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Motivation

• Many applications in chemical engineering deal with nonlinear models of

complex physical phenomena, on scales from macroscopic to molecular

• A common problem is the need to solve a nonlinear equation systems in

which the variables are constrained physically within upper and lower bounds;

that is, to solve:

f(x) = 0

xL
≤ x ≤ xU

• These problems may:

– Have multiple solutions – Have all been found?

– Have no solution – Can this be verified?

– Be difficult to converge to any solution using standard methods
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Motivation (Cont’d)

• Another common problem is the need to globally minimize a nonlinear

function, subject to nonlinear equality and/or inequality constraints:

min
x

φ(x)

subject to h(x) = 0

g(x) ≥ 0

xL
≤ x ≤ xU

• These problems may:

– Have multiple local minima – Has the global minimum been found?

– Require finding all local minima or stationary points – Have all been

found?

– Have no solution (infeasible NLP) – Can this be verified?

– Be difficult to converge to any local minima using standard methods
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Interval Analysis

• One approach for dealing with these issues is interval analysis

• Interval analysis can

– Provide the tools needed to solve modeling and optimization problems

with complete certainty

– Provide problem-solving reliability not available when using standard local

methods

– Deal automatically with rounding error, thus providing both mathematical

and computational guarantees
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Interval Methodology

• Core methodology is Interval Newton/Generalized Bisection (IN/GB)

– Given a system of equations to solve, an initial interval (bounds on all

variables), and a solution tolerance:

– IN/GB can find (enclose) with mathematical and computational certainty

either all solutions or determine that no solutions exist

– IN/GB can also be extended and employed as a deterministic approach for

global optimization problems

• A general purpose approach; in general requires no simplifying assumptions

or problem reformulations

• No strong assumptions about functions need to be made
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Interval Methodology (Cont’d)

Problem: Solve f(x) = 0 for all roots in interval X(0)

Basic iteration scheme: For a particular subinterval (box), X(k), perform root

inclusion test:

• (Range Test) Compute the interval extension F(X(k)) of f(x) (this provides

bounds on the range of f(x) for x ∈ X(k))

– If 0 /∈ F(X(k)), delete the box. Otherwise,

• (Interval Newton Test) Compute the image, N(k), of the box by solving the

linear interval equation system

F′(X(k))(N(k)
− x̃(k)) = −f(x̃(k))

– x̃(k) is some point in X(k)

– F′(X(k)) is an interval extension of the Jacobian of f(x) over the box

X(k)
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Interval Methodology (Cont’d)

• There is no solution in X(k)
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Interval Methodology (Cont’d)

• There is a unique solution in X(k)

• This solution is in N(k)

• Additional interval-Newton steps will tightly enclose the solution with quadratic

convergence
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Interval Methodology (Cont’d)

• Any solutions in X(k) are in intersection of X(k) and N(k)

• If intersection is sufficiently small, repeat root inclusion test

• Otherwise, bisect the intersection and apply root inclusion test to each

resulting subinterval

• This is a branch-and-prune scheme on a binary tree

10



Interval Methodology (Cont’d)

• Can be extended to global optimization problems

• For unconstrained problems, solve for stationary points (∇φ = 0)

• For constrained problems, solve for KKT or Fritz-John points

• Add an additional pruning condition (objective range test):

– Compute interval extension of objective function

– If its lower bound is greater than a known upper bound on the global

minimum, prune this subinterval

• This combines IN/GB with a branch-and-bound scheme on a binary tree

11



Interval Methodology (Cont’d)

Enhancements to basic methodology:

• Hybrid preconditioning strategy (HP) for solving interval-Newton equation

(Gau and Stadtherr, 2002)

• Strategy (RP) for selection of the real point x̃(k) in the interval-Newton

equation (Gau and Stadtherr, 2002)

• Use of linear programming techniques to solve interval-Newton equation —

LISS/LP (Lin and Stadtherr, 2003, 2004)

– Exact bounds on N(k) (within roundout)

• Constraint propagation (problem specific)

• Tighten interval extensions using known function properties (problem specific)
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Example

• Trefethen (2002) Challenge Problem #4 — Find the Global Minimum
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f(x, y) = exp(sin(50x)) + sin(60 exp(y)) + sin(70 sin(x)) + sin(sin(80y)) −

sin(10(x + y)) + (x2 + y2)/4; x ∈ [−1, 1]; y ∈ [−1, 1]
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Example (Cont’d)

• Global minimum is easily found using interval approach

x ∈ [−0.02440307969437517,−0.02440307969437516]

y ∈ [0.2106124271553557, 0.2106124271553558]

f ∈ [−3.306868647475245,−3.306868647475232]

• CPU time (LISS/LP): 0.16 seconds on SUN Blade 1000 model 1600

workstation
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Another Example

• Find the global minimum of the function (Siirola et al., 2002):

f(x) = 100

N
∏

i=1

5
∑

j=1

(

j5

4425
cos(j + jxi)

)

+
1

N

N
∑

i=1

(xi − x0,i)
2

where x0,i = 3, xi ∈ [x0,i − 20, x0,i + 20], i = 1, ..., N .

