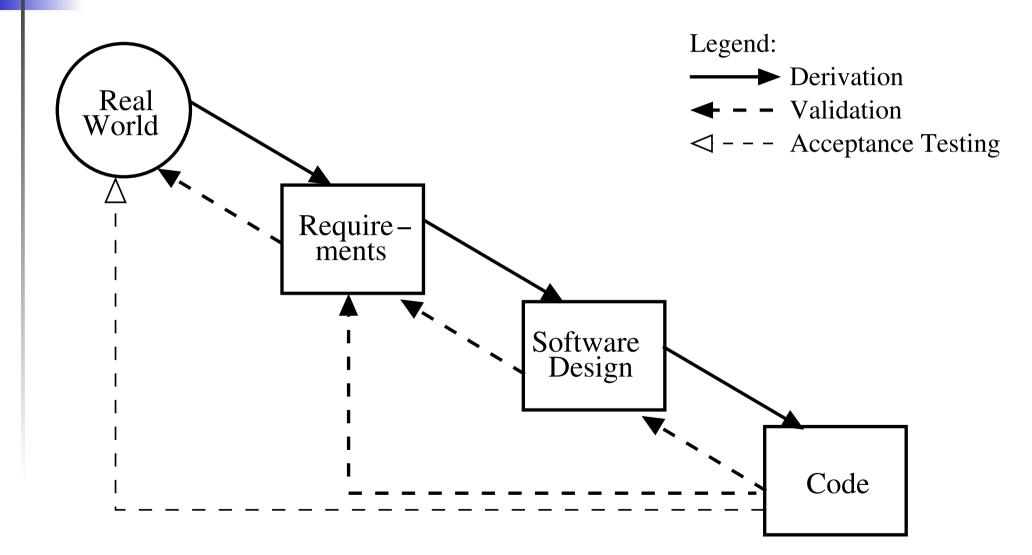
Requirements Analysis for Engineering Computation

Spencer Smith, Lei Lai, and Ridha Khedri

smiths@mcmaster.ca


McMaster University, Department of Computing and Software

Hamilton, Ontario, Canada

Overview

- Requirements elicitation, analysis and documentation
- Tabular expressions
- Why requirements analysis for engineering computation?
- System Requirements Specification and template for beam analysis software
 - Provides guidelines
 - Eases transition from general to specific
 - Catalyses early consideration of design
 - Reduces ambiguity
 - Identifies range of model applicability
 - Clear documentation of assumptions
- Concluding remarks

Requirements Analysis

Software Requirements Activities

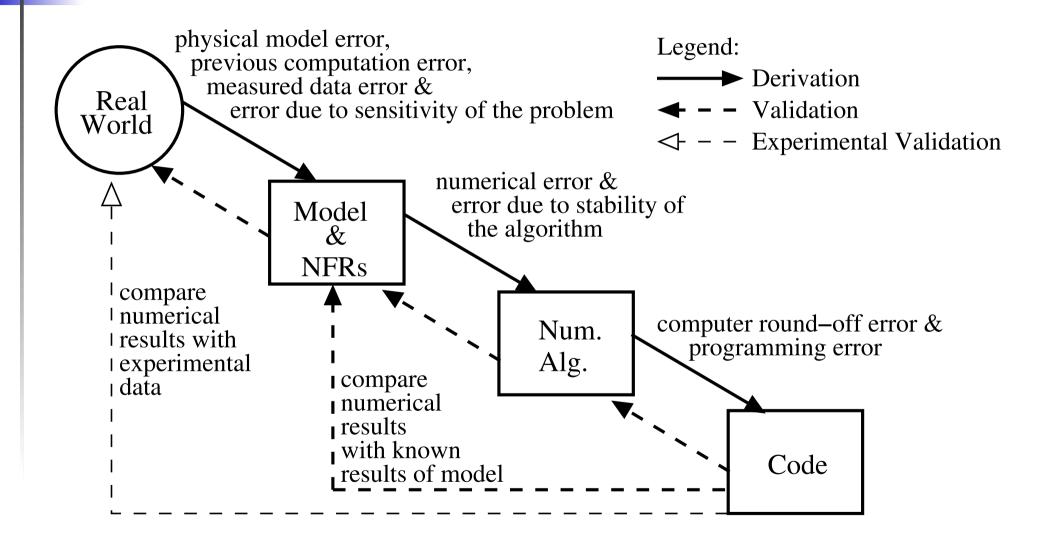
- A software requirement is a description of how the system should behave, or of a system property or attribute
- Requirements should be unambiguous, complete, consistent, modifiable, verifiable and traceable
- Requirements should express "What" not "How"
- Formal versus informal specification
- Functional versus nonfunctional requirements
- Software requirements specification (SRS)
- Requirements template

