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Abstract. It is often required to manipulate interval matrices in reliable scientific computing. A
portable computational environment for basic interval linear algebra subroutines (interval BLAS)
is needed. We report such a environment recently developed based on the interval BLAS standard
included in (Blackford and et al, 2001) and (Dongarra, J. et al, 2002).

The computational environment is object-oriented in ISO/ANSI standard C++. It consists of
arithmetic, fundamental and utility functions, and set operations among intervals, interval vectors,
and interval matrices. These operations are implemented as member functions of three classes:
Interval, IntervalVector, and IntervalMatrix. This package is portable and robust with built-in
error handling features. Instructions on package installation, testing, and usages are included. A
sample application program is attached as an appendix.
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1. Introduction

Ever since Ray Moore introduced interval arithmetic (Moore, 1979) in 1950’s, it has achieved nu-
merous successful applications in scientific computing (Hansen, 1992; Coliss and Kearfott, 1999; de
Korvin and Hu, 2004) and many of others. Similar to traditional floating point arithmetic, interval
linear algebra is fundamental to most calculations and often the computationally intense part
in applications of interval computing. Designers of computer programs involving linear algebraic
operations have frequently chosen to implement certain low level operations, such as the dot
product or the matrix vector product, as separate subprograms. This may be observed both in
many published codes and in codes written for specific applications at many computer installations
(K̊agström, 1998; Duff and Vömel, 2002; Duff and Heroux, 2002; Li and et al., 2002; Sun Studio,
2005). With the same motivation we develop the computing environment for interval matrices.

2. The Interval BLAS Standard

In the Basic Linear Algebra Subprograms Technical (BLAST) Forum (Blackford and et al, 2001), we
proposed an interval BLAS standard. Based on the standard, Sun Microsystems made its Fortran
95 implementation in its Sun Studio (Sun Studio, 2005; Walster, 2002). This software package is
mostly based on the interval BLAS standard but implemented in C++. We need to briefly review
some basic definitions of the standard here.
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A nonempty mathematical interval [a, b] is the set {x ∈ <|a ≤ x ≤ b} where a ≤ b. A machine
interval [a∗, b∗] is a mathematical interval whose endpoints are machine representable numbers. We
say that [a∗, b∗] is a machine representation of [a, b] if [a∗, b∗] contains [a, b] i.e. a∗ ≤ a and b ≤ b∗.
We say that the machine interval [a∗, b∗] is a tight representation of a mathematical interval [a, b] if
and only if a∗ is the greatest machine representable number which is less than or equal to a, and b∗
is the least machine representable number which is greater than or equal to b. The empty interval
∅, which does not contain any real number, is required in interval BLAS. In our implementation,
we use [1, -1] to represent the empty interval.

Interval vectors and interval matrices are vectors and matrices whose entries are intervals. Both
scalar (floating point number) and interval arguments are used for the specifications of routines
in this paper. We use boldface letters to specify interval arguments. We also use overline and
underline to specify the greatest lower bound and the least upper bound of an interval variable,
respectively. For example, if x is an interval vector, then x = [x, x].

Interval arithmetic on mathematical intervals is defined as follows.

Let a and b be two mathematical intervals. Let op be one of the arithmetic operations +,−,×,÷.
Then a op b ≡ {a op b : a ∈ a, b ∈ b}, provided that 0 6∈ b if op represents ÷.

Table I gives explicit definitions of these four basic interval arithmetic operations and other
operations on mathematical intervals used in this package. All operations inside a computer are
performed on machine intervals. Arithmetic on machine intervals must satisfy the following prop-
erty:

Containment Condition: Let a = [a, a] and b = [b, b] be intervals. Let c = [c, c] be the interval
result of computing a op b where op is defined in Table I. If c is nonempty, then c must contain
the exact mathematical interval a op b.

In other words, interval arithmetic on nonempty machine intervals requires that we round down
the lower bound and round up the upper bound to guarantee that the machine interval result
contains the true mathematical interval result. This is needed to propagate guaranteed error bounds.
To ensure our implementation satisfies the containment condition, we make use of the constants
DBL EPSILON and DBL MIN provided in < cfloat > within the ISO/ANSI standard C++. As
the default, our package uses double precision. Our testing shows that the rounding process we
used effects the sixteenth to eighteenth significant digits on machines with 64 bits representation
for the type double.

