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Abstract. This paper argues that the reliability of engineering computation can be significantly improved
by adopting software engineering methodologies for requirements analysis and specification. The argument
centers around the fact that the only way to judge the reliability of a system is by comparison to a
specification of the requirements. This paper also points to methods for documenting the requirements. In
particular, a requirements template is proposed for specifying engineering computation software. To make
the mathematical specification easily understandable by all stakeholders, the technique of using tabular
expressions is advocated. To clarify the presentation, a case study of the documentation for a system for
analyzing statically determinant beams is presented.
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1. Introduction

Software engineers generally advocate that the first step in system development should be a
systematic elicitation, analysis and documentation of the requirements, because it is much
easier and cheaper to correct mistakes and misconceptions at the beginning of the process
than it is to try and fix problems during implementation and maintenance. There is wide
agreement in the software engineering community on the necessity of a complete and consis-
tent software requirements document for evaluating any software system quality, including
reliability [4]. Requirements documentation has been demonstrated to be effective in other
application areas, such as with business applications [29] and for real-time systems, such
as the U.S. Navy’s A-7E military aircraft [16] and the shutdown systems of the Darlington
nuclear generating station [26]. However the requirements stage of software development is
often neglected when solving engineering computation problems. This paper argues that the
reliability of engineering computation can be significantly improved by adopting software
engineering methodologies for requirements analysis and specification.

The importance of requirements analysis and documentation is not only widely rec-
ognized by software engineers. All engineering disciplines understand the importance of
documenting requirements for large and complex systems. For instance, an automobile
manufacturer will gather requirements from customers to determine whether fuel efficiency
is considered more important than luxury, or vise versa. Similarly, a structural engineer
would not start designing a building until she had determined the following: How many
floors will the building have? What are the expected loads? Will the building be used
as a hospital, or a school, or a shopping mall, or for some other purpose? To judge the
success of the design, it is necessary to take the requirements into account. For instance,
the required reliability for a hospital is higher than for other structures, so the probability
of a hospital collapsing due to an earthquake should be less than that for an office building
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in the same situation. Given that engineers recognize the importance of requirements for
large and complex systems, and that the size and complexity of software systems, including
engineering computation systems, seems to be continually growing, it is necessary to ensure
the quality of software systems via documenting their requirements.

The central argument of this paper is that a requirements specification document is
necessary to judge the reliability of engineering computation software. Reliability is a mea-
sure of the dependability of a system. One definition says that “reliability of software is
defined to be the ability of the software to behave consistently in a user-acceptable manner
when subjected to an environment in which it was intended to be used”[5, page 310].
Another definition say that “reliability requirements deal with failures to provide service.
They determine the maximum allowed software system failure rate, and can refer to the
entire system or to one or more of its separate functions” [10, page 39]. The definitions
of reliability depend on the existence of a specification of the requirements because one
cannot judge correctness, user acceptability, or failure rates, without knowing the standard
for comparison. In engineering computation, one needs to know exactly what problem the
system is required to solve and the values for the acceptable tolerances, or it is impossible
to judge whether the results are correct. Although the field of engineering computation
has developed many excellent methodologies for producing efficient and accurate numerical
results, the design decision for selecting the appropriate methodology are often made in
an ad hoc manner because there is a lack of appropriately documented requirements to
guide the decision. The existence of a complete and consistent requirements document can
lead to better decisions for improving reliability and it can also improve other software
qualities, such as usability, verifiability, maintainability, reusability and portability, which
are sometimes neglected in engineering software.

The first section below presents background information, including an overview of soft-
ware engineering methodologies for requirements elicitation, analysis and documentation.
The background section also contains a brief summary of the syntax and semantics of
tabular expressions, which are introduced in this document because they provide a relatively
easy way of documenting complex requirements. After the background section the value of
requirements documentation for engineering computation is explored in depth. Following
this, the methodology promoted in this paper is made more concrete by presenting some
excerpts from a requirements document for a software system to analyze statically determi-
nate beams. The discussion of this example highlights the requirements template that was
followed in constructing the requirements document. The final section consists of concluding
remarks.

2. Background

The idea of this paper is to borrow guidelines from software engineering to improve en-
gineering computation. To do this, it is first necessary to understand some aspects of
software engineering. This section provides necessary information on some current software
engineering methodologies. In particular, an overview of requirements elicitation, analysis
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and documentation is given and a particular approach for documenting formal requirements
is described: the technique of tabular notation. More detail on the software engineering
methodologies discussed here can be found in [21].

2.1. Overview of Requirements Elicitation, Analysis and Documentation

This section highlights how requirements fit into the software development process by
first providing a description of the waterfall model of software development. Following
this, the software requirements activities are described for elicitation, analysis, documen-
tation, validation and verification of requirements. A section is also provided to describe
the end-product of the requirements phase, the document called the Software Require-
ments Specification (SRS). The final section describes a requirements template, which is a
documentation approach used by software engineers to improve the quality of the SRS.

2.1.1. Waterfall Model
In a common model of the software development lifecycle the first phase involves gather-
ing requirements, analyzing them and documenting them. This lifecycle model, which is
graphically depicted in Figure 1, is termed the waterfall model because each stage flows
into the next as the process moves downstream. The stages of the waterfall model consist
of requirements, design and coding. The back and forth arrows represent the iterative
process of validation and derivation at each phase before proceeding to the next. After
the code is developed and validated against the design, it also has to be validated against
the requirements. This is represented by the dashed arrow from “Code” to “Requirements”.
The acceptance testing, in which the system is used in the real world, is performed before
the software is finally accepted. This is indicated by the dashed arrow from “Code” to “Real
World”. If the requirements are modified, the whole procedure has to be repeated.