• For N = 6, there are ≈ 1010 local optima.

• Results:

Global Minimizer Points

N x∗
i

x∗
j 6=i

Global Minimum CPU time (s)

2 4.6198510288 5.2820519601 -88.1046253312 0.07

3 4.6201099154 5.2824296177 -87.6730486951 2.12

4 4.6202393815 5.2826184940 -87.4572049443 33.95

5 4.6203170683 5.2827318347 -87.3276809494 413.61

6 4.6203688625 5.2828074014 -87.2413242244 4566.42

CPU times on Dell workstation – 1.7 GHz Xeon running Linux
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Some Applications in Chemical Engineering

• Fluid phase stability and equilibrium

– Activity coefficient models (Stadtherr et al., 1995; Tessier et al., 2000)

– Cubic EOS (Hua et al., 1996, 1998, 1999)

– SAFT EOS (Xu et al., 2002)

• Combined reaction and phase equilibrium (Burgos et al., 2004)

• Location of azeotropes: Homogeneous, Heterogeneous, Reactive (Maier et

al., 1998, 1999, 2000)

• Location of mixture critical points (Stradi et al., 2001)

• Solid-fluid equilibrium

– Single solvent (Xu et al., 2000, 2001)

– Solvent and cosolvents (Scurto et al., 2003)

16



Applications (cont’d)

• General process modeling problems (Schnepper and Stadtherr, 1996)

• Parameter estimation

=⇒ Relative least squares (Gau and Stadtherr, 1999, 2000)

– Error-in-variables approach (Gau and Stadtherr, 2000, 2002)

• Nonlinear dynamics

=⇒ Equilibrium states and bifurcations in ecological models (Gwaltney et al.,

2004)

• Molecular Modeling

– Density-functional-theory model of phase transitions in nanoporous

materials (Maier et al., 2001)

=⇒ Transition state analysis (Lin and Stadtherr, 2004)

– Molecular conformations (Lin and Stadtherr, 2004)
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Example – Parameter Estimation in VLE Modeling

• Goal: Determine parameter values θ in activity coefficient models (e.g.,

Wilson, van Laar, NRTL, UNIQUAC):

γµi,calc = fi(xµ, θ)

• Use a relative least squares objective; thus, seek the minimum of:

φ(θ) =
n

∑

i=1

p
∑

µ=1

[

γµi,calc(θ) − γµi,exp

γµi,exp

]2

• Experimental values γµi,exp of the activity coefficients are obtained from VLE

measurements at compositions xµ, µ = 1, . . . , p

• This problem has been solved for many models, systems, and data sets in the

DECHEMA VLE Data Collection (Gmehling et al., 1977-1990)
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Parameter Estimation in VLE Modeling

• One binary system studied was benzene (1) and hexafluorobenzene (2)

• Ten problems, each a different data set from the DECHEMA VLE Data

Collection were considered

• The model used was the Wilson equation

ln γ1 = − ln(x1 + Λ12x2) + x2

[

Λ12

x1 + Λ12x2
−

Λ21

Λ21x1 + x2

]

ln γ2 = − ln(x2 + Λ21x1) − x1

[

Λ12

x1 + Λ12x2
−

Λ21

Λ21x1 + x2

]

• This has binary interaction parameters

Λ12 = (v2/v1) exp(−θ1/RT )

Λ21 = (v1/v2) exp(−θ2/RT )

where v1 and v2 are pure component molar volumes

• The energy parameters θ1 and θ2 must be estimated
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Results

• Each problem was solved using the IN/GB approach to determine the globally

optimal values of the θ1 and θ2 parameters

• For each problem, the number of local minima in φ(θ) was also determined

(branch and bound steps were turned off)

• Table 1 compares parameter estimation results for θ1 and θ2 with those given

in the DECHEMA Collection – New globally optimal parameter values are

found in five cases

• CPU times on Sun Ultra 2/1300
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Table 1: IN/GB results vs. DECHEMA values

Data Data T DECHEMA IN/GB No. of CPU

Set points (oC) θ1 θ2 φ(θ) θ1 θ2 φ(θ) Minima time(s)

