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Introduction (1)

realistic structural analysis and safety assessment•

•
prerequisites:

suitably matched computational models
geometrically and physically nonlinear algorithms
for numerical simulation of structural behavior

• appropriate description of structural parameters
uncertainty has to be accounted for in its natural form

1   Introduction

the engineer‘s endeavor
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modeling structural parameters

geometry ?
material ?
loading ?
foundation?

Introduction (2)
1   Introduction
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deterministic variable• random variable•

x

f(x)

x

F(x)

very few information!
changing reproduction conditions!
uncertain measured values!
linguistic assessments!
experience, expert knowledge!

alternative uncertainty models

•

• fuzzy variable

fuzzy random variable

Introduction (3)
1   Introduction

very few information!
changing reproduction conditions!
uncertain measured values!
linguistic assessments!
experience, expert knowledge!
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Fuzzy sets

{ } (x)  Xx X α≥µ∈=αX

α-level set

support S(X)~

α-discretization

xαk l xαk r
x

2   Uncertainty models
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• Ω ... space of the random elementary events ω

• ~F(ún) ... set of all fuzzy numbers x in ún

fuzzy random variable X~

ω1
ω2

ω3
ω4

ω5
ω6

ω 0 Ωµ(x)
1.0

0.0

x 0 X = ú1

x6
~

x5
~x4

~

x3
~

x2
~

x1
~

Fuzzy random variables (1)

real valued random variable X
that is completely enclosed in X~

•

original Xj

X is the fuzzy set of
all possible originals Xj

~

fuzzy result of the uncertain mapping Ω 6 F(ún)~•

2   Uncertainty models
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xi1.0 0.0µ(F(x))

F(xi)
~
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fuzzy probability distribution function F(x)
~
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F(x) = bunch of the Fj(x)
of the originals Xj of X

~
~

Fuzzy random variables (2)
2   Uncertainty models

Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX



Fuzzy random variables (3)

fuzzy random variable X
~

µ(F(x))
F(x)

x

0

1 1

special case

real random
variable X

µ(F(x))
F(x)

x

0

1 1

F(x)

x
0

1

fuzzy variable x

1

~

µ(F(x))
F(x)

x

0

1 1

µ(x)

x
0

1

special case

2   Uncertainty models
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µ(βD)
1.0

0.5

0.0

βD = <7.5; 14.17; 57.5>
~

Quantification of fuzzy variables (fuzzification)

• limited data

objective and subjective information, expert knowledge

0 10 30 50 βD [N/mm²]

n
4

2
1.33

0

• linguistic assessment

low medium highµ(βD)
1.0

0.5

0.0
0 10 30 50 βD [N/mm²]

• single uncertain measurement

µ(d)
1.0

0.0
d

• expert experience

crisp kernel set

fuzzy interval

x

µ(x)
1.0

0.0

3   Quantification of uncertainty
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sα=0 l

sα=0 r

xα=0 r
_

xα=0 l
_

F(x)
~µ = 0, interaction

s

x
_ x

F(x)
1.0

0.0

µ = 1

xα=1
_

sα=1

F(x) with fuzzy parameters and fuzzy functional type~

without interaction

Quantification of fuzzy random variables

statistical information comprising partially non-stochastic uncertainty

• small sample size
fuzzification of the uncertainty of statistical estimations and tests

• non-constant reproduction conditions that are known in detail
separation of fuzziness and randomness by constructing groups

• non-constant, unknown reproduction conditions; uncertain measure values
fuzzification of the sample elements followed by statistical evaluation

3   Quantification of uncertainty
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fuzzy result variable zj = Zj
~

zj 0 Zj,α

0.0

1.0
α

zj
Zj,αzj,α l zj,α r

µ(zj)