Tabular Expressions

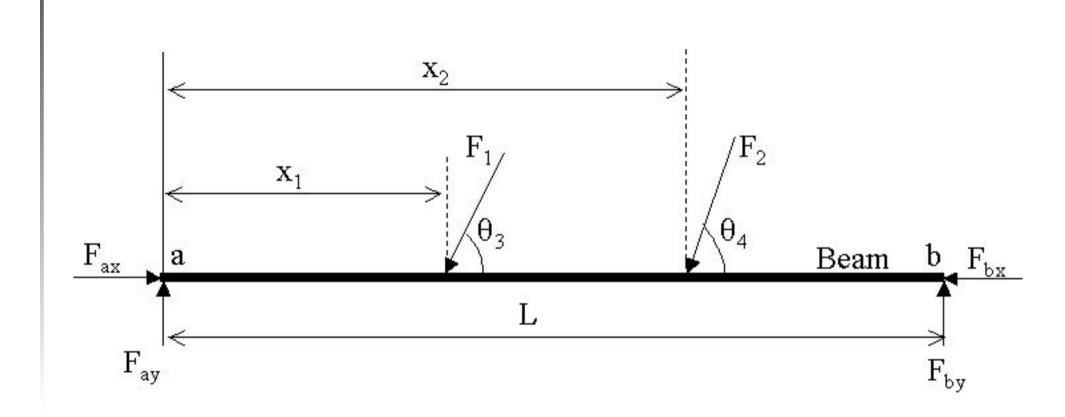
Composition rule $\cup_{i=1}^{4} H_2[i] \cap (\cap_{j=1}^{2} H_1[j]; G[i, j])$

$$H_1$$

$$S'_{GET} \cup = ErrorMsg' + =$$


 $x_{1} < 0$ $0 \le x_{1} < min_{d}$ $x_{1} > max_{d}$ $min_{d} \le x_{1} \le max_{d}$

 H_2


Ø	$InvalidInput_x_1$
Ø	$x_1_TooSmall$
Ø	$x_1_TooLarge$
$\{@x_1\}$	NULL

 $\wedge ChangeOnly(S_{GET}, ErrorMsg)$

Why Requirements Analysis?

Beam Analysis Software

Proposed Template

- 1. Reference Material: a) Table of Symbols ...
- 2. Introduction: a) Purpose of the Document; b) Scope of the Software Product; c) Organization of the Document.
- 3. General System Description: a) System Context; b) User Characteristics; c) System Constraints.
- 4. Specific System Description:
 - (a) Problem Description: i) Background Overview ...
 - (b) Solution specification: i) Assumptions; ii) Theoretical Models; ...
 - (c) Non-functional Requirements: i) Accuracy of Input Data; ii) Sensitivity
- 5. Traceability Matrix
- 6. List of Possible Changes in the Requirements
- 7. Values of Auxiliary Constants

Provides Guidance

- Details will not be overlooked, facilitates multidisciplinary collaboration
- Encourages a systematic process
- Acts as a checklist
- Separation of concerns
 - Discuss purpose separately from organization
 - Functional requirements separate from non-functional
- Labels for cross-referencing
 - Sections, physical system description, goal statements, assumptions, etc.
 - PS1.a "the shape of the beam is long and thin"

Eases Transition from General to Specific

- "Big picture" first followed by details
- Facilitates reuse
- "Introduction" to "General System Description" to "Specific System Description"
- Refinement of abstract goals to theoretical model to instanced model
 - G1. Solve for the unknown external forces applied to the beam
 - **T1** $\sum F_{xi} = 0$, $\sum F_{yi} = 0$, $\sum M_i = 0$
 - M1 $F_{ax} F_1 \cdot \cos \theta_3 F_2 \cdot \cos \theta_4 F_{bx} = 0$