Code

Software
Design

ments
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Derivation

Legend:

Real
World
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 −

Figure 1. Waterfall model of the software development lifecycle
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The waterfall model is not the only model of the software development process [12,
pages 385-456], but it is the model that is cited here because it closely parallels how engineers
typically think about their work flow. Moreover, as Section 3 will show, the software lifecycle
model and the scientific method essentially follow the same waterfall process. The waterfall
model is also well-suited for engineering computation problems because the waterfall model
works well when the requirements are stable [12, page 409], which is certainly the case
in engineering computation where the scientific theories of the laws of physics are slow to
change. Another argument in favor of presenting the waterfall model is that even though
the process of software development is never as rational as that presented in Figure 1, the
advantages of a rational process can still be obtained by documenting the work products as
if they were developed and written following the waterfall model [27].

2.1.2. Software Requirements Activities
To develop engineering computation software in a rational way, it is necessary to document
the software requirements. A software requirement is a description of how the system should
behave, or of a system property or attribute [33]. In [34], a software requirement is defined
as a software capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed document.

Software requirements activities cover all of the activities involved in discovering, ana-
lyzing, documenting, and maintaining a set of requirements for a computer-based system,
with an emphasis on using systematic and repeatable techniques [31, 33]. The software
requirements activities begin with the software requirements elicitation. At this stage an
attempt is made to work with the stakeholders to gather all of the information necessary
for understanding the problem. After all of the requirements have been gathered they are
analyzed, which involves refining and modeling the requirements. The goal of analysis
is to discover problems, incompleteness and inconsistencies in the elicited requirements.
The analysis is interleaved with the requirements elicitation phase. Some methodologies for
requirements analysis include structured analysis, object-oriented analysis [22], goal based
methods [22, 36], viewpoint methods [6] and component requirements analysis [13].

For the results of the requirements analysis to be useful for the subsequent development
of the software, the requirements need to be documented in the software requirements
specification document, which is discussed in the next section. To ensure quality, the software
requirements must undergo a process of validation and verification to check the adequacy
of the documented requirements. In the validation, the requirements model is examined
to make sure that stakeholders’ expectations are correctly captured. Verification involves
checking the software requirements for certain properties, such as consistency, completeness,
and modifiability.

In this paper, the term requirements analysis does double duty. It refers to the stage of
requirements refinement and modeling described above, but it is also used as a shorthand
to describe all of the requirements steps, from elicitation to verification and validation. In
the literature, the term requirements engineering is sometimes used for this purpose. The
meaning of the term requirements analysis should be clear from the context where the term
is used.
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In terms of quality, requirements should be reviewed to ensure that they are correct,
unambiguous, complete, consistent, modifiable, verifiable, and traceable [17]. A good re-
quirement should express “What” functionalities and qualities the system should have,
but it should not mention “How” these requirements are to be accomplished. That is, the
requirements should not impose design decisions. For instance, a requirement may specify
an ordinary differential equation that must be solved, but it should not mention that a
fourth order Runge-Kutta method should be employed. The requirements document should
not tie the hands of the designer; she should be free to select any algorithm that will satisfy
the requirements.

Besides the “What” versus “How” test, there are other tests that can be used to review
requirements. One such test is the “what is ruled out” test. This test determines if a
requirement actually makes a decision because if no alternatives are ruled out then no
decision has really been made. Another test is the “negation” test. If the negation of a
requirement represents a position that someone might argue for, then the original decision
is likely to be meaningful. For instance, the statement that “the software should be reliable”
has a negation that no one would argue for and thus the statement does not represent a
good characterization of a requirement for the system.

2.1.3. Software Requirements Specification (SRS)
During the process of requirement gathering, the requirements need to be documented in
a software requirement specification (SRS), which includes the external behavior of the
system, the constraints placed on the implementation, the forethought about the lifecycle
of the system, and the acceptable response to the undesired events [16]. The SRS is a
document that clearly and precisely describes each of the essential requirements (functions,
performance, constraints, and quality attributes) of the software and external interfaces [34].

Requirements documentation methods can be categorized according to their degree of
formality, where formality is defined as the degree to which use is made of mathematical
techniques and notations. The first group of methods are informal methods, which describe
the requirements document in natural language. In principle, the requirements in natural
language are universally understandable but, in practice, the meaning of requirements
is not always obvious, because natural language is inherently ambiguous and analyzing
such descriptions can be very difficult [19]. The second documentation methods are formal
methods, which use mathematically formal syntax and semantics to specify system function
and behavior. Example languages currently used in formal specifications are Z, VDM, CSP,
etc. Formal methods do not have the ambiguity of natural language, but they can be time
consuming to produce and as indicated in [2], formal methods do not help us “solve the
difficulties caused by lack of understanding of the real world situation”. The last group
of methods are semi-formal methods that use diagrammatic modeling or object-oriented
techniques. These methods are generally easier to develop and understand than formal
methods. However, semi-formal methods are facing criticism for paying less attention to
verification and validation of requirements [31]. At this time, requirements documentation
methods are not well-developed and there is no universally accepted way of documenting
requirements.
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As the official statement of the system requirements for customers, end-users and soft-
ware developers, the SRS provides many advantages during the lifecycle of the software
project [17, 31, 33]. For instance, the SRS reflects the mutual understanding of the problem
to be solved between the requirements analyst and the client and the SRS serves as a starting
point for the software design phase because decisions are made explicitly before designing
and coding. Other benefits of the SRS include the fact that it provides a basis for estimating
costs and schedules and it allows validation and verification because it provides a baseline
against which compliance can be measured. The SRS aids the software lifecyle because it
facilitates incremental development. In many businesses, systems are built in increments;
that is, the next generation inherits the features from the previous version, only enhancing
the system with additional or improved features. The final benefit of an SRS is the financial
benefit of finding problems early. If mistakes are found in the requirements stage, then
they are much cheaper to fix than when they are found in a later stage of the software
development. Empirical studies show that if one arbitrarily assigns unit cost to the effort
required to detect and repair an error during the coding stage, then the cost to detect and
repair an error during the requirements stage is between a fifth and tenth as much and the
cost to detect and repair an error during maintenance is twenty times as much [5, page 25].

2.1.4. Requirements Template
A requirements template provides a frame of reference, identifies needed information, and
suggests an order of presentation so that the requirements can be best expressed [31]. The
use of a template encourages a systematic procedure of requirements documentation. Since
no single template can meet the needs of every requirements document, it is vital that the
template be tailored to the needs of a particular audience [31].

