Jlx,) (-12 !
1
|
—0.5 i
!
I Solution set
A
70 <4 ' I Enclosure ‘
x, '
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Naive interval FEA

h 1 ; . EA/L =k =[0.95, 1.05],
% > 7 —» E,A /L =k, =[19, 2.1],
/ Ei, A, L E» A, L pl :OS, p2 :l

kit k() _(p)_ ([285 315] [21 ~L9]\(w))_(0.5
&,k J\u,) \p,) \[-21 =191 [19,21] \uw,) |1
m cxact solution: u,=[1.429, 1.579], u,=[1.905, 2.105]

m naive solution: u, =[—0.052, 3.052], wu,=1[0.098, 3.902]

m interval arithmetic assumes that all coefficients are
independent

m uncertainty in the response 1s severely ov?restlmated
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Element-By-Element

Element-By-Element (EBE) technique
m clements are detached — no element coupling
m structure stiffness matrix is block-diagonal (k, ,..., ky,)
m the size of the system 1s increased
u= Uy, ..., uy,)"
m nced to impose necessary constraints for compatibility
and equilibrium

7
/ 1 1 2

—» U —»> —» U3 > Uy

El’AlaLl EZ’AZ’ L2

Element-By-Element model |
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Element-By-Element

Suppose the modulus of elasticity 1s interval:
E =E(1+90)
0: zero-midpoint interval

The element stiffness matrix can be split into two parts,
k=k(I+d)=k+kd

k : deterministic part, element stiffness matrix evalued using E,

kd : interval part

d: interval diagonal matrix, diag(d,...,0).
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Element-By-Element

QO  Element stiffness matrix: &k =k (I+d)

O  Structure stiffness matrix:

or

K=K(+D)= K+KD

I+
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Constraints

Impose necessary constraints for compatibility
and equilibrium

Q Penalty method
a Lagrange multiplier method

7
1 1 2 3

——» U ——> —» U3 4}1/[4

El, Al’ Ll EZ’ A23 LZ

Element-By-Element model J
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Constraints — penalty method

Constraint conditions: cu =0

Using the penalty method:

(K+Q)u=p
O : penalty matrix, Q = ¢’ nc

n . diagonal matrix of penalty number 7,

Requires a careful choice of the penatly number

1 1 2 4

2

4

VW

Elo Alo Ll

LM

E29 A2> LZ

A spring of large stiffness is added
to force node 2 and node 3 to have

the same displacement.
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Constraints — Lagrange multiplier

Constraint conditions: cu =0

Using the Lagrange multiplier method:

WY

/. Lagrange multiplier vector, introdued as new unknowns
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Load in EBE

Nodal load apphed by elements p,
=(Psy)

where p, = j NT¢(x)dx

Suppose the surface traction ¢(x) is described by
an interval function: ¢(x)=> a x’.
j=0
p, can be rewritten as
p, =WF
W: deterministic matrix
F: mterval vector containing the interval coefficients of

the surface tractiton |
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Fixed point iteration

m For the interval equation Ax = b,
m preconditioning: RAx = Rb, R is the preconditioning matrix
m transform it into g (x" ) = x":
Rb—RAxy+ (I—RA) X" =x", x=x"+x,
m Theorem (Rump, 1990): for some interval vector x* ,
if g(x")cint (x")
then ATb c x” + x,
m [teration algorithm:
iterate: x ') = z + G(g-x")

~

where z = Rb— RAx,, G=1—-RA,R=A", Ax,=b
m  No dependency handling
|
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Fixed point iteration

O Interval FEA calls for a modified method which exploits

the special form of the structure equations
(K +Q)u = pwith K =K + KD
Q Choose R = (K +0Q)™", construct iterations:
u'=Rp—R(K+Q)u,+(I-R(K+Q))e-u)
=Rp—u,—RKD(u, +&-u"")
= Rp—u, — RKM"A
if """ cint(u’”), then u=u"""" +u, = Rp— RKM A

A: nterval vector, A =(9,,..., 0 )

The interval variables o,,...,0, appear only once in each iteration.

Most sources of dependence are eliminated. JI
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Convergence of fixed point

m The algorithm converges if and only if
pP(G)<1

smaller p(| G |) = less iterations required,

and less overestimation in results

m To minimize © (|G|)
s choose R = A7 sothat G=1—-RA

has a small spectral radius

= reduce the overestimation in G

G=]-RA=1—-(K+0Q) (K+Q+KD)_—RKD
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Stress calculation

m Conventional method:

¢ = CBu,, (severe overestimation)

C: clasticity matrix, B: strain-displacement matrix

m Present method:
E=(1+0)E, C=(1+6)C
o =CBLu
= CBL(Rp— RKM"A)