3. Functionality

This section reports the functionality (mathematical operations) and operators involving interval
vectors and interval matrices. We group the functionalities into two tables. Table II lists the func-
tionalities involving interval vectors. It includes basic algebraic operations, set operations, interval
matrix-vector operations, and utility operations (including data movement) for interval vectors.
Table III lists functionalities for interval matrix operations that include O(n2) and O(n3) algebraic
operations, set operations, and utility operations (including data movement) for interval matrices.
The LATEXputs the tables at the end of this paper.
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Table I. Elementary interval operations

Operation a 6= ∅ and b 6= ∅ Operator

Addition a + b [a + b, a + b] +

Subtraction a− b [a− b, a− b] -

Multiplication a ∗ b [min{ab, ab, ab, ab}, max{ab, ab, ab, ab}] *

Division
a

b
, (0 6∈ b) [min{a/b, a/b, a/b, a/b}, max{a/b, a/b, a/b, a/b}] /

Intersection a ∩ b [max{a, b}, min{a, b}] if max{a, b} ≤ min{a, b}; &

Otherwise, ∅
Union a ∪ b [min{a, b}, max{a, b}] if a and b are not disjoint; |
Cancellation aª b [a− b, a− b] if (a− b) ≤ (a− b); Otherwise, ∅ cancel()

Convex hull a,b [min{a, b}, max{a, b}] hull()

Square root
√

a isqrt()

Exponential ea iexp()

Logarithm log10a ilog()

Power ab ipow()

Absolute value |a| max{|a|, |a|} iabs()

Trig functions isin() icos() itan()

iasin() iacos() iatan()

Disjoint test True if a ∩ b = ∅; False, otherwise disjoint()

Enclosure test True if a ≤ b and b ≤ a; False, otherwise encloses()

Interior test True if a < b and b < a; False, otherwise interior()

Midpoint a (a + a)/2 midpoint()

Width a a− a width()

Assignment a ← b =

Insertion operator for output <<

Extraction operator for input >>

Equality test True if a ≡ b and b ≡ a; False, otherwise ==

4. Package Contents

This package contains three main classes (Interval, IntervalVector, and IntervalMatrix), and aux-
iliary classes such as (IntervalVectorT, IntervalMatrixT, and INTERVAL EXCEPTION) for error
handling and performance enhancement.

4.1. The Interval Class

This class implements intervals and the fundamental operations among them. It is required by
operations among the interval vectors and matrices. The private data members of the Interval class
consists of the lower and upper bounds of a real interval with two double precision variables and a
string for error handling. There are three built in constructors for the Interval class. They initiate
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an interval object with zero to two double precision floating-point parameters (the interval [0, 0]
for zero parameter as default; directed rounding for single and double parameters).

The lower and upper bounds are accessed through the [ ] operator with index 1 or 2 respectively.
For example, x[1] and x[2] return the lower and upper bounds of an Interval object x. Arithmetic
operations of Interval objects are overloaded as arithmetic operators (+,−, ∗, /). Interval funda-
mental functions (Hu and Kearfott, 1993; Kearfott et al, 1994) are defined as friend functions (isqrt,
iexp, isin, icos, iatan, etc). The insertion and extraction operators in C++ are also overloaded for
the class. Table I lists the operators of this class.

4.2. The IntervalVector and IntervalMatrix classes

An instance of IntervalVector, as per the name, is a vector whose elements are Interval objects.
The IntervalVector class contains two private data members: an pointer of Interval type and an
integer that indicates the dimension of an instance. The vector’s dimension is set when the vector
is created and it is not resizable.

An IntervalMatrix object, as per the name, is a matrix whose elements are Interval objects. As
with the IntervalVector and Interval classes, the standard arithmetic operators are overloaded. The
dimensions of an interval matrix are set when it is created with the IntervalMatrix constructors
and is not resizable.

4.3. Error Handling and Auxiliary Classes

Error handling is done through exceptions. When an error occurs an INTERVAL EXCEPTION is
thrown. This INTERVAL EXCEPTION type is a structure with two fields. The first is a numeric
code that corresponds to the generated error type that allows for ease of programmatic error
handling. The other field is a string message that corresponds to that error. The last error can
be retrieved by calling the static getLastError() method of the Interval class. Similarly, the global
error can be set using Interval’s static method setError().

The setError() method takes two arguments. The first is the numeric code of the error that is to
be set. There are twenty-six predefined error codes. Each of them has a default error message. If you
send setError() an unknown code with no message, the global error’s message is set to “Unknown
Error!” A complete listing of all defined error codes and their associated messages can be found
in the library’s documentation for INTERVAL EXCEPTION. The second argument is an optional
string to use as a message. This will override the default message.

There are also two additional auxiliary template classes IntervalVectorT and IntervalMatrixT
in the package for type checking and declaration. The template classes check dimensions strongly
before assignment. For software robustness, the assignment operators for IntervalMatrix and In-
tervalVector classes do not check whether the source dimension matches the destination dimension
or not. Instead, the vector or matrix is simply resized. The template versions enable checking.
They require that the source and destination objects be of the same dimensions before allowing
assignment.