The advantages of using requirements templates are discussed in [31, 33]. One advantage
is that templates can increase the productivity of SRSs. Software can be developed to
support the process of producing requirements documents conforming to the template.
Furthermore, templates can increase the adequacy of SRSs because a well-organized format
for the document acts as a checklist for writers of the SRS and reduces the chances of
omitting information. Another benefit of a template is that it facilitates the communications
among various SRS users, such as customers, developers, experts, etc., which in the context
of engineering computation, will be researchers, software developers, physical modelers,
computational scientist etc. Templates also provide the advantage of easing information
handling by defining the content of each specific section. The readers can find information
more easily and understand the relationships between different parts of the document.
Finally, a template helps the process of software development by making it easier to compare
two SRSs when they both conform to the same template.

There are several requirements specification frameworks that are designed for general
purposes and contain good advice on how to write requirements and how to avoid prob-
lems [9, 23, 24, 7, 30, 34]. These templates are the result of many years of practice, consulting
and research in requirement activities and thus provide a good foundation for software
requirements documentation. They are subject to change and are usually not used without
modification. The templates that have been developed to date focus on business applications
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and real-time systems and do not address some of the issues of importance for engineering
computation problems, which motivates the development of the new template discussed in
Section 4.

2.2. Tabular Expressions

Tables are used for documenting the requirements in this paper because they improve
readability so that formal documentation can be advocated to replace conventional docu-
mentation. Tabular expressions (or tabular notations) for computer programs and modules
made their appearance in the late 1950s [18]. Multi-dimensional tabular expressions make
it easier to consider every case separately while writing or reading a document, as op-
posed to the standard linear mathematical notation. The key ideas of tabular expressions,
one of the cornerstones of the relational model for documenting the intended behavior of
programs [6, 18, 25], were first developed in work for the US Navy and applied to the
A-7E aircraft [15]. In the current case study, tabular expressions are used in the SRS
for the beam analysis problem to formalize the specification of the system behavior. The
advantages of tabular expressions are that they are well-structured, they can simplify the
task of composition of table specifications to have a global or a dynamic view of the system’s
behavior, and they allow the achievement of SRS qualities attributes such as completeness
and consistency.

A full review of tabular expressions is beyond the scope of this paper; details on the
mathematics of tables can be found in [21]. An intuitive understanding of tables can be
obtained by considering an illustrative example. The example is taken from the SRS for
beam analysis. The SRS uses a table to specify the system response to input data for
describing the beam problem and the constraints on this data. The example in Table I
is for input of the distance from the left end of a beam to the point of application of a
load (x1). In this table mind and maxd are the bounds on the admissible range of values
for x1, @x1 is the symbol that represents x1, SGET is the set of symbols of user interface
variables that are accepted by the system, ErrorMsg is a system output indicating the error
mode, ChangeOnly(var1, var2, ...) indicates that only the output variables var1, var2, ...
may change value, i, j are the indexes of the table cells, H1 and H2 are headers that consist
of an indexed set of cells, G is a grid, and the composition rule is a relation expression that
determines the relation represented by the table.
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Table I. System Response to Constraints on Input Variable x1

Composition rule ∪4
i=1H2[i] ∩ (∩2

j=1H1[j] ; G[i, j])

H1

S′GET∪ = ErrorMsg′+ =

x1 < 0 ∅ InvalidInput x1

0 ≤ x1 < mind ∅ x1 TooSmall

x1 > maxd ∅ x1 TooLarge

mind ≤ x1 ≤ maxd {@x1} NULL

∧ChangeOnly(SGET , ErrorMsg)

H2 G

Although the mathematics of tabular expressions can be complex, the interpretation is
natural and intuitive. In this example the value of x1 determines the new values (indicated
by a prime (′) symbol on a variables name) of SGET and ErrorMsg. For a given value of
x1 one should search for the matching predicate in H2 and read the row in G to determine
what happens to the other variables. For instance, if mind ≤ x1 ≤ maxd then, S′GET =
SGET ∪ {@x1} and ErrorMsg′ = ErrorMsg.

3. Why Requirements Analysis for Engineering Computation?

Attempts to apply software engineering methodologies to engineering computation have
usually payed little attention to the appropriate and rigorous documentation of require-
ments. Some ideas from software engineering have been applied to engineering computation,
such as algebraic abstractions [1], object-oriented design [14], software components [8], and
software patterns [3]. Although these approaches have advantages, the research usually
focuses on the design and implementation and does not address how to improve the qual-
ity of engineering software from the requirements level. One exception to neglecting the
requirements phase is a requirements analysis of data parallel applications [11]. Another
exception documents the requirements of models of physical phenomena [20] using tabular
expressions. However, this model of physical phenomena does not necessarily solve all of
the problems for documenting the requirements of engineering software because the original
idea of this model was developed for an embedded system, which has different needs than
an engineering computation system. Moreover, this model allows the numerical methods,
which are essentially implementation decisions, to be encompassed into the requirements
documentation. This contradicts with the principle that requirements should not address
“How”, but only “What”.
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Figure 2. The Scientific Method

The apparent absence of studies on the requirements for engineering computation is not
an indication that this is an unimportant topic. All of the benefits listed in Section 2.1.3
apply to engineering software, just as they do to other types of applications. Besides these
arguments, there are also arguments that can be made that are specific to engineering
software.

The argument that requirements analysis can improve the reliability of engineering com-
putation is first made by observing the strong similarity between the waterfall model of
the software lifecycle and the standard model of the scientific method. The strong sim-
ilarity implies that engineering computation can benefit from methods that have proved
to be successful in software engineering. Like the waterfall model, the typical work flow
for the development of engineering modeling and simulation software can also be divided
into several stages [32], as illustrated in Figure 2. First, physical modelers do the basic
theoretical research, using assumptions to simplify the real world so that they can build
mathematical models. The correctness of these models is validated against the original
problem. Then computational scientists work on numerical algorithms, which are further
developed by computer scientists. Again, the algorithms are tested against the mathematical
models and the code is validated against the algorithms. There are two stages for correctness
confirmation. First, the code should be validated against the mathematical model, which
makes sure the implementation is a correct reflection of the model. Second, experiments are
used to validate that the model embodied in the requirements is adequate for the intended
use. If problems appear during the experimental validation this work flow recycles to the
physical modelers and the same cycle is applied for the changes in the mathematical models.

