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Abstract

In the traditional interval computations approach to handling uncertainty, we assume
that we know the intervals xi of possible values of different parameters xi, and we
assume that an arbitrary combination of these values is possible. In geometric terms,
in the traditional interval computations approach, the set of possible combinations
x = (x1, . . . , xn) is a box x = x1 × . . .× xn.

In many real-life situations, in addition to knowing the intervals xi of possible values
of each variable xi, we also know additional restrictions on the possible combinations
of xi; in this case, the set x of possible values of x is a subset of the original box. For
example, in addition to knowing the bounds on x1 and x2, we may also know that the
difference between x1 and x2 cannot exceed a certain amount. Informally speaking,
the parameters xi are no longer independent – in the sense that the set of possible
values of xi may depend on the values of other parameters.

In interval computations, we start with independent inputs; as we follow compu-
tations, we get dependent intermediate results: e.g., for x1 − x2

1, the values of x1

and x2 = x2
1 are strongly dependent in the sense that only values (x1, x

2
1) are pos-

sible within the box x1 × x2. In interval computations,there are many techniques
for handling similar dependence between the intermediate computational results. In
this paper, we extend these techniques to handle a different type of dependence –



dependence between the inputs.

Our main idea is as follows: at any given stage of the computations, when, in ad-
dition to the input values x1, . . . , xn, we also have intermediate computation results
xn+1, . . . , xN , we not only store intervals xi of possible values of all the variable xi,
i = 1, . . . , N, we also store, for all pairs (i, j), sets xij of possible values of pairs
(xi, xj).

How can we represent such a set? Our first idea is to do it in a way cumulative prob-
ability distributions (cdf) are represented in RiskCalc package [3]: by discretization.
In RiskCalc, we divide the interval [0, 1] of possible values of probability into, say, 10
subintervals of equal width and represent cdf F (x) by 10 values x1, . . . , x10 at which
F (xi) = i/10. Similarly, we divide the box xi × xj into, say, 10 × 10 subboxes and
describe the set xij by listing all subboxes which contain possible pairs.

(Comment: A more efficient idea is to represent this set by a covering paving - in
the style of [4] - i.e., consider boxes of different sizes starting with larger ones and
only decrease the size when necessary. It is also possible (and often efficient) to use
ellipsoids (see, e.g., [5]) and hyperellipsoids.)

In the beginning, we know the intervals x1, . . . ,xn corresponding to the input vari-
ables, and we know the sets xij for i, j from 1 to n. Let us consider how we can
propagate this information on an intermediate computation step, a step of comput-
ing xk = xa ∗ xb for some arithmetic operation ∗ and for previous results xa and xb

(a, b < k). By the time we come to this step, we know the intervals xi and the sets
xij for i, j < k; we want to find the interval xk for xk, and the sets xik for i < k.

To compute the interval xk, we consider the set xab. In our representation, this set
consists of small 2-D boxes Xa ×Xb. For each small box Xa ×Xb, we use interval
arithmetic to compute the range Xa ∗Xb of the value xa ∗ xb over this box, and then
take the union of all these ranges.

To compute the set xik, we consider the sets xab, xai, and xbi. For each small box
Xa × Xb from xab, we consider all subintervals Xi for which Xa × Xi is in xai and
Xb×Xi is in xbi, and then we add (Xa ∗Xb)×Xi to the set xki. (To be more precise,
since the interval Xa ∗ Xb may not have bounds of the type p/10, we may need to
expand it to get within bounds of the desired type.)

We repeat these computations step by step until we get the desired estimate for the
range of the final result of the computations.

As a side effect of this technique, in addition to taking into account dependence
between the inputs, we also take care of the (more traditional) dependence between
individual results. For example, when we compute the range of x1 − x2

1, we first
compute x2 = x2

1 and then compute x3 = x1 − x2; in our methodology, when we



compute x2, we automatically generate the set x12 of possible values of pairs (x1, x2).
This set is close to the graph of the function x2. On the next step, when we compute
x3 = x1 − x2, we take into account not only the intervals x1 and x2, but also the set
x12, and thus, the resulting estimate for the range for x3 is close to the ideal.

Our algorithm takes somewhat longer than traditional interval computations: in the
traditional interval computations, we need as many steps s as the number of steps in
the original algorithm, while here - like in affine arithmetic – we need to compute k new
sets x1k, . . . ,xk−1,k on each step k, so the overall computation time ∼ 1+2+ . . .+s ∼
s(s + 1)/2 is quadratic in s.

Our preliminary experiments show that the resulting algorithms are indeed reasonably
efficient. The results have been useful in problems like nuclear engineering, where
ignoring the dependence between the inputs can lead to unnecessarily pessimistic
conclusions about safety and efficiency.

Are we done? Not yet. Since the range estimation problem is, in general, NP-hard
even without any dependency between the inputs – and thus, most probably, require
exponential time in the worst case – our method cannot completely avoid excess
width. To get better estimates, in addition to sets of pairs, we can also consider sets
of triples xijk. This will be a s3 time version of our approach. We can also go to
quadruples etc.

Similar ideas can be applied to the case when we also have probabilistic uncertainty;
preliminary results have been described in [1] and [2]. This possibility should not
be surprising because the set of possible values xij which described the dependence
between two interval-valued quantities is a natural analog between copulas - which
describe dependence between two random variables.
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