~

mapping
operator

x1 0 X1,α x2 0 X2,α

x = (...; xi; ...)      z = (...; zj; ...)~ ~ ~6 ~

Basic numerical solution procedure

0.01.0 α 0.0 1.0α

µ(x1) µ(x2)

fuzzy
input variable x2 = X2

~
fuzzy
input variable x1 = X1

~

X1,α

x1,α l

x1,α r

x1

X2,α

x2,α l

x2,α r

x2

α-level optimization

~ ~

4   Fuzzy structural analysis
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improvement of zj

starting point

lower distance bound
upper distance bound
for generating offspring points

Modified evolution strategy

x1,α l x1,α r x1

x2,α l

x2,α r

x2

no improvement of zj

1

0

2

34

5

6
7

optimum point xopt,α

4   Fuzzy structural analysis

crisp input subspace Xα

• post-computation              recheck of all results for optimality
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survival region

limit state
surface g(x) = 0

failure region

Fuzzy First Order Reliability Method (1)

x2

original space of the basic variables

x1

Xs :  g(x) > 0

Xf :  g(x) < 0

5   Fuzzy probabilistic safety assessment

joint
probability density function f(x)

fuzzy

fuzzy randomness Y f(x)• ~

µ = 1
µ = 0

~

~• fuzziness Y g(x) = 0

fuzzy

~

~

fuzzy

~

fuzzy~

~

µ = 1
µ = 0
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g(x)α=1 # 0

x2

x1

µ(xf)

1.0

0.0

g(x)α=1 = 0

g(x) = 0~
fuzzy failure region
Xf :  g(x) # 0
~ ~

5   Fuzzy probabilistic safety assessment

Fuzzy First Order Reliability Method (1)

g(x)α=1 > 0 x2

x1

µ(xs)

1.0

0.0

g(x)α=1 = 0

fuzzy survival region
Xs :  g(x) > 0
~ ~
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survival region

limit state
surface g(x) = 0

failure region

Fuzzy First Order Reliability Method (1)

x2

original space of the basic variables

x1

Xs :  g(x) > 0

Xf :  g(x) < 0

5   Fuzzy probabilistic safety assessment

joint
probability density function f(x)

fuzzy

fuzzy randomness Y f(x)• ~

µ = 1
µ = 0

~

~• fuzziness Y g(x) = 0

fuzzy

~

~

fuzzy

~

fuzzy~

~

µ = 1
µ = 0

Fuzzy
First
Order
Reliability
Method

xd )x(f ...  P
   x ;x

f
sf X~X~

~~

∉∈
∫∫=

~

• ~fuzzy design point xB

1 s

txB
~

µ(xB)
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β

µ(β)

1.0

0.0

βα

βα l βα r

α

( ){ } β→ ~~~~     m ;  X p jit

β
~

~
fuzzy
design point yB

~ψ2

ψ1
~

~

y2 h(y) = 0
~

h(y) < 0
~fuzzy failure region

µ = 1
µ = 0

nNN(y)

y1

•
~

complete fuzziness in h(y) = 0

standard normal space

0

5   Fuzzy probabilistic safety assessment

Fuzzy First Order Reliability Method (2)

fuzzy reliability index β•
~

~fuzzy design point yB•

h(y) > 0
~

fuzzy
survival region
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µ(β)

α

1.0

0.0

βi

β

βα l βα r

numerical solution B α-level optimization

selection of an α-level•

computation of one
element βi of βα

comparison of βi with βα l and βα r

•

•

number of α-levels sufficient ?•

βα

β
∼

determination of
one trajectory of f(x)

determination of an original
of each basic variable

•

• ~

determination of a single point in the
space of the fuzzy structural parameters
determination of
one element of g(x) = 0

•

•
~

5   Fuzzy probabilistic safety assessment

Fuzzy First Order Reliability Method (3)
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Structural design based on clustering B concept

fuzzy structural analysis and fuzzy probabilistic safety assessment

6   Structural design based on clustering

set M(x) of discrete points xi in the input subspace,
set M(z) of the assigned discrete points zi in the result subspace

design constraints CTh
subdividing M(z) into permissible and non-permissible points