Ensures Special Cases are Considered

		H_1							
		$S_{GET} = S_{sym} - S_{unkF}$	$\begin{array}{ccc} S_{GET} & \neq \\ (S_{sym} & - \\ S_{unkF}) \end{array}$						
$S_{unkF} \notin \mathbb{P}_3$	-	$(ErrorMsg' = InvalidUnknown) \\ \land ChangeOnly(ErrorMsg)$							
$S_{unkF} = \{@F_{ax}, @F_{bx}, @F_{ay}\}$	-	$ErrorMsg' = NoSolution \\ \land ChangeOnly(ErrorMsg)$							
$S_{unkF} = \{@F_{ax}, @F_{ay}, @F_1\}$	$ \begin{array}{c} x_1 \neq 0 \\ \land \theta_3 \neq 0 \\ \land \theta_3 \neq 1\\ 180 \end{array} $	$F'_{ax} = \frac{-\cos\theta_3 F_2 x_2 \sin\theta_4 + \cos\theta_3 F_{by} L + F_2 \cos\theta_4 x_1 \sin\theta_3 + F_{bx} x_1 \sin\theta_3}{x_1 \sin\theta_3}$ \land $F'_{ay} = -\frac{F_2 x_2 \sin\theta_4 - F_{by} L - F_2 \sin\theta_4 x_1 + F_{by} x_1}{x_1}$ \land $F'_1 = \frac{-F_2 x_2 \sin\theta_4 + F_{by} L}{x_1 \sin\theta_3} \land ChangeOnly(S_{unkF})$	FALSE						
	otherwise	$(ErrorMsg' = Indeterminant) \\ \land ChangeOnly(ErrorMsg)$							

 H_2

G

Catalyses Early Consideration of Design

- Identification of significant issues early will improve the design
- Section for considering sensitivity
 - Conditioning?
 - Buckling of beam
- Non-functional requirements
 - Tradeoffs in design
 - Speed efficiency versus accuracy
- Tolerance allowed for solution: $|\sum F_{xi}|/\sqrt{\sum F_{xi}^2} \le \epsilon$
- Solution validation strategies
- List of possible changes in requirements

Reduces Ambiguity

- Unambiguous requirements allow communication between experts, requirements review, designers do not have to arbitrary decisions
- Tabular expressions allow automatic verification of completeness
- Table of symbols
- Abbreviations and acronyms
- Scope of software product and system context
- User characteristics
- Terminology definition and data definition
- Ends arguments about the relative merits of different designs

Identifies Range of Model Applicability

- Clear documentation as to when model applies
- Can make the design specific to the problem
- Input data constraints are identified
 - Physically meaningful: $0 \le x_1 \le L$
 - Maintain physical description: PS1.a, $0 < h \le 0.1L$
 - Reasonable requirements: $0 \le \theta_3 \le 180$
- The constraints for each variable are documented by tables, which are later composed together

$$(\min_{f} \leq |F_{ax}| \leq \max_{f}) \land (|F_{ax}| \neq 0) \Rightarrow$$
$$\forall (FF|@FF \in S_{F} \cdot FF \neq 0 \land \frac{\max\{|F_{ax}|, |FF|\}}{\min\{|F_{ax}|, |FF|\}} \leq 10^{r_{f}})$$

Clear Documentation of Assumptions

Phy. Sys. /Goal	Data /Model		Assumption								Model		
		A1	A2		A4		A8	A9	A10	•••	A14	M1	
G1	T1											\checkmark	
G2	T2	\checkmark						\checkmark					
G3	T3	\checkmark						\checkmark					
	M1		\checkmark									\checkmark	•••
PS1.a													
		•••			•••	•••				•••	•••		•••

A10. The deflection of the beam is caused by bending moment only, the shear does not contribute.

Concluding Remarks

- Motivated, justified and illustrated a method of writing requirements specification for engineering computation to improve reliability
- Also improve quality with respect to usability, verifiability, maintainability, reusability and portability
- Tabular expressions to reduce ambiguity, encourage systematic approach
- Conclusions can be generalized because other computation problems follow the same pattern
- Input then calculate then output
- Benefits of approach should increase as the number of details and the number of people involved increase