In the above discussion, the terms validation and verification are used in the same sense
that they are used in software engineering literature, which is different than the defini-
tions sometimes used in the engineering computation literature. For instance, Roache [28,
pages 19-36] reserves the word validation for experimental validation, but in the current
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paper validation refers to the external validation of any phase in the software development
process, which would be called verification by Roache. In the current paper the term ver-
ification refers to checking the internal properties, such as consistency and completeness,
at each stage of the software development process and the “validation” of Roache’s type is
identified by the compound term “experimental validation”.

There exists intrinsic similarity between the processes in Figure 1 and Figure 2; that is,
each box and arrow in Figure 2 has a counterpart in Figure 1. This similarity motivates
applying the innovative ideas from the discipline of software engineering to the field of
engineering computation.

As stated in the introduction, another argument in favor of requirements documentation
for engineering computation problems is that reliability can only be judged by comparison to
explicitly stated requirements. Verification and validation (V&V) are difficult if it is unclear
what standards the system is being verified and validated against. Clear requirements are
necessary to know what the system should be inspected and tested for. Moreover, current
V&V efforts focus on functional requirements, but the nonfunctional requirements, like
accuracy, efficiency, portability etc. are as important and should also be tested.

4. SRS for Beam Analysis Software

The methodology for documenting the requirements for engineering computing problems
is illustrated by the example of a system for analyzing beams. The central object in the
beam analysis problem is a beam with two external forces and supports at ends a and b,
as presented in Figure 3. The beam, of length L, is in static equilibrium. The following
information about the beam is given: the beam properties and the external loading (F1

and F2 located at positions and angles x1, x2, θ3 and θ4, respectively). The purpose of the
system is to calculate the unknown applied forces or support reactions (Fax, Fay, Fbx and
Fby), the internal shear forces and bending moments, and the deflection of the beam. This
software will be used as an educational tool for teaching statics and strength of material.
Although the example is relatively simple there is enough complexity to illustrate the value
of requirements documentation. The advantages discussed here should become even more
pronounced as the complexity and size of the engineering computation problem grows.

The SRS template was constructed by borrowing ideas from the templates presented in
Section 2.1.4, but it was also necessary to add original ideas to the new template. In some
ways the new template is simpler than its predecessors. For instance, only one viewpoint
needs to be considered for engineering software, but many different viewpoints need to be
considered for business applications (e.g. the accounting viewpoint, the marketing viewpoint,
etc.). Although different in the specific details, all engineering software can be abstracted
as: input information then perform calculations and finally output the results. In business
applications, on the other hand, the interaction of the system with the environment is
typically more complex. Although the engineering computation SRS template is simpler in
terms of the number of viewpoints than some templates, in other ways it is more complex.
Certain issues are more important for an engineering computation domain, such as the
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Figure 3. Free body diagram for beam with pin-pin supports

physics of the natural world, the sensitivity to the system of equations, the accuracy of the
calculations, etc. How these issues are handled, along with other benefits of the proposed
template, are examined in the subsections that follow. Each subsection discusses a different
benefit of requirements documentation and then presents excerpts from the full SRS [21] to
illustrate how the benefit is achieved.

4.1. The Template Provides Guidelines

The proposed requirements template supports and encourages a systematic process because
it breaks the problem down into smaller steps and thus provides guidelines and a checklist
for the issues that need to be addressed and the questions that need to be asked. The
sections of the proposed template are shown in Figure 4. The sections encourage a systematic
process by forcing the authors to consider each heading, even if the eventual decision is that
the heading is inappropriate for a given problem. The division into sections, which is an
example of applying the principle of separation of concerns, is an engineering approach to
handling large and complex problems and for facilitating multidisciplinary collaboration.
One example of separation of concerns is that the organization and purpose of the document
(Sections 2.a and 2.c of the SRS template) are discussed separately from one another and
from the rest of the document so that the discussion about the documentation itself will
not complicate the discussion of the requirements.

Another example of separation of concerns is that the presentation of the functional
requirements (Sections 4.a and 4.b of the SRS template) is separated from the presenta-
tion of the nun-functional requirements (Section 4.c of the SRS template). By separating
functional (system behaviors) and non-functional requirements (overall system qualities)
the analysis can focus on what the system is intended to do separately from thinking about
what qualities the system should have. As an example, in the case study SRS, the decision
that the system solves for unknown forces is separated from the requirement that, “The
maximum response time of any interaction between the user and the system should be less
than 1 second.” The requirement to solve for unknown forces may exist in another systems,
but in that other system the response time may be required to be faster than 1 second. Due
to the separation of the two requirements, it would be straightforward to adapt the current
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1. Reference Material: a) Table of Symbols b) Abbreviations and Acronyms

2. Introduction: a) Purpose of the Document b) Scope of the Software Product c) Organization of the Document

3. General System Description: a) System Context b) User Characteristics c) System Constraints

4. Specific System Description:

a) Problem Description: i) Background Overview, ii) Terminology Definition, iii) Physical System Description,
iv) Goal Statements

b) Solution specification: i) Assumptions, ii) Theoretical Models, iii) Data Definitions, iv) Instanced Models,
v) Data Constraints, vi) System Behavior

c) Non-functional Requirements: i) Accuracy of Input Data ii) Sensitivity of Model iii) Tolerance of So-
lution iv) Solution Validation Strategies v) Look and Feel Requirements vi) Usability Requirements
vii) Performance Requirements viii) Maintainability Requirements ix) Portability Requirements x) Security
Requirements

5. Traceability Matrix

6. List of Possible Changes in the Requirements

7. Values of Auxiliary Constants

Figure 4. Table of Contents for the Beam Analysis SRS

documentation to reflect the needs of the new system. The clear separation of these two
requirements improves the potential reusability of the documentation.