= (14 6)(CBLRp — CBLRKM " A)
L: Boolean matrix, Lu=u, |
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Element nodal force calculation

m Conventional method:

f =T (ku,— p,), (severeoverestimation)

m Present method:

in the EBE model, 7(Ku— p,) =

[ (T),(k (), ~(p,))

\(];)Ne (kNe (ue)Ne o (pe)Ne )/

from (K +Q)u=p.+p, =T (Ku—p,)=T(p.—Qu)
Calculate 7'(p, — Qu) to obtain the element nodal forces

for all elements.
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Numerical example

QO Examine the rigorousness, accuracy, scalability, and
efficiency of the present method

Q Comparison with the alternative methods

Q the combinatorial method, sensitivity analysis method,
and Monte Carlo sampling method

Q these alternative methods give inner estimation

e — x. —

[ 1 [

| | - X
X

Xo

x: exact solution, x;: inner bound, x: outer bound
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Truss structure

3 4 4 10 7
Py > _
&) 12
2 15 4.5m
3 6 |8 11 |13
1 ! ] 9 14 g
B 2 5 6 7y
v v v
PZ P1 P3
- 45m— - 45m—=~— 45m - 45m—~

A,A,,A,,A4,,A,,A.:[9.95, 10.05] cm®(1% uncertainty)
cross-sectional area
of all other elements:  [5.97, 6.03] cm” (1% uncertainty)

modulus of elasticity of all elements: 200,000 MPa
p, =[190,210] kN, p, =[95,105] kN
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Truss structure - results

Table: results of selected responses

Method us(LB) us(UB) N,(LB) N,(UB)
Combinatorial 0.017676 | 0.019756 273.562 303.584
Naive IFEA —0.011216 | 0.048636 | —717.152| 1297.124
O 163.45% 146.18% 362% 327%
Present IFEA 0.017642| 0.019778 273.049 304.037
0 0.19% 0.11% 0.19% 0.15%
unit: u5 (m), NV, (kN). LB: lower bound; UB: upper bound.
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Truss structure results

0.021
% 0.020
~
0.020 |
. —¢ Comb. LB
0.019 ;
.~ —®Comb. UB
0.019 - ——IFEA LB
0.018 ~ —>—IFEA UB
0.018
0.017

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
Uncertainty in cross-sectional area
e for moderate uncertainty ( < 5%), very sharp bounds are obtained
e for relatively large uncertainty, reasonable bounds are obtained
in the case of 10% uncertainty:
Comb.: u,=[0.017711,0.019811], IFEM: u,=[0.017252,0.020168]

(relative difference: 2.59%, 1.80% for LB, UB, respectively)
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Frame structure

NN R
B; 8 By
G s S| 45m
NEENERE ENNERNNENN NN .
) B, 5 B, °
G G G 6.1m
1 2 301
| 6.1m - 14.63m |

results listed: nodal forces at the left node of member B,
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Frame structure — case 1

Case 1: load uncertainty
=[105.8,113.1] kN/m,  w, =[105.8,113.1] kN/m,
w, =[49.255,52.905] kN/m, w, =[49.255,52.905] kN/m,

Table: Nodal forces at the left node of member B,

Combinatorial Present IFEA
Nodal force LB UB LB UB
Axial (kN) 219.60 | 239.37| 219.60| 239.37
Shear (kN) 833.61| 891.90| 833.61 891.90
Moment (kN-m) | 1847.21| 1974.95| 1847.21 | 1974.95

e cxact solution 1s obtained in the case of load uncertamty
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Frame structure — case 2

Case 2: stiffness uncertainty and load uncertainty

1% uncertainty introduced to A4, I, and E of each element.

Number of interval variables: 34.

Table: Nodal forces at the left node of member B,

Monte Carlo sampling® Present IFEA
Nodal force LB UB LB UB
Axial (kN) 218.23 24098 | 219.35| 242.67
Shear (kN) 833.34 892.24 | 832.96| 892.47
Moment (kN.m) 1842.86 | 1979.32| 1839.01 | 1982.63

106 samples are made.
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Truss with a large number of interval variables

g g g g story Xbay | N, N,
X! ! ! b 3X 10 123 | 246
4% 12 196 | 392
><>< < 420 324 | 648
SRS NN /N /] 5% 22 445 | 890
" TG0 605 | 1210
’ 6% 30 726 | 1452
| 635 846 | 1692
6% 40 966 | 1932

- m@L X
oo, e

E, =[0.995,1.005]E, fori=1,...,N, r
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Scalability study

vertical displacement at right upper corner (node D): v, = a PL
Table: displacement at node D 0
Sensitivity Analysis Present IFEA
Story Xba | LB’ UB” LB UB O g Oug | wid/d,
y
3X10 2.5143 | 2.5756| 2.5112| 2.5782| 0.12% | 0.10% | 2.64%
4X20 3.2592 | 3.3418| 3.2532| 3.3471 | 0.18% | 0.16% | 2.84%
5X30 40486 | 4.1532| 4.0386 | 4.1624 | 0.25% | 0.22% | 3.02%
6X35 4.8482 | 4.9751| 4.8326| 4.9895| 0.32% | 0.29% | 3.19%
7X40 5.6461 | 5.7954| 5.6236 | 5.8166| 0.40% | 0.37% | 3.37%
8 X 40 6.4570 | 6.6289| 6.4259 | 6.6586 | 0.48% | 0.45% | 3.56%

