Interval Finite Element Methods for Uncertainty Treatment in Structural Engineering Mechanics

Rafi L. Muhanna Georgia Institute of Technology

USA

Second Scandinavian Workshop on INTERVAL METHODS AND THEIR APPLICATIONS August 25-27, 2003, Technical University of Denmark, Copenhagen, Denmark

Outline

- Introduction
- Interval Finite Elements
- Element-By-Element
- Examples
- Conclusions

Acknowledgement

- Professor Bob Mullen
- Dr. Hao Zhang

Center for Reliable Engineering Computing (REC)

We handle computations with care

Geo

Outline

- Introduction
- Interval Finite Elements
- Element-by-Element
- Examples
- Conclusions

Introduction- Uncertainty

- Uncertainty is unavoidable in engineering system
 structural mechanics entails uncertainties in material, geometry and load parameters
- □ Probabilistic approach is the traditional approach
 - requires sufficient information to validate the probabilistic model
 - criticism of the credibility of probabilistic approach when data is insufficient (Elishakoff, 1995; Ferson and Ginzburg, 1996)

Introduction- Interval Approach

 Nonprobabilistic approach for uncertainty modeling when only range information (tolerance) is available

$$t = t_0 \pm \delta$$

Represents an uncertain quantity by giving a range of possible values

$$t = [t_0 - \delta, t_0 + \delta]$$

How to define bounds on the possible ranges of uncertainty?
 experimental data, measurements, statistical analysis, expert knowledge

Introduction- Why Interval?

- □ Simple and elegant
- □ Conforms to practical tolerance concept
- Describes the uncertainty that can not be appropriately modeled by probabilistic approach
- Computational basis for other uncertainty approaches
 (e.g., fuzzy set, random set)

Provides guaranteed enclosures

Introduction- Finite Element Method

Finite Element Method (FEM) is a numerical method that provides approximate solutions to partial differential equations

Introduction- Uncertainty & Errors

- □ Mathematical model (validation)
- Discretization of the mathematical model into a computational framework
- Parameter uncertainty (loading, material properties)
- □ Rounding errors

Outline

- Introduction
- Interval Finite Elements
- Element-by-Element
- Examples
- Conclusions

Interval Finite Elements

Interval Finite Elements

K U = F

- $K = \int B^T C B dV$ = Interval element stiffness matrix
- \boldsymbol{B} = Interval strain-displacement matrix
- *C* = Interval elasticity matrix

 $\boldsymbol{F} = [F_1, \dots, F_n] = \text{Interval element load vector (traction)}$

- $F_i = \int N_i t \, dA$
- N_i = Shape function corresponding to the *i-th* DOF
- *t* = Surface traction

Interval Finite Elements (IFEM)

- □ Follows conventional FEM
- Loads, geometry and material property are expressed as interval quantities
- System response is a function of the interval variables and therefore varies in an interval
- □ Computing the exact response range is proven NP-hard
- The problem is to estimate the bounds on the unknown exact response range based on the bounds of the parameters

IFEM- Inner-Bound Methods

- Combinatorial method (Muhanna and Mullen 1995, Rao and Berke 1997)
- □ Sensitivity analysis method (Pownuk 2004)
- □ Perturbation (Mc William 2000)
- □ Monte Carlo sampling method
- □ Need for alternative methods that achieve
 - □ Rigorousness guaranteed enclosure
 - □ Accuracy sharp enclosure
 - □ Scalability large scale problem

IFEM-Enclosure

□ Linear static finite element

- □ Muhanna, Mullen, 1995, 1999, 2001, and Zhang 2004
- □ Popova 2003, and Kramer 2004
- □ Neumaier and Pownuk 2004
- □ Corliss, Foley, and Kearfott 2004
- Dynamic
 - Dessombz, 2000
- □ Free vibration-Buckling
 - □ Modares, Mullen 2004, and Billini and Muhanna 2005

Interval arithmetic

 \Box Interval number: $x = [\underline{x}, \overline{x}]$

midpoint: $\overline{x} = (\underline{x} + \overline{x})/2$, width: wid $(x) = \overline{x} - \underline{x}$, absolute value: $|x| = \max\{|\underline{x}|, |\overline{x}|\}$.