•

assigned permissible and non-permissible points within M(x)•
separate clustering of the permissible and non-permissible points from M(x)•
elimination of all non-permissible clusters
including intersections with permissible clusters

•

permissible clusters of design parameters
representing alternative design variants
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fuzzy input variables

x1 and x2
~

z = f(x1, x2)

~
points from α-level optimization

permissible points

non-permissible points

Design constraint

permissible structural design variants, assessment of alternatives

6   Structural design based on clustering

µ(x1, x2)

1

0

α
α

x1

x2

~

µ(z)

fuzzy result variable z

1

0

α

z

Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX



C3

C2C1

dissimilarity

similarity

assignment of remaining objects
to the most similar 
representative objects

•

x1

x2

k-medoid method
crisp

C3

C2

C1

"c $ 0.0
C1

C2

C3

"c $ 0.25

fuzzy cluster method

x1

x2

minimization of the functional

c' j
v'1

k j n
i,j'1 µr

iv µr
jv d(i,j)

2 j n
j'1

µr
jv

•

Cluster analysis
6   Structural design based on clustering

Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX

determination of representative objects•

representative
objects



selection of a cluster
or cluster combination

definition of the support of the 
fuzzy input variable
based on the cluster boundaries

definition of the mean 
value x with :(x) = 1

modeling :(x)

x

1

0.5

0.0

"c = 0.25

"c = 0.5

prototype

•

•

•

construction of the 
membership function

representative object or prototype as mean value

based on "c-levels from fuzzy clustering

geometrical cluster center as mean value

oriented to the primary fuzzy input variable

•

•

•
•

Design variants B modified fuzzy input variables
6   Structural design based on clustering
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JAIN-algorithm

z

:(z)

0.0

1

additional methods:
level rank method

centroid method•
•

:s(z)

[ ]s maxµ (z) supmin µ(z);µ(z )
z z∈

=

k=2 k=1

k=0.5

[ ]
[ ] [ ]max

z inf z
µ(z )

sup z inf z
z z

z zz z

k
∈

∈∈

⎡ ⎤−
⎢ ⎥=
⎢ ⎥−
⎣ ⎦

maxzmaximizing set with:
z0zl zr

0 s r l lz µ z z z= − +

Assessment of alternative design variants (1)

•
defuzzification

6   Structural design based on clustering

:s(z)

CHEN-algorithm

z

:(z)

0.0

1
k=1

minimizing set with:

[ ]
[ ] [ ]min

sup z z
µ(z )

sup z inf z
z z

z zz z

k
∈

∈∈

⎡ ⎤−
⎢ ⎥=
⎢ ⎥−
⎣ ⎦

m inz

•

z0zl zr
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constraint distance

perm_z

:(z)

zz0
ds

ds max

relative sensitivity measure

uncertainty of the fuzzy result variables
in relation to the
uncertainty of the fuzzy input variables

j
j

i j

H(z )
B(z )

H(x )
= ∑ min

robustness

[ ]
z z

H(z) k µ(z) ln(µ(z)) (1 µ z)) ln(1 µ(z)) dz
∈

= − ⋅ ⋅ + − ( ⋅ −∫

modified SHANNON‘s entropy•

Assessment of alternative design variants (2)
6   Structural design based on clustering
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Deterministic computational model

imperfect straight bars with layered cross sections•

geometrically and physically nonlinear numerical analysis of
plane (prestressed) reinforced concrete bar structures

• numerical integration of a system of 1st order ODE for the bars

• interaction between internal forces

• incremental-iterative solution technique
to take account of complex loading processes

• consideration of all essential geometrical and physical nonlinearities:
- large displacements and moderate rotations
- realistic material description of reinforced concrete

including cyclic and damage effects

7   Examples
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kn

(3)(1)

