<u>A Computational Approach to Existence Verification and</u> <u>Construction of Robust QFT Controllers</u>

P.S.V. Nataraj and Sachin Tharewal

Systems & Control Engineering, IIT Bombay, India

P.S.V. Nataraj and Sachin Tharewal

1

Outline

Contribution

- Introduction to QFT
- Problem definition
- Proposed Algorithm
- ♦ Example
- Conclusions

Contribution

- Existence verification
- Constructive approach
 - Gauranteed existence verification
 - Give all solutions, if any solution exist.

Introduction

2-DOF Structure for QFT formulation

P.S.V. Nataraj and Sachin Tharewal

Introduction ...

QFT Objective :

Synthesize K(s) and F(s) for the following specifications:

- Robust Stability margin
- Tracking performance
- Disturbance Attenuation

Introduction ...

QFT Procedure :

- 1. Generate the plant template at the given design frequencies ω_i .
- 2. Generate the bounds in terms of nominal plant, at each design frequency, on the Nichols chart.

Introduction ...

QFT Procedure ...

- 3. Synthesize a controller K(s) such that
 - 1. The open loop response satisfies the given performance bounds,
 - 2. And gives a nominal closed loop stable system.
- 4. Synthesize a prefilter F(s) which satisfies the closed loop specifications.

Problem Definition

Given an uncertain plant and time domain or frequency domain specification, find out if a controller of specified (transfer function) structure exist.

Feasibility Test

Proposed Algorithm

Inputs:

- 1. Numerical bound set,
- 2. The discrete design frequency set,
- 3. Inclusion function for magnitude and angle,
- 4. The initial search space box z^0 .

Output:

Set of Controller parameters, **OR** The message "No solution Exist".

Proposed Algorithm...

BEGIN Algorithm

- 1. Check the feasibility of initial search box **z**⁰.
 - Feasible \Leftrightarrow Complete z^0 is feasible solution.
 - − Infeasible ⇔ No solution exist in z⁰
 - Ambiguous \Leftrightarrow Further processing required : Initialize stack list L^{stack} and solution list L^{sol} .

11

Proposed Algorithm ...

- Choose the first box from the stack list L^{stack} as the current box z, and delete its entry form the stack list.
- 3. Split **z** along the maximum width direction into two subboxes.

P.S.V. Nataraj and Sachin Tharewal

Proposed Algorithm ...

- 4. Find the feasibility of each new subbox:
 - Feasible \Leftrightarrow Add to solution list L^{sol} .
 - Infeasible \Leftrightarrow Discard.
 - Ambiguous Further processing required : Add to stack list *L^{stack}*.

Proposed Algorithm

- 5. IF *L*^{stack} = {empty} THEN (terminate)
 - $L^{sol} = \{\text{empty}\} \Leftrightarrow \text{``No solution exist'', Exit.}$
 - $L^{sol} \neq \{\text{empty}\} \Leftrightarrow \text{"Solution set} = " L^{sol}, \text{Exit.}$
- 6. Go to step 2 (iterate).

End Algorithm

P.S.V. Nataraj and Sachin Tharewal

Example

- Uncertain plant : $G(s) = \frac{k(1-\tau s)}{s(1+\beta s)}$
- Uncertainty : $k \in [1,3], \beta \in [0.3,1], \tau \in [0.05,0.1]$
- Robust stability spec: $\omega_s = 1.3032$
- Tracking spec: $|T_U(j4)| = 0.5$ and $|T_L(j4)| = -3.5$

P.S.V. Nataraj and Sachin Tharewal

QFT Bounds

P.S.V. Nataraj and Sachin Tharewal

16

Example ...

- For first order controller:
 - Parameter vector $z = \{k, \breve{z}_1, p_1\}$
 - Initial search box $z^0 = (0,10^8], (0,10^4], (0,10^4]$
 - For second order controller:
 - Parameter vector $z = \{k, \breve{z}_1, \breve{z}_2, p_1, p_2\}$
 - Initial search box $z^0 = (0,10^8], (0,10^4], (0,10^4], (0,10^4], (0,10^4])$

P.S.V. Nataraj and Sachin Tharewal

Example ...

For third order controller:

- Parameter vector $z = \{k, \breve{z}_1, \breve{z}_2, \breve{z}_3, p_1, p_2, p_3\}$
- Initial search box

 $z^{0} = (0,10^{8}], (0,10^{4}], (0,10^{4}], (0,10^{4}], (0,10^{4}], (0,10^{4}], (0,10^{4}])$

For fourth order controller:

- Parameter vector $z = \{k, \breve{z}_1, \breve{z}_2, \breve{z}_3, \breve{z}_4, p_1, p_2, p_3, p_4\}$
- Initial search box

 $z^{0} = (0,10^{8}], (0,10^{4}], (0,10^{4}], (0,10^{4}], (0,10^{4}], (0,10^{4}], (0,10^{4}], (0,10^{4}], (0,10^{4}], (0,10^{4}], (0,10^{4}), (0,10^{4}], (0,10^{4}), (0,10^{4$

Results

- For the aforementioned structures and the initial search domains, the proposed algorithm terminated with the message: "No feasible solution exists in the given initial search domain".

This finding is in agreement with the analytically found 'nonexistence' of Horowitz.

Conclusions

- An algorithm has been proposed to computationally verify the existence (or non-existence) of a QFT controller solution.
- Proposed algorithm has been tested successfully on a QFT benchmark example.
- The proposed algorithm is based on interval analysis, and hence provides the most reliable technique for existence verification.

Thank you !

P.S.V. Nataraj and Sachin Tharewal