□ Interval vector and interval matrix, e.g., $\boldsymbol{x} = (\boldsymbol{x}_1, \boldsymbol{x}_2)^T = ([0,1], [-2,1])^T$

midpoint, width, absolute value: defined componentwise

□ Notations intervals: boldface, e.g., *x*, *b*, *A*

real: non-boldface, $x \in \mathbf{x}, A \in \mathbf{A}$

Linear interval equation

□ Linear interval equation

$$Ax = b \ (A \in A, b \in b)$$

□ Solution set

 $\Sigma(A, b) = \{x \in \mathbb{R} \mid \exists A \in A \exists b \in b : Ax = b\}$

\Box Hull of the solution set $\Sigma(A, b)$

 $\boldsymbol{A}^{H}\boldsymbol{b} := \Diamond \Sigma(\boldsymbol{A}, \boldsymbol{b})$

Linear interval equation

Outline

- Introduction
- Interval Finite Elements
- Element-by-Element
- Examples
- Conclusions

Naïve interval FEA

$$\begin{pmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \Rightarrow \begin{pmatrix} [2.85, 3.15] & [-2.1, -1.9] \\ [-2.1, -1.9] & [1.9, 2.1] \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 1 \end{pmatrix}$$

- exact solution: $u_1 = [1.429, 1.579], \quad u_2 = [1.905, 2.105]$
- naïve solution: $\boldsymbol{u}_1 = [-0.052, 3.052], \quad \boldsymbol{u}_2 = [0.098, 3.902]$
- interval arithmetic assumes that all coefficients are independent
- uncertainty in the response is severely overestimated
 REC

Element-By-Element

Element-By-Element (EBE) technique

- elements are detached no element coupling
- structure stiffness matrix is block-diagonal (k_1, \ldots, k_{Ne})
- the size of the system is increased

$$u = (u_1, \ldots, u_{Ne})^T$$

 need to impose necessary constraints for compatibility and equilibrium

Element-By-Element model

Georgialnstitute of Technology

Element-By-Element

Suppose the modulus of elasticity is interval: $\boldsymbol{E} = \boldsymbol{E}(1 + \boldsymbol{\delta})$

 $\boldsymbol{\delta}$: zero-midpoint interval

The element stiffness matrix can be split into two parts,

$$\boldsymbol{k} = \breve{k}(I + \boldsymbol{d}) = \breve{k} + \breve{k}\boldsymbol{d}$$

 \breve{k} : deterministic part, element stiffness matrix evalued using \breve{E} , $\breve{k}d$: interval part

d: interval diagonal matrix, $diag(\delta, ..., \delta)$.

Element-By-Element

D Element stiffness matrix: $\mathbf{k} = \breve{k}(I + d)$

Structure stiffness matrix:

$$\boldsymbol{K} = \breve{K}(I + \boldsymbol{D}) = \breve{K} + \breve{K}\boldsymbol{D}$$

or

Constraints

Impose necessary constraints for compatibility and equilibrium

□ Penalty method

□ Lagrange multiplier method

Element-By-Element model

Constraints – penalty method

Constraint conditions: $c\mathbf{u} = 0$ Using the penalty method:

 $(\boldsymbol{K} + \boldsymbol{Q})\boldsymbol{u} = \boldsymbol{p}$

- *Q*: penalty matrix, $Q = c^T \eta c$
- η : diagonal matrix of penalty number η_i

Requires a careful choice of the penatly number

A spring of large stiffness is added to force node 2 and node 3 to have the same displacement.

Georgialnstitute of Technology

Constraints – Lagrange multiplier

Constraint conditions: $c\mathbf{u} = 0$

Using the Lagrange multiplier method:

$$\begin{pmatrix} \boldsymbol{K} & \boldsymbol{c}^T \\ \boldsymbol{c} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} \boldsymbol{p} \\ \boldsymbol{0} \end{pmatrix}$$

 λ : Lagrange multiplier vector, introdued as new unknowns

Load in EBE

Nodal load applied by elements $\boldsymbol{p}_b = (\boldsymbol{p}_1, ..., \boldsymbol{p}_{N_e})^T$

where $\boldsymbol{p}_i = \int N^T \phi(x) dx$

Suppose the surface traction $\phi(x)$ is described by

an interval function: $\phi(x) = \sum_{j=0}^{m} a_{j} x^{j}$.

 p_b can be rewritten as

$$\boldsymbol{p}_b = W\boldsymbol{F}$$

W: deterministic matrix

F: interval vector containing the interval coefficients of

the surface tractiton

Fixed point iteration

• For the interval equation Ax = b,

- preconditioning: RAx = Rb, R is the preconditioning matrix
- transform it into $g(x^*) = x^*$:

 $R \ \boldsymbol{b} - RA \ x_0 + (I - RA) \ \boldsymbol{x}^* = \boldsymbol{x}^*, \qquad \boldsymbol{x} = \boldsymbol{x}^* + x_0$

• Theorem (Rump, 1990): for some interval vector x^* ,

if
$$g(x^*) \subseteq int(x^*)$$
then $A^H b \subseteq x^* + x_0$

• Iteration algorithm:

iterate: $x^{*(l+1)} = z + G(\varepsilon \cdot x^{*(l)})$

where $\boldsymbol{z} = R\boldsymbol{b} - R\boldsymbol{A}x_0$, $\boldsymbol{G} = I - R\boldsymbol{A}$, $R = \breve{A}^{-1}$, $\breve{A}x_0 = \breve{b}$

No dependency handling

Fixed point iteration

Interval FEA calls for a modified method which exploits the special form of the structure equations $(\mathbf{K} + Q)\mathbf{u} = \mathbf{p}$ with $\mathbf{K} = \mathbf{K} + \mathbf{K}\mathbf{D}$ Choose $R = (\breve{K} + Q)^{-1}$, construct iterations: $\boldsymbol{u}^{*(l+1)} = R\boldsymbol{p} - R(\boldsymbol{K} + \boldsymbol{Q})\boldsymbol{u}_{0} + (I - R(\boldsymbol{K} + \boldsymbol{Q}))(\boldsymbol{\varepsilon} \cdot \boldsymbol{u}^{*(l)})$ $= R\mathbf{p} - u_0 - R\breve{K}\mathbf{D}(u_0 + \boldsymbol{\varepsilon} \cdot \boldsymbol{u}^{*(l)})$ $= R\mathbf{p} - u_0 - R\breve{K}\mathbf{M}^{(l)}\Delta$ if $\boldsymbol{u}^{*(l+1)} \subseteq \operatorname{int}(\boldsymbol{u}^{*(l)})$, then $\boldsymbol{u} = \boldsymbol{u}^{*(l+1)} + u_0 = R\boldsymbol{p} - R\breve{K}\boldsymbol{M}^{(l)}\boldsymbol{\Delta}$ Δ : interval vector, $\Delta = (\delta_1, ..., \delta_{N_1})^T$ The interval variables $\delta_1, ..., \delta_{N_a}$ appear only once in each iteration. Most sources of dependence are eliminated.

Convergence of fixed point

• The algorithm converges if and only if $\rho(|\mathbf{G}|) < 1$

smaller $\rho(|G|) \Rightarrow$ less iterations required, and less overestimation in results

- To minimize $\rho(|\mathbf{G}|)$:
 - choose $R = \check{A}^{-1}$ so that G = I RA
 - has a small spectral radius
 - reduce the overestimation in G

$$\boldsymbol{G} = \boldsymbol{I} - \boldsymbol{R}\boldsymbol{A} = \boldsymbol{I} - (\boldsymbol{K} + \boldsymbol{Q})^{-1}(\boldsymbol{K} + \boldsymbol{Q} + \boldsymbol{K}\boldsymbol{D}) = -\boldsymbol{R}\boldsymbol{K}\boldsymbol{D}$$

Georgia Institute of Technology

Stress calculation

Conventional method:
 σ = CBu_e, (severe overestimation)
 C: elasticity matrix, B: strain-displacement matrix

• Present method: $E = (1+\delta)\breve{E}, \quad C = (1+\delta)\breve{C}$ $\sigma = CBLu$ $= CBL(Rp - R\breve{K}M^{(l)}\Delta)$ $= (1+\delta)(\breve{C}BLRp - \breve{C}BLR\breve{K}M^{(l)}\Delta)$ L: Boolean matrix, $Lu = u_e$

Element nodal force calculation

• Conventional method: $f = T_e(ku_e - p_e)$, (severe overestimation)

Present method:
in the EBE model, $T(\mathbf{K}\mathbf{u} - \mathbf{p}_b) = \begin{pmatrix} (\mathbf{T}_e)_1(\mathbf{k}_1(\mathbf{u}_e)_1 - (\mathbf{p}_e)_1) \\ \vdots \\ (\mathbf{T}_e)_{N_e}(\mathbf{k}_{N_e}(\mathbf{u}_e)_{N_e} - (\mathbf{p}_e)_{N_e}) \end{pmatrix}$

from $(\mathbf{K} + Q)\mathbf{u} = \mathbf{p}_c + \mathbf{p}_b \Rightarrow T(\mathbf{K}\mathbf{u} - \mathbf{p}_b) = T(\mathbf{p}_c - Q\mathbf{u})$ Calculate $T(\mathbf{p}_c - Q\mathbf{u})$ to obtain the element nodal forces