(2) 43

21kn

PH

PH = 10 kN

PH

2) horizontal load PH

Reinforced concrete frame

cross sections:
500/350

concrete:
C 20/25

reinforcement
steel:
BSt 420

4 i 16

4 i 16

2 i 16

stirrups: i 8
s = 200

concrete cover:
c = 50

6000 mm

80
00

loading process: 1) dead load•

7   Examples

ν − load factor

νAPV 0 νAPV 0νAp0

PV 0 = 100 kN
p0 = 10 kN/m

3) vertical loads νAPV 0 and νAp0
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Fuzzy structural analysis (1)

fuzziness

fuzzy rotational spring stiffness

kn = < 5; 9; 13 > MNm/rad
~

•

µ(kn)

1.0

0.0

kn [MNm/rad]
1395

fuzzy load factor

ν = < 5.5; 5.9; 6.7 >
•

~

µ(ν)

1.0

0.0
6.75.95.5 ν

deterministic
values

7   Examples
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fuzzy displacement•

µ(vH(3))
1.00

0.00
0.144
0.25

0.50

0.75

vH(3) [cm]
2.631.570.0 4.06 7.21 10.69

2.16

deterministic
solution

fuzzy structural response

fuzzy load-displacement
dependency
(left-hand frame corner, horizontal)

•

ν

8.0

0.0
vH(3) [cm]2.161.570.0

6.7
5.9
5.5
4.0

2.0

4.0 6.0 8.0

µ = 0.0
µ = 1.0

Fuzzy structural analysis (2)
7   Examples
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νg
~

ν32.7027.15 37.60

g     =  only geometrical

µ(ν)

1.0

0.0
ν7.246.43

0.5

7.63

fuzzy failure load•

νg+p
~

nonlinearities considered:
g + p =  geometrical and physical

influence of the
deterministic fundamental solution

•

Fuzzy structural analysis (3)
7   Examples

8.11

νp

p     =  only physical
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FFORM B analysis I (1)

load factor ν:  X1

extreme value distribution
Ex-Max Type I (GUMBEL)

m = < 5.7; 5.9; 6.0 >
σ = < 0.08; 0.11; 0.12 >

•

fuzzy randomness

x1

x1
~
~

f(x1)

4.0

2.0

x15.7 5.9 6.0

µ = 0
µ = 1

0.0

~ rotational spring stiffness kn:  X2

logarithmic normal distribution

x0,2 = 0 MNm/rad
m = < 8.5; 9.0; 10.0 > MNm/rad
σ = < 1.00; 1.35; 1.50 > MNm/rad

•

x2

x2
~
~

µ = 0
µ = 1

f(x2)

0.3

0.2

x2 [MNm/rad]8.5
9.0

10.0
0.0

0.1

~

7   Examples
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g(x1; x2) = 0

g(x1; x2) > 0

• crisp limit state surface

g(x1; x2) < 0

xB
~

sα=0 l

sα=0 r

sα=1

s

0.0

1.0µ(xB)

• fuzzy design point

joint fuzzy probability density function•

original space of the fuzzy probabilistic basic variables

x2 [MNm/rad] f(x1; x2)
~

0

4

8

12

x187650

µ = 1.0

µ = 0.5

µ = 0.0

7   Examples

FFORM B analysis I (2)
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fuzzy reliability index•

µ(β)

1.0

0.5

0.0
β6.6845.6094.662

4.255
3.851

FORM-solution

4.662

y2

y1842-2 0
1

-2

-4

nNN(y1; y2)

h(y1; y2) > 0
~

h(y1; y2) = 0
~

h(y1; y2) < 0
~

µ = 0.0
µ = 0.5
µ = 1.0

fuzzy limit state surface•
crisp standard joint probability density function•

standard normal space

β > 3.8 = req_β
~

safety verification•

7   Examples

FFORM B analysis I (3)

yB
~

β
~

ψ1
~

ψ2
~

fuzzy design point•
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fuzziness and fuzzy randomness

fuzzy structural parameter:
rotational spring stiffness kn
fuzzy triangular number

kn = < 5; 9; 13 > MNm/rad

•

~

~

µ(kn)