Another feature that improve reusability and make the document easier to maintain is
the use of labels for cross-referencing. Whenever necessary the different parts of the SRS
have their own label. The items that have labels include the following: the different sections
of the SRS, the physical system descriptions (in SRS Section 4.a.iii), the goal statements (in
SRS Section 4.a.iv), the assumptions (in SRS Section 4.b.i), the theoretical models (in SRS
Section 4.b.ii), the instanced models of the system (in SRS Section 4.b.iv), and all of the
tables and figures used in the SRS. As an example, physical system description PS1.a. says,
“the shape of the beam is long and thin” and PS1.d says, “The transverse cross-section
of the beam is rectangular”. The use of labels allows the interrelationships between items
in the SRS to be explicitly documented. Moreover, if there is a change in one portion of
the document, it should be possible to determine what other portions of the document are
affected, which improves reusability.

An additional feature of the proposed template that encourages a systematic approach
and results in reusable documentation is the use of parameters instead of explicit values.
Rather than say that the allowed range for x1 is 0 ≤ x1 ≤ 999999, the range is written as
mind ≤ x1 ≤ maxd. The actual values for these parameters are supplied in SRS Section 7,
“Values of Auxiliary Constants”. By not explicitly giving the values of the parameters in
the body of the SRS, it is simple to change all occurrences of the values by changing the
respective entry in SRS Section 7. This approach has the same advantages of using symbolic
constants in a computer program: the value is easy to change and the symbolic name for the
constant improves the documentation by being more meaningful than a number. Moreover,
the use of parameters in this way encourages a systematic procedure. The discussion of
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what value is appropriate for a constant can be separated from the decision that a variable
should have some, as yet undetermined, limits on its value.

4.2. A Transition from General to Specific

The requirements template supports a systematic process by gradually taking the authors
from general (abstract) to specific (concrete) concepts. For instance, as Figure 4 shows,
the structure of the document proceeds from a general introduction to a specific system
description. The “Introduction” section provides an overview of the entire SRS. After this
the “General System Description” provides general information about the system, identifies
the interfaces between the system and its environment, describes the user characteristics
and system constraints. The next section, “Specific System Description”, increases the level
of detail and presents more concrete information. This section provides the physical system
description, defines the system goals, presents a mathematical model of the system and
documents the non-functional requirements. The structure of the template helps the SRS
authors by allowing them to document the “big-picture” before thinking about the details.

The transition from general to specific also occurs with the refinement of the abstract
system goals to a theoretical model and finally to a concrete instanced model of the system.
The system goals state that given the beam properties and some of the external forces, the
system should solve for:

G1. The unknown external forces applied to the beam;

G2. The functions of shear force and bending moment in the beam;

G3. The function of deflection along the beam.

These goals are refined further via a theoretical model that helps the reader to develop
an understanding of the solution by introducing the theory and principles relevant to the
problem. For instance, the goal G1 is refined by the theoretical model for equilibrium, T1:

(T1)





∑
Fxi = 0,∑
Fyi = 0,∑
Mi = 0,

where the forces and moments are all represented by their signed magnitude symbols: Fxi

represents the ith force component in the x direction, Fyi represents the ith force component
in the y direction, Mi represents the ith moment component in the z direction. Similarly
there are theoretical models T2 and T3, which are detailed in [21], to refine the other two
system goals.

To reinforce the fact that G1 is more abstract than T1, it is worth mentioning that
T1 is not the only option for solving for the unknown forces. A theoretical model could
be constructed that used the principle of virtual work, instead of using the equations of
equilibrium.

The theoretical model alone does not provide enough information to solve for the un-
known forces. It is necessary to introduce and define a more detailed model of the beam
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Table II. Excerpt from Table for Solution of Unknown External Forces

H1

SGET = Ssym − SunkF SGET 6=
(Ssym−
SunkF )

SunkF /∈ P3 - (ErrorMsg′ = InvalidUnknown)
∧ChangeOnly(ErrorMsg)

FALSE

SunkF =
{@Fax, @Fbx, @Fay}

- ErrorMsg′ = NoSolution
∧ChangeOnly(ErrorMsg)

SunkF =
{@Fax, @Fbx, @Fby}

- ErrorMsg′ = NoSolution
∧ChangeOnly(ErrorMsg)

SunkF =
{@Fax, @Fbx, @F1}

- ErrorMsg′ = NoSolution
∧ChangeOnly(ErrorMsg)

SunkF =
{@Fax, @Fbx, @F2}

- ErrorMsg′ = NoSolution
∧ChangeOnly(ErrorMsg)

SunkF =
{@Fax, @Fay, @F1}

x1 6= 0
∧ θ3 6= 0
∧ θ3 6= 180

F ′ax =
− cos θ3F2x2 sin θ4+cos θ3FbyL+F2 cos θ4x1 sin θ3+Fbxx1 sin θ3

x1 sin θ3∧
F ′ay = −F2x2 sin θ4−FbyL−F2 sin θ4x1+Fbyx1

x1

∧ F ′1 =
−F2x2 sin θ4+FbyL

x1 sin θ3
∧ ChangeOnly(SunkF )

otherwise (ErrorMsg′ = Indeterminant)
∧ChangeOnly(ErrorMsg)

SunkF =
{@Fax, @Fay, @Fby}

L 6= 0 F ′ax = F1 cos θ3 + F2 cos θ4 + Fbx

∧ F ′ay = −(−F1 sin θ3L−F2 sin θ4L+F1x1 sin θ3+F2x2 sin θ4)
L

∧ F ′by = F1x1 sin θ3+F2x2 sin θ4
L

∧ ChangeOnly(SunkF )

otherwise (ErrorMsg′ = Indeterminant)
∧ChangeOnly(ErrorMsg)