1* 10 30 437 -437 0.0382 -468 1314 0.0118 2 15.1

2* 10 40 405 -405 0.0327 -459 1227 0.0079 2 13.7

3* 10 50 374 -374 0.0289 -449 1157 0.0058 2 12.3

4* 11 50 342 -342 0.0428 -424 984 0.0089 2 10.9

5 10 60 -439 1096 0.0047 -439 1094 0.0047 2 9.7

6 9 70 -424 1035 0.0032 -425 1036 0.0032 2 7.9

Data Data P DECHEMA IN/GB No. of CPU

Set points (mmHg) θ1 θ2 φ(θ) θ1 θ2 φ(θ) Minima time(s)

7* 17 300 344 -347 0.0566 -432 993 0.0149 2 17.4

8 16 500 -405 906 0.0083 -407 912 0.0083 2 14.3

9 17 760 -407 923 0.0057 -399 908 0.0053 1 13.9

10 17 760 -333 702 0.0146 -335 705 0.0146 2 20.5

*New globally optimal parameters found
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Discussion

• Does the use of the globally optimal parameters make a significant difference

when the Wilson model is used to predict vapor-liquid equilibrium (VLE)?

• A common test of the predictive power of a model for VLE is its ability to

predict azeotropes

• Experimentally this system has two homogeneous azeotropes

• Table 2 shows comparison of homogeneous azeotrope prediction when the

locally optimal DECHEMA parameters are used, and when the global optimal

parameters are used
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Table 2: Homogeneous azeotrope prediction

Data T(oC)or DECHEMA IN/GB

Set P (mmHg) x1 x2 P or T x1 x2 P or T

1 T =30 0.0660 0.9340 P =107 0.0541 0.9459 P =107

0.9342 0.0658 121

2 40 0.0315 0.9685 168 0.0761 0.9239 168

0.9244 0.0756 185

3 50 NONE 0.0988 0.9012 255

0.9114 0.0886 275

4 50 NONE 0.0588 0.9412 256

0.9113 0.0887 274

7 P =300 NONE 0.1612 0.8388 T =54.13

0.9315 0.0685 52.49

• Based on DECHEMA results, one would conclude Wilson is a poor model for

this system. But actually Wilson is a reasonable model if the parameter

estimation problem is solved correctly
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Example – Nonlinear Dynamics

• Nonlinear dynamic systems are of frequent interest in engineering and

science

ẋ =
dx

dt
= f(x,p); x = state variables; p = parameters

• Common problems include computing

– Equilibrium states (ẋ = 0)

– Bifurcations of equilibria

– Limit cycles

– Bifurcations of cycles

• Of specific interest are food chain/web models

– Use to predict impact on ecosystems of introducing new materials (ionic

liquids) into the environment
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Ionic Liquids

• Ionic liquids (ILs) are salts that are liquid at or near room temperature

• Many attractive properties

– No measurable vapor pressure – ILs do not evaporate

– Many potential applications, including replacement of volatile organic

compounds (VOCs) currently used as industrial solvents

– Eliminates a major source of air pollution

• Could enter the environment via aqueous waste streams

– Very little environmental toxicity information available

– Single species toxicity information is not sufficient to predict ecosystem

impacts

• Need for ecological risk assessment – Modeling can play an important role
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Finding Equilibrium States and Bifurcations

• Equilibrium states: Solve equilibrium conditions for x

ẋ =
dx

dt
= f(x) = 0

• Bifurcations of equilibria: Solve augmented equilibrium conditions for x and

parameter(s) of interest

• Augmenting conditions (in terms of Jacobian matrix J = df/dx)

– Fold and transcritical bifurcations: det(J(x, α)) = 0

– Hopf bifurcation: det(2J(x, α) ⊗ I) = 0

– Fold-fold or fold-Hopf bifurcations: det(J(x, α, β)) = 0 and

det(2J(x, α, β) ⊗ I) = 0
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Finding Equilibrium States and Bifurcations (cont’d)

• These equation systems commonly have multiple solutions

• Typically these systems are solved using a continuation-based strategy (e.g.,

Kuznetsov, 1991; AUTO software)

– Initialization dependent

– No guarantee of locating all solution branches

• Interval mathematics provides a method that is

– Initialization independent

– Capable of locating all solution branches with certainty

• As a relatively simple test problem (Gwaltney et al., 2004), consider a

tritrophic food chain with logistic prey and hyperbolic predator and

superpredator response functions (Rosenzweig-MacArthur model)
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Rosenzweig-MacArthur model

In terms of prey(1), predator(2) and superpredator(3) biomasses x1, x2 and x3,

the model is given by

dx1

dt
= x1

[

r
(

1 −
x1

K

)

−
a2x2

b2 + x1

]

dx2

dt
= x2

[

e2
a2x1

b2 + x1
−

a3x3

b3 + x2
− d2

]

dx3

dt
= x3

[

e3
a3x2

b3 + x2
− d3

]