Outline

- Introduction
- Interval Finite Elements
- Element-by-Element
- Examples
- Conclusions

Numerical example

- Examine the rigorousness, accuracy, scalability, and efficiency of the present method
- □ Comparison with the alternative methods
 - the combinatorial method, sensitivity analysis method, and Monte Carlo sampling method
 - \square these alternative methods give inner estimation

Truss structure

 $p_1 = [190, 210] \text{ kN}, p_2 = [95, 105] \text{ kN}$

 $p_3 = [95,105] \text{ kN}, p_4 = [85.5,94.5] \text{ kN} (10\% \text{ uncertainty) rgial is tituited for the state of the$

Truss structure - results

Table: results of selected responses

Method	<i>u</i> ₅ (LB)	<i>u</i> ₅ (UB)	$N_7(\text{LB})$	$N_7(\text{UB})$
Combinatorial	0.017676	0.019756	273.562	303.584
Naïve IFEA	- 0.011216	0.048636	- 717.152	1297.124
δ	163.45%	146.18%	362%	327%
Present IFEA	0.017642	0.019778	273.049	304.037
δ	0.19%	0.11%	0.19%	0.15%

unit: $u_5(m)$, $N_7(kN)$. LB: lower bound; UB: upper bound.

Truss structure – results

- for moderate uncertainty (\leq 5%), very sharp bounds are obtained
- for relatively large uncertainty, reasonable bounds are obtained in the case of 10% uncertainty:

Comb.: $u_5 = [0.017711, 0.019811]$, IFEM: $u_5 = [0.017252, 0.020168]$ (relative difference: 2.59%, 1.80% for LB, UB, respectively)

Frame structure

Frame structure – case 1

Case 1: load uncertainty $\mathbf{w}_1 = [105.8, 113.1] \text{ kN/m}, \quad \mathbf{w}_2 = [105.8, 113.1] \text{ kN/m},$ $\mathbf{w}_3 = [49.255, 52.905] \text{ kN/m}, \quad \mathbf{w}_4 = [49.255, 52.905] \text{ kN/m},$

Table: Nodal forces at the left node of member B₂

	Combir	natorial	Present IFEA		
Nodal force	LB	UB	LB	UB	
Axial (kN)	219.60	239.37	219.60	239.37	
Shear (kN)	833.61	891.90	833.61	891.90	
Moment (kN·m)	1847.21	1974.95	1847.21	1974.95	

• exact solution is obtained in the case of load uncertainty

Frame structure – case 2

Case 2: stiffness uncertainty and load uncertainty 1% uncertainty introduced to *A*, *I*, and *E* of each element. Number of interval variables: 34.

Table: Nodal forces at the left node of member B₂

	Monte Carlo	o sampling*	Present IFEA		
Nodal force	LB	UB	LB	UB	
Axial (kN)	218.23	240.98	219.35	242.67	
Shear (kN)	833.34	892.24	832.96	892.47	
Moment (kN.m)	1842.86	1979.32	1839.01	1982.63	

*10⁶ samples are made.

Truss with a large number of interval variables pp p p story×bay $N_{\rm e}$ $N_{\rm v}$ С 246 3×10 123 D р 4×12 196 392 4×20 324 648 р 5×22 890 445 n@L 5×30 605 1210 p 6×30 726 1452 6×35 846 1692 В А 6×40 966 1932 7×40 1127 2254 m@L $A_i = [0.995, 1.005]A_0,$ 8×40 1288 2576 $E_i = [0.995, 1.005]E_0$ for $i = 1, ..., N_e$ Georgia

Scalability study

vertical displacement at right upper corner (node D): $v_D = a \frac{PL}{E_0 A_0}$ Table: displacement at node D

	Sensitivit	y Analysis		Р	resent IFEA		
Story×ba	LB^*	UB *	LB	UB	δ_{LB}	δ_{UB}	wid/ d_0
У							
3×10	2.5143	2.5756	2.5112	2.5782	0.12%	0.10%	2.64%
4×20	3.2592	3.3418	3.2532	3.3471	0.18%	0.16%	2.84%
5×30	4.0486	4.1532	4.0386	4.1624	0.25%	0.22%	3.02%
6×35	4.8482	4.9751	4.8326	4.9895	0.32%	0.29%	3.19%
7×40	5.6461	5.7954	5.6236	5.8166	0.40%	0.37%	3.37%
8×40	6.4570	6.6289	6.4259	6.6586	0.48%	0.45%	3.56%