H2 G

and the forces. In this case study the forces are represented as in Figure 3 and defined
in SRS subsection “Data Definitions”, with some of the forces decomposed into x and y
components and others given as a magnitude and a direction. Another SRS subsection
“Instanced Models” applies the theoretical models to the physical system. For instance,
when moments are taken about point a, one instance of the model M1 is:

(M1)





Fax − F1 · cos θ3 − F2 · cos θ4 − Fbx = 0
Fay − F1 · sin θ3 − F2 · sin θ4 + Fby = 0
−F1 · x1 sin θ3 − F2 · x2 sin θ4 + Fby · L = 0

As was the case for the transition from G1 to T1, there are other concrete options
available for specifying M1. One of the advantages of the proposed template is that it
supports reuse by allowing a new theoretical or instanced model to be introduced. Any of
the documentation associated with the more abstract model or goal can remain unchanged
in the new version of the SRS.
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4.2.1. Special Cases are Considered
The proposed requirements template provides a systematic approach for eliciting and docu-
menting requirements, which improves the user’s confidence that all special cases have been
considered, where special cases are defined as those exceptional cases that differ from the
normally expected behaviour. In particular, the use of tabular expressions aids in detecting
special cases, as shown by Table II. This table shows how the exceptions of divide by zero
errors can be avoided by carefully documenting what input values cause problems for which
cases. Tables have the advantageous property that they can be mathematically verified to
ensure that the space that they cover is complete.

Table II is an extract from the full table, given in [21], that shows the system behaviour
for solving for unknown forces, given the correct number of known forces. Only the statically
determinant beam is considered by the system, thus the number of unknowns should be the
same as the number of equilibrium equations; that is, there should be exactly 3 unknowns.
The valid unknown force space can be defined by P3, where P3 , {S|S ⊆ SF ∧ ]S = 3}
with SF being a set of symbols of force variables: {@Fax, @Fay, @Fbx, @Fby, @F1, @F2}.
The @ symbol is used to distinguish between the symbol for a variable and the actual value
of the variable. The ] symbol is a unary operator that is applied to a set and returns the
set’s cardinality. The user of the system should specify 3 known forces from the set SF

and the system will solve for the remaining 3. The solutions for each element in the set
P3 (C3

6 = 20 situations) are specified in [21]. (An advantage for this problem is that the
closed-form solution is available to be analyzed before design.) Some of the cases may lead
to an infinite number of solutions, which come from statically indeterminant beams. Since
the system is only interested in the cases that have a unique solution, the indeterminant
situations should be avoided. Table II, which shows a portion of the full table, documents
how the forces are solved for some of the cases. Table II uses SunkF to represent a set of
symbols of the unknown force variables: SunkF ∈ {S|S ⊆ SF }. In Table II, Ssym is the set
of symbols of all user interface variables that are either inputs or outputs of the system.
The table specifies that all symbols, except those in SunkF , must be in set SGET before the
calculations proceeds. As Table II shows, divide by zero errors can be avoided, by checking
the predicates in the second column of H2.

4.3. Catalyzes Consideration of Issues Before Design

The requirements template not only encourages a systematic process for collecting, ana-
lyzing and documenting the requirements, it also improves the systematic application of
the scientific method shown in Figure 2. There are sections in the requirements template
that encourage the analysts to answer questions that will pay significant dividends during
the design stage. For instance, the requirements template has a section (SRS Section 4.c.ii)
where the sensitivity of the model is considered. The SRS template encourages the analyst
to consider the sensitivity of the numerical model in advance of coding. If the model is very
sensitive to input data errors, then it may not be worth constructing, or it may be necessary
to approach the problem in a different manner. For instance, if the bean considered in this
case study experiences a high axial load, then buckling may occur. In the current case study
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an assumption is made that buckling failure will not occur, but if this is an important issue,
according to the range of parameters permitted by the model, then a buckling analysis
may be appropriate. The systematic presentation that tables provide is also helpful for
considering the sensitivity of individual calculations. For instance, in Table II, the condition
number of each explicit equation in the grid could be calculated to provide an estimate of
the sensitivity of the calculations.

Besides the section on sensitivity, there are other sections of the SRS template (Figure 4)
that encourage the analyst to think about important issues in advance of the design. These
sections are all in the “Non-functional Requirements” section of the template. The achieve-
ment of non-functional requirements often involve trade-offs between system qualities, such
as speed efficiency and accuracy, so it is valuable to start the discussion on these trade-offs
early in the process. If adequate effort is placed into documenting what behaviour is expected
of the system, then it should be easier to judge if the results produced by the system are
reasonable. One particular requirement that the analyst should think about in advance of
solving the problem is the tolerance allowed in the solution (Section 4.c.iii in the proposed
SRS template). For the case study SRS the tolerance is specified by equations of the form

|∑ Fxi|/
√∑

Fxi
2 ≤ ε, where Fxi is the ith force component in the x direction and ε is the

allowed tolerance. Another valuable set of pre-design non-functional requirements involves
the SRS section “Solution Validation Strategies”. Some possible validation strategies for
numerical solutions,which are given in the case study SRS, include: solving the problem by
different techniques (such as electronic spreadsheet or a graphical solution), and substituting
the results back into the model to see if the formula is still satisfied.

A good design should take into account the likely changes that the system may undergo
in the future. This is accommodated in the proposed template by Section 6 of the SRS, “List
of Possible Changes in the Requirements”. Some potential changes to the case study SRS
include incorporating more than two applied forces, considering beams with other types of
supports and considering the self-weight of the beam. The system designer will be able to
use this information to produce a system that can potentially have a long life because it
will be able to evolve to accommodate the likely future changes.

