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In a constraint satisfaction problem (CSP),

one asks about existence, and one or several examples:

Can 13 balls of radius r touch a ball of radius R?

For r = R, the answer is No! (Fejes Toth, ∼ 1956)

In a global optimization problem (GOP),

one asks about an extremum,

and a configuration where it is achieved.

What is the smallest possible R?

It is R ≈ 1.09r.

In a constraint projection problem (CPP),

one asks about exhaustion of the solution set,

and display of a suitable low-dimensional projection of it.

What is the set of possible (r, R)?

Σ = {(r, R) | R ≥ 1.09r} (apart from roundoff).
overhead (model)



In a competitive world, only the best

(safest, cheapest, . . . ) is good enough.

This is why optimization (and often global

optimization) is very frequent in application.



Global optimization is one of the oldest of

sciences, part of the art of successful living.

maximize service (or money? or happiness?)

s.t. gifts and abilities

hopes and expectations (ours; others)

bounded stress

Thousands of years of experience . . .



. . . resulted in the following algorithmic

framework recommended by St. Paul

(ca. 50 AD):

“Consider everything. Keep the good.

Avoid evil whenever you recognize it.”

(1 Thess. 5:21–22)

In modern terms, this reads:

Do global search by branch and bound!



Here is my personal global optimization problem:

“Be perfect,

as our father in heaven is perfect.”

(Jesus, ca. AD 30)

A never ending challenge...

On the mathematical level, the quest for

perfection is

rigorous global optimization



Why global optimization?
There are a number of problem classes where it is

indispensable to do a complete search.

• Hard feasibility problems (e.g., robot arm

design), where local methods do not return

useful information since they generally get

stuck in local minimizers of the merit function,

not providing feasible points

• Computer-assisted proofs (e.g., the recent

proof of the Kepler conjecture by Hales),

where inequalities must be established with

mathematical guarantees



• Semi-infinite programming, where the optimal

configurations usually involve global

minimizers of auxiliary problems

• Safety verification problems, where treating

nonglobal extrema as worst cases may severely

underestimate the true risk

• Many problems in chemistry, where often only

the global minimizer (of the free energy)

corresponds to the situation matching reality

overhead (molecules)



This talk uses slides made for various occasions,

including joint work with

• Hermann Schichl (Vienna, Austria)

• Oleg Shcherbina (Vienna, Austria)

• Waltraud Huyer (Vienna, Austria)

• Tamas Vinko (Szeged, Hungary)

within the COCONUT project

(COCONUT = Continuous Constraints – Updating the Technology)

www.mat.univie.ac.at/coconut

funded 2000–2004 by the European Community

overhead (dichotomies)



Solver Minos LGO BARON ICOS GlobSol

access language GAMS GAMS GAMS AMPL Fortran90

optimization? + + + − +

integer constraints − + + − −
search bounds − required recommended − required

black box eval. + + − − −
complete − (−) + + +

rigorous − − − + +

local ++ + + + (+)

CP − − + ++ +

other interval − − − + ++

convex/LP − − ++ + −
dual + − + − −
available + + + + +

free − − − + +



Solver Premium LINGO αBB GloptiPoly OQNLP

Solver Global

access language Visual Basic LINGO MINOPT Matlab GAMS

optimization? + + + (+) +

integer constraints + + + − +

search bounds + - ? − +

black box eval. − − − − +

complete + + + + −
rigorous (+) − − − −
local + + + − +

CP + + − − −
interval ++ + + − −
convex + ++ ++ + −
dual − + − ++ −
available + + − + +

free − − − + −



The COCONUT test set

Number of variables 1− 9 10− 99 100− 999 ≥ 1000

size 1 size 2 size 3 size 4 total

Library 1 84 90 44 48 266

(GLOBALLIB from GAMS)

Library 2 347 100 93 187 727

(CUTE from Vanderbei)

Library 3 225 76 22 6 329

(CSP from EPFL)

total 656 266 159 241 1322

The test set actually used is slightly smaller, and we

didn’t test size 4.

Detailed test results are available on the COCONUT

homepage (www.mat.univie.ac.at/coconut).
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New, promising solvers:

• COCOS (Hermann Schichl, Vienna)

• LaGO (Ivo Nowak, Berlin)



Degrees of rigor
• incomplete (heuristics; e.g., smoothing techniques)

• asymptotically complete (no means to know when a

global minimizer has been found;

e.g., multiple random start, pure branching)

• complete (knows after a finite time that an

approximate global minimizer has been found to within

prescribed tolerances, assuming exact calculation).