1.0

0.0
kn [MNm/rad]1395

fuzzy probabilistic
basic variable X1:  load factor ν

extreme value distribution
Ex-Max Type I (GUMBEL)

m = < 5.7; 5.9; 6.0 >
σ = < 0.08; 0.11; 0.12 >

•

x1

x1
~
~

f(x1)

4.0

2.0

x15.7 5.9 6.0

µ = 0
µ = 1

0.0

~

7   Examples

FFORM B analysis II (1)
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fuzzy probability density function•

f(x1)

4.0

2.0

5.7 5.9 6.0
0.0

x1

f(x1)
~

µ = 0
µ = 1

original space of the fuzzy probabilistic basic variables

fuzzy integration limit

g(x1) = ν - x1 = 0~ ~g(x1) = ν - x1 > 0
survival

~ ~ g(x1) = ν - x1 < 0
failure

~ ~

µ(ν)

1.0

0.5

0.0

6.43 7.24 7.63

fuzzy limit state surface•

νg+p (from fuzzy
structural analysis)

~

7   Examples

FFORM B analysis II (2)
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β1 $ 3.8 = req_β
~

β2 < 3.8 = erf_β
~ β1

~

β2
~

FORM-solution

5.214 β6.5925.214 7.557

fuzzy reliability index, safety verification

µ(β)
1.0

0.4

0.0
3.9352.534

req_β = 3.8 βII
~

comparison with the result from FFORM-analysis I•
µ(β)
1.0

0.0
β6.6844.6623.851

βI
~

Hu(βΙ) = 1.41Ak < 2.48Ak = Hu(βΙΙ)
~ ~

modified SHANNON&s entropy

7   Examples

FFORM B analysis II (3)
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f(x1)

x15.7 5.9 6.3

m = 0
m = 1

m = 0
m = 1

f(x2)

x2 [MNm/rad]8.5
9.0

10.0

rotational spring stiffness kn:  X2

logarithmic normal distribution

x0,2 = 0 MNm/rad
m = < 8.5; 9.0; 10.0 > MNm/rad
σ = < 1.00; 1.35; 1.50 > MNm/rad

•

x2

x2
~
~

~
load factor ν:  X1

extreme value distribution
Ex-Max Type I (GUMBEL)

m = < 5.7; 5.9; 6.0 >
σ = < 0.08; 0.11; 0.12 >

•

x1

x1
~
~

~

Structural design based on clustering (1)
7   Examples
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req_$ = 3.8
reliability index

design constraint

req_$ ≥ 3.8

$4.7 6.69

µ($)
1.0

0.4

0.0
2.49

fuzzy reliability index

Structural design based on clustering (2)
7   Examples

1

2

load factor ν rotational spring stiffness knn [MNm/rad]

m- x1 σ-x1 m- x2 σ-x2

< 5.85; 5.90; 6.0 > < 0.08; 0.10; 0.12 > < 8.5; 9.0; 9.6 > < 1.30; 1.40; 1.50>

< 5.70; 5.85; 6.0 > < 0.08; 0.10; 0.11 > < 8.9; 9.5; 10.0 > < 1.02; 1.14; 1.26 >

m- x1 m- x2

< 8.5; 9.0; 9.6 >

fuzzy cluster analysis modified fuzzy probabilistic basic variables

design 
variant
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µ(ß1)

ß1

1.0

0.0
3.80 5.04 5.87 4.452 5.4 6.676

1.0

0.0

µ(ß2)

ß2

FFORM-analysis with the modified fuzzy probabilistic basic variables

defuzzification
after CHEN

relative sensitivity

z01 = 4.60 z02 = 5.12

B1 = 92.67 B2 = 77.48

design variant 1

Structural design based on clustering (3)
7   Examples

design variant 2
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consideration of non-stochastic uncertainty in
structural analysis, design, and safety assessment

•

• enhanced quality of prognoses
regarding structural behavior and safety

• direct design of structures by means of nonlinear analysis

8 Conclusions

Conclusions

Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX



A detailed explanation of all concepts presented
and much more may be found in the book:

Springer-Verlag, 2004
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