Here r is the prey growth rate constant, K is the prey carrying capacity of the

ecosystem, the di are death rate constants, the ai represent maximum predation

rates, the bi are half-saturation constants, and the ei are predation efficiencies
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Results – Rosenzweig-MacArthur Model

Example of a solution-branch diagram (equilibrium states vs. one parameter with

other parameters fixed) – here x1, x2 and x3 vs. d2
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Results – Rosenzweig-MacArthur Model

Example of a bifurcation diagram (parameter value at which bifurcation occurs vs.

another parameter – here r vs. K with other parameters fixed)

TE = Transcritical of equilibrium; FE = Fold of equilibrium; H = Hopf; Hp = Planar Hopf; FH = Fold-Hopf
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Results – Canale’s Chemostat Model

This is a more complex model (4 state variables). This is the computed D vs. xn

bifurcation diagram

TE = Transcritical of equilibrium; FE = Fold of equilibrium; H = Hopf; Hp = Planar Hopf; FH = Fold-Hopf
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Example – Transition State Analysis

• Transition state analysis is widely used in engineering and science to study

the kinetics of various phenomena, e.g.,

– Chemical reactions

– Adsorption/desorption to/from surfaces

– Diffusion through a porous media (e.g., zeolites)

• The key step is identifying stationary points on the potential energy surface V

that characterizes the intermolecular and intramolecular interactions

governing the system

• Motion in the system then is assumed to proceed as a series of hops from

one local minimum to another, passing through a saddle point (transition

state)

• Need a method that is guaranteed to find all stationary points of V
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Transition State Analysis (cont’d)

• One example problem – diffusion of xenon in silicalite (June et al., 1991; Lin

and Stadtherr, 2004)

• Use truncated Lennard-Jones 6-12 potential

V =
N

∑

i=1

Vi

Vi =







a
r12
i

− b
r6
i

ri < rcut

0 ri ≥ rcut

r2
i = (x − xi)

2 + (y − yi)
2 + (z − zi)

2

where (x, y, z) are the Cartesian coordinates of the xenon, and

(xi, yi, zi), i = 1, . . . , N are the Cartesian coordinates of the N = 192

oxygen atoms in a unit cell of the silicalite lattice

• Problem is to solve ∇V(x, y, z) = 0 for all stationary points (x, y, z)
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Results using interval-Newton methodology (LISS LP)

No. Type Energy(kcal/mol) x(Å) y(Å) z(Å) Connects

1 minimum -5.9560 3.9956 4.9800 12.1340

2 minimum -5.8763 0.3613 0.9260 6.1112

3 minimum -5.8422 5.8529 4.9800 10.8790

4 minimum -5.7455 1.4356 4.9800 11.5540

5 minimum -5.1109 0.4642 4.9800 6.0635

6 1st order -5.7738 5.0486 4.9800 11.3210 (1, 3)

7 1st order -5.6955 0.0000 0.0000 6.7100 (2′ , 2)

8 1st order -5.6060 2.3433 4.9800 11.4980 (1, 4)

9 1st order -4.7494 0.1454 3.7957 6.4452 (2, 5)

10 1st order -4.3057 9.2165 4.9800 11.0110 (3, 4)

11 1st order -4.2380 0.0477 3.9147 8.3865 (2, 4)

12 1st order -4.2261 8.6361 4.9800 12.8560 (3, 5′)

13 1st order -4.1405 0.5925 4.9800 8.0122 (4, 5)

14∗ 2nd order -4.1404 0.5883 4.8777 8.0138 (4,5),(4,4′)

15 2nd order -4.1027 9.1881 4.1629 11.8720 (2,3),(4,5)

∗Not found by June et al. (1991)
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Concluding Remarks

• Interval analysis provides a powerful general purpose and model independent

approach for solving a wide variety of modeling and optimization problems,

giving a mathematical and computational guarantee of reliability.

• Guaranteed reliability of interval methods comes at the expense of CPU time.

Thus, there is a choice between fast local methods that are not completely

reliable, or a slower method that is guaranteed to give the correct answer.

• The modeler must make a decision concerning how important it is to get the

correct answer.

• Continuing advances in computing hardware and software will make this

approach even more attractive.

– Compiler support for interval arithmetic (Sun Microsystems)

– Parallel computing
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Concluding Remarks (cont’d)

• With effective load management strategies, interval methods can be

implemented very efficiently using MPI on a networked cluster of workstations

(Gau and Stadtherr, 2002).

– Good scalability

– Exploit potential for superlinear speedup in optimization

• Parallel computing technology can be used not only to solve problems faster,

but to solve problems more reliably.

• Reliability issues are often overlooked:

Are we just getting the wrong answers faster?
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