• rigorous (complete, with full rounding error control)

(Often, the label deterministic is used to characterize the last

two categories of algorithms; however, this label is slightly

confusing since many incomplete and asymptotically complete

methods are deterministic, too.)



Incomplete methods are currently still the only

choice available for difficult large-scale problems

such as protein folding, radiation therapy

planning, optimal design and packing. But even

this might change in the near future.

As we have seen, complete, but nonrigorous

mehods are already today superior to the best

general purpose heuristic methods in small and

medium dimensions (< 1000).

However, even high quality MILP codes which

have already a long commercial tradition may fail

due to roundoff!



I noticed the fact that poor handling of roundoff

poblems may result in a loss of solutions when I

wrote in 1986 my first banch and bound code for

covering solution curves of algebraic equations:

Every now and then a pixel was missing in the

pictures.

Geometric visualization software had to cope with

the same problem, and today they all use

carefully designed algorithms with safe rounding

in critical computations.



In the optimization community, awareness of this

problem is only slowly growing.

CPLEX 8.0 and all but one MILP solver from

NEOS failed in 2002 to handle a simple 20

variable MILP problem with small integer

coefficients and solution, claiming that no

solution exists.

But rigorous safeguards are now available, and

will probably be soon part of commercial

packages.



We look at the case s = 6 of the

20 variable integer linear problem

min −x20

s.t. (s+ 1)x1 − x2 ≥ s− 1,

−sxi−1 + (s+ 1)xi − xi+1 ≥ (−1)i(s+ 1) for i = 2 : 19,

−sx18 − (3s− 1)x19 + 3x20 ≥ −(5s− 7),

0 ≤ xi ≤ 10 for i = 1 : 13,

0 ≤ xi ≤ 106 for i = 14 : 20,

all xi integers



CPLEX 8.0 on a LINUX platform, returned

(both with and without presolve) after 16

iterations at the root node the message

’Integer infeasible. Current MIP best bound is infinite.’

No further diagnostic information was available.

Surprisingly, upon adding the additional

constraint x20 ≤ 10 to this ’infeasible’ problem

CPLEX produced the solution

x = (1, 2, 1, 2, ..., 1, 2)T .

It is easily checked that this is a feasible point

(probably the only one).

Thus the negative result CPLEX produced

on the original problem was erroneous.



6 other MIP solvers (or MINLP solvers with

AMPL input) from NEOS (June 2002):

GLPK, XPRESS-MP, MINLP: ’integer infeasible’

BONSAIG: ’no solution found’

XPRESS: ’global search complete –

no integer solution found’

Only FortMP solved the original problem

correctly.



The solution is a nondegenerate vertex of the

linear programming relaxation (but not of the

solution of the LP relaxation).

The coefficient matrix of the linear constraints

active at the solution is nonsingular but extremely

ill-conditioned; the numerical rank is 19.

⇒ Most solvers suffer from rounding errors

introduced through ill-conditioning.

WARNING: A high proportion of real life linear

programs (72% according to Ordóñez & Freund,

and still 19% after preprocessing) are

ill-conditioned!



Primal linear program:

min cTx

s.t. b ≤ Ax ≤ b,
(1)

Corresponding dual linear program:

max bT y − bT z
s.t. AT (y − z) = c, y ≥ 0, z ≥ 0.

(2)

Introduce boxes:

b := [b, b] = {b̃ ∈ Rn | b ≤ b̃ ≤ b},
Assume

Ax ∈ b ⇒ x ∈ x = [x, x].



From an approximate solution of the dual program we

calculate an approximate multiplier λ ≈ z − y, and a

rigorous interval enclosure for

r := ATλ− c ∈ r = [r, r].

Since cTx = (ATλ− r)Tx = λTAx− rTx ∈ λTb− rTx,

µ := inf(λTb− rTx)

is the desired rigorous lower bound for cTx.

In well-conditioned cases, the bound is quite accurate,

while in ill-conditioned cases, it is so poor that it warns

the user (or the algorithm) that something went wrong

and needs special attention.

Safeguarding MILP solutions is more involved

but can also be done.



With these slides we crossed the line between pure

advertisement and mathematical analysis.