 $\delta_{LB} = |LB - LB^*| / LB^*, \delta_{LB} = |UB - UB^*| / UB^*, \delta_{LB} = (LB - LB^*) / LB^*$

Efficiency study

Table: CPU time for the analyses with the present method (unit: seconds)

Story×bay	N_{v}	Iteratio	t _i	t_r	t	t_i/t	t_r/t
		n					
3×10	246	4	0.14	0.56	0.72	19.5%	78.4%
4×20	648	5	1.27	8.80	10.17	12.4%	80.5%
5×30	1210	6	6.09	53.17	59.70	10.2%	89.1%
6×35	1692	6	15.11	140.23	156.27	9.7%	89.7%
7×40	2254	6	32.53	323.14	358.76	9.1%	90.1%
8×40	2576	7	48.454	475.72	528.45	9.2%	90.0%

 t_i : iteration time, t_r : CPU time for matrix inversion, t: total comp. CPU time

• majority of time is spent on matrix inversion

Efficiency study

Computational time: a comparison of the sensitivity analysis method and the present method

Computational time (seconds)

N_{v}	Sens.	Present
246	1.06	0.72
648	64.05	10.17
1210	965.86	59.7
1692	4100	156.3
2254	14450	358.8
2576	32402	528.45

Number of interval variables

Plate with quarter-circle cutout

thickness: 0.005mPossion ratio: 0.3load: 100kN/mmodulus of elasticity: E = [199, 201]GPa

number of element: 352

element type: six-node isoparametric quadratic triangle results presented: u_A , v_E , σ_{xx} and σ_{yy} at node F

Plate – case 1

Case 1: the modulus of elasticity for each element varies independently in the interval [199, 201] GPa. Table: results of selected responses

	Monte Carlo	o sampling*	Present IFEA		
Response	LB	UB	LB	UB	
$u_A (10^{-5} \mathrm{m})$	1.19094	1.20081	1.18768	1.20387	
$v_E (10^{-5} \text{ m})$	-0.42638	-0.42238	-0.42894	-0.41940	
σ_{xx} (MPa)	13.164	13.223	12.699	13.690	
σ_{yy} (MPa)	1.803	1.882	1.592	2.090	
*10 ⁶ samples are made.					

Plate – case 2

Case 2: each subdomain has an independent modulus of elasticity. $E_i = [199, 201]$ GPa, for i = 1, ..., 8

Plate – case 2

Table: results of selected responses

	Combin	natorial	Present IFEA		
Response	LB	LB UB		UB	
$u_A (10^{-5} \mathrm{m})$	1.19002	1.20197	1.18819	1.20368	
$v_E (10^{-5} \mathrm{m})$	-0.42689	-0.42183	-0.42824	-0.42040	
σ_{xx} (MPa)	13.158	13.230	12.875	13.513	
σ_{yy} (MPa)	1.797	1.885	1.686	1.996	

Geor

Outline

- Introduction
- Interval Finite Elements
- Element-by-Element
- Examples
- Conclusions

Conclusions

Development and implementation of IFEM

- uncertain material, geometry and load parameters are described by interval variables
- interval arithmetic is used to guarantee an enclosure of response
- Enhanced dependence problem control
 - use Element-By-Element technique
 - use the penalty method or Lagrange multiplier method to impose constraints
 - modify and enhance fixed point iteration to take into account the dependence problem
 - develop special algorithms to calculate stress and element nodal force

Conclusions

- The method is generally applicable to linear static FEM, regardless of element type
- Evaluation of the present method
 - Rigorousness: in all the examples, the results obtained by the present method enclose those from the alternative methods
 - Accuracy: sharp results are obtained for moderate parameter uncertainty (no more than 5%); reasonable results are obtained for relatively large parameter uncertainty (5%~10%)

Conclusions

- Scalability: the accuracy of the method remains at the same level with increase of the problem scale
- Efficiency: the present method is significantly superior to the conventional methods such as the combinatorial, Monte Carlo sampling, and sensitivity analysis method
- The present IFEM represents an efficient method to handle uncertainty in engineering applications