We have also made efforts to effectively manage the memory especially for intermediary results
in our implementation. Although this is opaque to general users, readers who are interested may
refer the source code for the details.
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5. Installation and Usage

5.1. Installation

The computational environment is available at www.geocities.com/mike nooner as a single zip file
containing the documentation, source code, test, a sample application program, a README and
a LICENSE file. After unzipping the downloaded package, one may install it by following the
installation instructions in the package. The package is ready to install directly on machines with
GCC or Microsoft Visual Studio .NET 2003. It can be installed on other platforms with C++
compilers in compliance with ISO/ANSI standard. However, some minor modifications may be
needed.

Included in the package, there are four sets of tests. The first three test whether the Interval,
IntervalVector, and IntervalMatrix classes function properly. With the -r option, the containment
condition is tested for matrix-matrix multiplication, matrix-vector multiplication, matrix scaled
accumulation, and vector scaled accumulation with randomly generated numbers. It is recom-
mended to run the standard test cases for the library using the packaged tester application. It is
recommended to pass the test output results in a file. Otherwise, the test outputs will be written
to the screen.

5.2. Using the Package

To use the library in your applications, there are four required steps.

1. Include the file IntBLAS.h

2. All the classes, functions, and global variables are in the intblas namespace. So, make the
appropriate using declaration(s).

3. You need to call the function INIT INTERVAL() before making use of any of the classes,
functions, or global variables. This function should ideally be called even before any declarations.

4. Finally, you will need to link to the intblas.lib static library.

A simple sample program, that performs level 0-3 interval basic linear algebra operations, is
attached as the Appendix with I/O data.

6. Conclusions and future work

The computational environment for interval matrices reported in this paper has various commonly
used functionalities in interval software development. It can be conveniently embedded into a
standard C++ environment. We plan to further test the package and enhance it with more features.
Using this package as a kernel, we are working on building applications for decision making systems
based on fuzzy logic, interval valued databases, and interval matrices (Collins and Hu, 2005; de
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Korvin et al, 2000; de Korvin and Hu, 2004; de Korvin et al, 2002). Suggestions, comments, and
error reports are very appreciated for further improvements of the package.
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Appendix: A simple application with I/O

#include <iostream>
#include <iomanip>
#include <IntBLAS.h> //Include IntBLAS

using namespace std;
using namespace intblas; //The IntBLAS namspace

int main()
{
INIT_INTERVAL(); //Must initialize the library
Interval a( 10, 11), b ( 5.5 ), int_r;

//The output operators use the streams format
cout << setprecision( 25 ) << setiosflags( ios::scientific );

int_r = a * b;
cout << "\nLevel 0 example:[10,11]*[5.5, 5.5] =\n" << int_r << endl;

IntervalVector m( 3 ), n( 3 ), vec_r;
m[0] = 1.1; m[1] = 2.3; m[2] = 4;
n[0] = a; n[1] = b; n[2] = a+b;

//vec_r = 2*m + 3*n
vec_r = scaledAccumulation( m, n, 2, 3 );

cout << "\nLevel 1 example: 2*{1,2,4} + 3*{5,6,7} =\n" << vec_r << endl;

IntervalMatrix x( 3, 3 );
x[0][0] = 1, x[0][1] = 2, x[0][2] = b;
x[1][0] = a, x[1][1] = 4, x[1][2] = 6;
x[2][0] = 3, x[2][1] = 6, x[2][2] = Interval( 9.5 );

vec_r = x * m;
cout << "\nLevel 2 example: x * {1, 2, 4} =\n" << mat_r << endl;

IntervalMatrix y( 3, 3 ), mat_r;
y[0][0] = b, y[0][1] = 2, y[0][2] = 3;
y[1][0] = 2, y[1][1] = a, y[1][2] = 6;
y[2][0] = b, y[2][1] = 6, y[2][2] = int_r;

mat_r = x * y;
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cout << "\nLevel 3 example: x * y =\n" << mat_r << endl;

return 0;
}

The output of the above sample program:

Level 0 example:[10,11]*[5.5, 5.5] =
[5.4999999999999978683717927e+01, 6.0500000000000021316282073e+01]

Level 1 example: 2*{1,2,4} + 3*{5,6,7} =
{ [3.2199999999999981525888870e+01, 3.5200000000000017053025658e+01]
[2.1099999999999987210230756e+01, 2.1100000000000012079226508e+01]
[5.4499999999999957367435854e+01, 5.7500000000000042632564146e+01] }