Of course, the great success of the current generation of

complete global solvers is due mainly to improvements in

our ability to analyze global optimization problems

mathematically.

For history, a thorough introduction, a comprehensive

overview over the techniques in use, and extensive

references see my survey

A. Neumaier

Complete search in continuous global optimization

and constraint satisfaction,

pp. 1-99 in: Acta Numerica 2004,

Cambridge Univ. Press 2004.



Complexity

Already in the case where only bound constraints

are present, global optimization problems and

constraint satisfaction problems are

• undecidable on unbounded domains

(Wenxing Zhu 2004), and

• NP-hard on bounded domains.

This implies natural limits on the solvability of

such problems in practice.



In particular, methods which work with direct

attack (analytic transformations without

problem splitting) lead to transformed problems

of exponentially increasing size,

while branch-and-bound methods split the

problems into a worst case exponential number

of subproblems.

It is very remarkable that in spite of this, many

large-scale problems can be solved efficiently.

This is achieved by carefully balancing the

application of the available tools and using

the internal structure which realistic problems

always have.



Complete search techniques
I

a) Direct attack is feasible for polynomial

systems of moderate degree (up to about 20)

• semidefinite relaxations

• Gröbner basis methods

• resultant-based techniques



Complete search techniques
II

Branch-and-bound methods are the choice

for larger problems. Basic approaches use

• constraint propagation

• outer approximation

(linear, convex, conic, semidefinite)

• DC (difference of convex function) techniques

• interval Newton and related methods



Complete search techniques
III

Further efficiency is gained by

• use of optimality conditions

• multiplier techniques

(duality, Lagrangian relaxation)

• cut generation

• adding redundant constraints

• graph decomposition techniques



Complete search techniques
IV

Efficiency and reliability also require the use of

• local optimization for upper bounds

• clever box selection heuristics

• adaptive splitting heuristics

• reliable stopping criteria

• combination heuristics

• safeguarding techniques



While there would be a lot to say about all the

techniques, I’ll concentrate in the following on

interval techniques, since, in the optimization

community, this is the least well-known set of

tools.

In particular, conic and semidefinite relaxations and polyhedral outer

approximation are already covered in other talks at this conference.

The organizers arranged the parallel semiplenary talk to be by Paul

Tseng on second-order cone relaxations.

Perhaps to make sure that no one escapes getting informed about

global optimization techniques?

Unfortunately, I have only one copy of myself; otherwise a second

copy would sit in his lecture!



Interval techniques became initially known mainly as a

tool to control rounding errors. However, it is much less

known – and much more important – that their real

strength is the ability to control nonlinearities in a fully

satisfying algorithmic way.

A full account of the theoretical background for interval

techniques in finite dimensions is available in my book

A. Neumaier

Interval methods for systems of equations

Cambridge Univ. Press 1990.

The book is still up to date (with a few minor exceptions).

While it is officially out of print, if you order it at Cambridge

University Press, they’ll print an extra copy especially for you.

(Apparently, this is still profitable for them.)

overhead (interval methods)



Challenges for the future I

• Ensuring reliability

(safe bounds, finite termination analysis,

certificates)

• Integrating MIP and SDP techniques into a

branch-and-bound framework

• unbounded variables

• unconstrained/bound constrained problems

(the more constraints the easier the problem!

⇒ bounded residual estimation preferable

to least squares)



Challenges for the future II

• Problems with severe dependence

(volume preserving recurrences imply heavy

wrapping)

• Problems with symmetries

(optimal design of experiments,

chemical cluster optimization)

• sensitivity analysis

• parametric global optimzation

• constraint projection problems



Challenges for the future III
• Differential constraints

(optimal control of chemical plants;

space mission design)

• Integral constraints

(expectations; value at risk,

engineering safety factors)

• Other desirables

(black box functions; expensive functions;

nonsmoothness; noise; small discontinuities;

uncertain domain of definition; SNOBFIT

final slide (references)



A. Neumaier

Complete search in continuous global optimization

and constraint satisfaction,

pp. 1-99 in: Acta Numerica 2004,

Cambridge Univ. Press 2004.

Global (and Local) Optimization site

www.mat.univie.ac.at/∼neum/glopt.html

COCONUT homepage

www.mat.univie.ac.at/coconut

A. Neumaier

Interval methods for systems of equations

Cambridge Univ. Press 1990.