4.4. Reduces Ambiguity

One significant benefit of an SRS for an engineering computation problem, such as the beam
analysis problem, is that it can reduce the ambiguity of the requirements. By explicitly
documenting the requirements and by formalizing some of them, it becomes much easier for
different experts to communicate, a review of the requirements is possible, and the eventual
designer will not have to make arbitrary judgments about the system’s required behaviour.
One approach to making the SRS unambiguous is to use tabular expressions. As Table II
shows, tabular expressions clearly specify the required behaviour for all cases when they are
complete, which is a property that can be automatically verified. The SRS also has sections
that are devoted to providing the necessary details to make the problem unambiguous. For
instance, important reference material is given in the SRS sections “Table of Symbols” and
“Abbreviations and Acronyms”.
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Two other sections that reduce ambiguity are the SRS sections “Scope of the Software
Product” and “System Context”. These sections are important because they respectively
delineate what the system does and how the system fits into its external environment. For the
case study, the scope is solving for unknown forces, shear, bending moment and deflection
of a beam, but the documentation specifies that the system does not solve for internal axial
forces. The scope also makes it clear that the system will be used for educational purposes.
The system context section, on the other hand, documents the user responsibilities, such as
preparing input information and using consistent units, versus the system responsibilities,
such as detecting data type mismatch and determining if the inputs satisfy the required
constraints.

When developing a new system, it is important to have the characteristics of the future
users in mind. A beam analysis program will likely be designed differently by a practicing
engineer versus a high school student. In the current case study, the decision was made,
as documented in the SRS section “User Characteristics”, to assume that the users of the
system are first or second year university students in science or engineering.

An SRS is not meant to be read sequentially, instead it is a reference document that
will be searched for specific pieces of information. For instance, a reader or reviewer may
search for the definition of a particular term. Without the definition of the term, the reader
will not know how to interpret the documentation. For this reason there are two sections
in the SRS devoted to definitions: “Terminology Definition” and “Data Definitions”. The
terms defined include applied force, bending moment, deflection, equilibrium, free-body
diagram, longitudinal centroid plane, magnitude of a vector and Young’s modulus. The data
definitions are used to define the mathematical variables that model objects in the physical
system. For instance, there are definitions for the coordinate system, the dimension system,
the beam, the reactive forces, the moments and the shear forces. These definitions remove
ambiguity by giving a meaning to the symbols and by defining potentially confusing details,
such as the sign conventions.

The advantage of unambiguous requirements is that they can end arguments about
different designs. Practitioners argue over the relative merits of different designs based
on their own implicit requirements. A developer may criticize a design because it is not
efficient, but this criticism would not be justified if the designer clearly started out with
requirements that clearly stated that precision, maintainability and portability are more
important than efficiency. The specific trade-offs depend on the scope of the system. For
instance, in the beam analysis case study the requirements for speed and accuracy do not
need to be that strict because the system is not intended for a safety critical setting, but
rather an educational one.

4.5. Range of Model Applicability is Identified

A significant benefit of appropriate and rigorous requirements documentation is that the
range of the physical model’s applicability can be clearly identified. One way that this is
done is by documenting the assumptions that the model is based on, as discussed in the next
section. Another way that the range of applicability is identified is by explicitly constraining
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the input data. The input data should be constrained so that it is physically meaningful.
In the SRS section “Data Constraints”, physical constraints are applied to all variables, as
appropriate. For instance, the location x1 of the applied load F1 is required to be in the
range 0 ≤ x1 ≤ L because any other value is physically meaningless. Another constraint,
which is added to maintain the physical system description that the beam is long and thin
(PS1.a), is that 0 < h ≤ 0.1L.

Other constraints are added to the input data as system constraints, which are constraints
that are not motivated by physics, but rather by the range of values it is reasonable to expect
in practice. Table I gives an example of system constraints on the variable x1. The system
also constrains the angle θ3 so that 0 ≤ θ3 ≤ 180. This is not necessary for the physics
of the problem, but allowing this range of angles, and a signed magnitude for the force,
allows one to enter any possible loading, so the system restriction simplifies the user input,
without putting any constraints on the range of problems the system can solve. In [21] the
specification of the system behaviour for each input variable is given, along with a new
tabular composition operation that allows the specifications to be combined, while still
maintaining the property of domain coverage.

Restricting the input to the system to reasonable values can potentially avoid error
cases and it can streamline the subsequent design stage. One of the hardest challenges in
engineering computation is to devise algorithms for a general case. Why should a designer
have to face this challenge, if information is known about the problem that will mean that
only specific cases will ever occur? For instance, numerical problems could occur in the beam
problem if the external forces have significantly different magnitudes, but this is not likely to
occur in an engineering problem because the effect of the smallest magnitude forces would be
negligible and typically not even modeled by an engineer. For this reason, the case study SRS
has constraints on all of the forces of a form like the following constraint on Fax: (minf ≤
|Fax| ≤ maxf ) ∧ (|Fax| 6= 0) ∧ ∀(FF |@FF ∈ SF · FF 6= 0 ∧ max{|Fax|,|FF |}

min{|Fax|,|FF |} ≤ 10rf ), where
minf and maxf are the system constraints for the minimum and maximum magnitude
forces and rf is a positive integer that is the maximum exponent of base 10 for the ratio
between the magnitudes of the largest and smallest forces.

Documenting the range of applicability of the model is also important for engineering
computation problems other than the beam analysis problem. For instance, it is difficult
to write code to solve any system of equations Ax = b, but this job becomes easier if A is
known to have special characteristics, such as being symmetric positive definite. Therefore,
the requirements documentation should clearly show the restrictions on the data and the
theory that will lead to the simplifications.

4.6. Clear Documentation of Assumptions

In engineering computation it is often the differing assumptions that distinguish one piece of
work from another. Assumptions are necessary to build a physical model of the real world.
Often the quality of the model depends on how reasonable the simplifying assumptions are.
Given the importance of assumptions, an SRS for engineering computation problems should
clearly label and document all assumptions, as in Section 4.b.i of the proposed template.

REC2004



19

The assumptions defined in this subsection simplify the original problem and fill in missing
information for the physical system so that a theoretical models can be developed and be
properly applied. Some sample assumptions for the beam analysis SRS, using the numbering
given in [21], include the following:

A1. The physics for this problem are in the field of Newton’s classical mechanics.

A2. Thermal effects are neglected.

A4. The weight of the beam is neglected.

A8. Only the statically determinant cases for the beam are considered.