Level 2 example: x * {1, 2, 4} =
{ [2.7699999999999977973175191e+01, 2.7700000000000020605739337e+01]
[4.4199999999999967315034155e+01, 4.5300000000000046895820560e+01]
[5.5099999999999951683093968e+01, 5.5100000000000051159076975e+01] }

Level 3 example: x * y =
| [3.9749999999999964472863212e+01, 3.9750000000000035527136788e+01]
[5.4999999999999957367435854e+01, 5.7000000000000049737991503e+01]
[3.1749999999999971578290570e+02, 3.4775000000000028421709430e+02] |
| [9.5999999999999928945726424e+01, 1.0150000000000008526512829e+02]
[9.5999999999999928945726424e+01, 1.0200000000000009947598301e+02]
[3.8399999999999960209606797e+02, 4.2000000000000045474735089e+02] |
| [8.0749999999999928945726424e+01, 8.0750000000000071054273576e+01]
[1.2299999999999988631316228e+02, 1.2900000000000011368683772e+02]
[5.6749999999999943156581139e+02, 6.1975000000000056843418861e+02] |
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Table II. Functionality Involving Interval Vectors:

Algebraic Operation Mathematical Definition Operator

Dot product r ← βr + αxT y scaledDot()

Vector norms r ← ||x||1, r ← ||x||2
r ← ||x||∞ norm()

Sum r ← ∑
i
xi vectorSum()

Max magnitude & location k,xk; k = arg maxi{|xi|, |xi|} max()

Min absolute value & location k,xk; k = arg mini{|xi|, |xi|} min()

Sum of squares (a,b) ← ∑
i
x2

i , a · b2 =
∑

i
x2

i sumOfSquares()

Reciprocal scale x ← x/α reciprocalScale()

Scaled interval vector accumulation y ← αx + βy scaledAccumulation()

Scaled interval vector accumulation w ← αx + βy scaledAccumulation()

Scaled interval vector cancellation y ← αxª βy scaledCancelation()

Scaled interval vector cancellation w ← αxª βy scaledCancelation()

Set Operation

Enclosed x is enclosed in y if x ⊆ y encloses()

Interior x is enclosed in the interior of y interior()

Disjoint x and y are disjoint if x ∩ y = ∅ disjoint()

Intersection y ← x ∩ y, z ← x ∩ y operator &

Hull the convex hull of x and y intervalHull()

Matrix-vector Operation

Matrix vector product y ← αAx + βy scaledVectorMult()

y ← αAT x + βy

Triangular solve x ← Tx,x ← TT x triangularMult()

x ← αT−1x,x ← αT−T x

Rank one updates A ← αxyT + βA rankeOneUpdate()

Utility Operation

Vector copy x ← y =

Insertion operator for output <<

Extraction operator for input >>

Swap y ↔ x swap()

Permute vector x ← Px permute()

Empty element k if xk = ∅; or −1 containsEmpty()

Left endpoint v ← x lowerBounds()

Right endpoint v ← x upperBounds()

Midpoint v ← (x + x)/2 midpoint()

Width v ← x− x width()

Construct x ← u, v constructor
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Table III. Functionality for Interval Matrices

Algebraic Operation Mathematical Definition Operator

Matrix norms r ← ||A||1, r ← ||A||F , norm()

r ← ||A||∞, r ← ||A||max

Diagonal scaling A ← DA,A ← AD diagonalScale()

Two sided diagonal scaling A ← D1AD2 diagonalScale2()

Two sided diagonal scaling A ← DAD diagonalScale2()

A ← A + BD

Matrix acc and scale B ← αA + βB, scaledAccumulation()

B ← αAT + βB accTranspose()

Matrix add and scale C ← αA + βB scaledAccumulation()

Matrix matrix product C ← αAB + βC, C ← αAT B + βC, operator *

C ← αABT + βC, C ← αAT BT + βC

C ← αBA + βC, C ← αBT A + βC, operator *

C ← αBAT + βC, C ← αBT AT + βC

Set Operation

Enclosed A is enclosed in B if A ⊆ B encloses()

Interior A is enclosed in the interior of B interior()

Disjoint A and B are disjoint if A ∩B = ∅ disjoint()

Intersection B ← A ∩B, C ← A ∩B operator &

Hull the hull of A and B intervalHull()

Utility Operations

Matrix copy B ← A operator =

B ← AT operator =

Matrix transpose A ← AT transpose()

Permute matrix A ← PA,A ← AP permute()

Empty element if A has an empty interval element containsEmpty()

Insertion operator for output <<

Extraction operator for input >>

Left endpoint C ← A lowerBounds()

Right endpoint C ← A upperBounds()

Midpoint C ← (A + A)/2 midpoint()

Width C ← A−A width()

Construct A ← B, C constructor
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