8, 5= |LB— LB’/ LB", &, =

REC

[UB— UB"/ UB", §,,= (LB— LB )/ LB'
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Efficiency study

Table: CPU time for the analyses with the present method (unit: seconds)

Story Xbay | N, | Iteratio t; t t t/t t/t
n
3X10 246 4 0.14 0.56 072 19.5%| 78.4%
4X20 648 5 1.27 8.80| 10.17| 124%| 80.5%
5X30 1210 6 6.09| 53.17| 59.70| 10.2% | 89.1%
6X35 1692 6 15.11| 140.23 | 156.27| 9.7% | 89.7%
7X40 2254 6 32.53 | 323.14| 358.76 | 9.1%| 90.1%
8 X40 2576 7 48.454 | 475.72 | 528.45 92% | 90.0%

t;: 1teration time, ¢.: CPU time for matrix inversion, ¢: total comp. CPU time

e majority of time is spent on matrix inversion
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Efficiency study

Computational time: a comparison of the senstitivity analysis method

and
35000

30000

CPU time (sec)

25000

20000

15000

10000

5000

the present method

—e— Sensitivity Analysis method i

—————————————

,,,,,,,,,,,,,,,,,,,,,

—m— Present interval FEA

|
7777777777777777777777777777777777777777777777777777777777777777
| | |

| |
****************************************************************
| | |

:—-i‘——-i-n

Computational time (seconds)

2000 2500

Number of interval variables

1500

0 500 1000

REC

N, Sens. | Present
246 1.06 0.72

648 | 64.05 10.17
1210 | 965.86 | 59.7

1692 | 4100 156.3
2254 | 14450 | 358.8
2576 | 32402 | 528.45
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Plate with quarter-circle cutout

thickness: 0.005m

Possion ratio: 0.3

oosm  load: 100kN/m

L modulus of elasticity:
E =[199, 201]GPa

T1ryy 1T

Irryy

[=-0.02m-={=—— 0.03m JI 0.05m———=]
number of element: 352
element type: six-node i1soparametric quadratic triangle

results presented: u,, v, 6, and 6, at node F
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Plate — case 1

Case 1: the modulus of elasticity for each element varies independently

in the interval [199, 201] GPa.
Table: results of selected responses

Monte Carlo sampling® Present IFEA
Response LB UB LB UB
u, (107> m) 1.19094 1.20081 1.18768 1.20387
v (107> m) —0.42638 | —0.42238 | —0.42894 —0.41940
o . (MPa) 13.164 13.223 12.699 13.690
o, (MPa) 1.803 1.882 1.592 2.090
*10% samples are made.
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Plate — case 2

Case 2: each subdomain has an independent modulus of elasticity.
E. =[199, 201] GPa, fori=1,...,8

-— 0.025m——% 0.025m————0.025m————0.025m—

E Eq 0.025m

E; Eg 0.025m
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Plate — case 2

Table: results of selected responses

Combinatorial Present IFEA

Response LB UB LB UB

u, (107> m) 1.19002 1.20197 1.18819 1.20368

v (107> m) | —0.42689 | —0.42183 | —0.42824 | —0.42040

o . (MPa) 13.158 13.230 12.875 13.513

o (MPa) 1.797 1.885 1.686 1.996
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Conclusions

m Development and implementation of IFEM

m uncertain material, geometry and load parameters are described by
interval variables

m interval arithmetic 1s used to guarantee an enclosure of response

m Enhanced dependence problem control
m use Element-By-Element technique

m use the penalty method or Lagrange multiplier method to impose
constraints

m modify and enhance fixed point iteration to take into account the
dependence problem

m develop special algorithms to calculate stress and element nodal force
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Conclusions

m The method 1s generally applicable to linear
static FEM, regardless of element type

m Evaluation of the present method

m Rigorousness: in all the examples, the results obtained by
the present method enclose those from the alternative
methods

m Accuracy: sharp results are obtained for moderate
parameter uncertainty (no more than 5%); reasonable
results are obtained for relatively large parameter

uncertainty (5%~10%)
|
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Conclusions

m Scalability: the accuracy of the method remains at the
same level with increase of the problem scale

m Efficiency: the present method is significantly superior
to the conventional methods such as the combinatorial,
Monte Carlo sampling, and sensitivity analysis method

m The present IFEM represents an efficient method
to handle uncertainty in engineering applications
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