A9. Beam deformations are small compared to the original dimensions. Thus the slope of
the beam’s deflected shape is small compared to the unity, and the length variation of
the beam in the longitudinal direction is neglected.

A10. The deflection of the beam is caused by bending moment only, the shear does not
contribute.

A14. The second moment of area along the length of the beam is constant.

Since different models are distinguished by their differing assumptions, a clear indication
of the dependence of the model on its assumptions will greatly facilitate reuse and future
evolution of a given SRS. When the assumptions change the model generally changes, but,
very often, some parts will stay the same and by identifying those parts one can easily reuse
them. In the proposed SRS template the interdependence of the different components of the
specification is documented by a traceability matrix, which is in the SRS Section 5. For the
traceability matrix to be meaningful it is important that the assumptions be independent
of one another.

The traceability matrix gives a “big picture” view of the relationships between sections
“Physical System Descriptions”, “Goal Statements”, “Data Definitions”, “Assumptions”,
“Theoretical Models” and “Instanced Models” in the case study SRS. These sections of the
SRSs are shown because they contain the most essential information of the system func-
tionalities. As an example, the relationship between “Goal Statements” and “Theoretical
Models” can be refined by a specific relationship between one concrete goal statement and
one concrete theoretical model, for instance G1 and T1. These relationships are represented
by ticks “

√
” in the cells of the matrix, as in Table III, which is a portion of the table

presented in [21]. The physical system descriptions and the goals in the first column of the
matrix are used by the data definitions or the theoretical models in the second column; the
assumptions in the first row are used by the theoretical models, the instanced models and
the data definitions in the second column; the theoretical models and the data definitions
in the second column are used by the instanced models in the first row.

The traceability matrix of the “deflected beam problem” presented in this paper can
be compared with the simpler case of a “rigid beam problem” to illustrate how require-
ment reuse can be implemented with the help of a traceability matrix. Compared with the
deflected beam, the rigid beam has a new assumption:
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Table III. Traceability Matrix for Deformed Beam

Phy. Sys.
/Goal

Data
/Model

Assumption Model

A1 A2 ... A4 ... A8 A9 A10 ... A14 M1 ...

G1 T1
√

... ...
√ √

...
√

...

G2 T2
√

... ...
√ √

... ...

G3 T3
√

... ...
√ √

... ...

M1
√

... ... ...
√

...

PS1.a L ... ...
√

...
√

...

... ... ... ... ... ... ... ... ... ... ... ... ... ...

A15. The beam behaves as a rigid body.

This new assumption will require several changes to the SRS for the deflected beam. The
modifications can be guided by the traceability matrix. To see this, one can consider how
the flexible beam traceability matrix can be modified to obtain a traceability matrix for the
rigid beam problem. The addition of the rigid body assumption means that the previous
assumptions A9 - A14 are no longer necessary. The new system does not require system
goals G2 and G3; therefore, theoretical models T2, and T3 will be removed from the
row headers of Table III. Removing the columns representing the unnecessary assumptions
and the rows of the unnecessary models and symbols results in a traceability matrix that
reflects the requirements specification of the “rigid beam problem” exactly. The details of
this transition can be found in [21].

Besides supporting a transition to a simpler model, the traceability matrix also supports
a move to a more complex model. For instance, assumption A10 could be removed, which
would mean that shear would also contribute to deflections and a more complex theory,
such as Timoshenko beam theory [35, pages 224-230] would be required. In the transition
to the more complex system the traceability matrix would guide the analyst as to what
sections of the documentation need to be added and/or modified. For instance, Table III
shows that the theoretical model T3, which is the model for simulating the deflection, will
need to be changed. Also, PS1.a, which says that the “beam is long and thin” is no longer
necessarily true as Timoshenko beam theory also applies to short and thick beams.

5. Concluding Remarks

This paper motivates, justifies and illustrates a method of writing requirements spec-
ifications for engineering computation problems that will improve their reliability. The
motivation comes first from the fact that reliability of a system can only be accurately
judged if there is an unambiguous statement of the behaviors and qualities that the system
is required to have. Although there are many excellent numerical libraries and packages
that implement accurate and efficient algorithms, the selection of an appropriate algorithm
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is often based on implicit requirements. If explicit, appropriate and rigorous requirements
documentation is available, then the overall quality of the design can be improved, not just
with respect to reliability, but also with respect to usability, verifiability, maintainability,
reusability and portability, which are sometimes neglected qualities in engineering software.
Further motivation for the appropriateness of software engineering methodologies, such as
requirements analysis, for engineering computation, comes from the fact that the waterfall
model of software development closely parallels the usual model of the scientific method.

The justification for using the proposed template for engineering computation comes from
observing how it supports and encourages a systematic process by providing guidelines, by
providing a smooth transition from general to specific details, by increasing confidence that
all special cases have been considered, and by encouraging the analyst to scrutinize their
problem in advance of designing the computational system. Further justification for using
an SRS for engineering computation comes from the benefit of reducing ambiguity, clearly
identifying and documenting the range of model applicability and rigorously documenting
the assumptions that simplify the real world to the point where theoretical and instanced
models can be constructed. To improve the systematic process and to reduce ambiguity,
this paper advocates the use of tabular expressions, which provide mathematical rigor, but
at the same time have the benefit that they can be easily and intuitively understood.

To illustrate the proposed method of documenting requirements for engineering computa-
tion problems, this paper presents a case study for the analysis of a statically determinant
beam. Although this problem is relatively simple, the findings of this study can be gen-
eralized because many engineering computation problems follow the same pattern. For
instance, the scientific method is appropriate for most engineering problems and engineering
software can often be abstracted by the following simple model: input information then
perform calculations and finally output results. Moreover, the calculation step is similar
between many engineering computation problems because it involves solving some given
set of governing equations together with appropriate boundary and/or initial conditions.
Given the similar pattern between the beam problem and other engineering problems, the
method presented in this paper can be applied to larger and more complex problems. The
advantages of the current method will greatly increase as the size and complexity of the
problem grows because the value of a systematic approach increases with the number of
details and the number of people involved.
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