
A library of Taylor models for PVS automatic proof checker

Francisco Cháves‡ and Marc Daumas§

Laboratoire de l’Informatique du Parallélisme
UMR 5668 CNRS–ENS de Lyon–INRIA

email: Francisco.Jose.Chaves.Alonso@ENS-Lyon.Fr

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
UMR 5506 CNRS–UM2

email: Marc.Daumas@LIRMM.Fr

Visiting Laboratoire de Physique Appliquée et d’Automatique
EA 3679 UPVD

email: Marc.Daumas@Univ-Perp.Fr

Abstract. We present in this paper a library to compute with Taylor models, a technique
extending interval arithmetic to reduce decorrelation and to solve differential equations. Nu-
merical software usually produces only numerical results. Our library can be used to produce
both results and proofs. As seen during the development of Fermat’s last theorem reported
by Aczel (1996), providing a proof is not sufficient. Our library provides a proof that has
been thoroughly scrutinized by a trustworthy and tireless assistant. PVS is an automatic proof
assistant that has been fairly developed and used and that has no internal connection with
interval arithmetic or Taylor models. We built our library so that PVS validates each result as
it is produced. As producing and validating a proof, is and will certainly remain a bigger task
than just producing a numerical result our library will never be a replacement to imperative
implementations of Taylor models such as Cosy Infinity. Our library should mainly be used to
validate small to medium size results that are involved in safety or life critical applications.

Keywords: PVS, program verification, interval arithmetic, Taylor models.

1. Introduction

Taylor models, see for example (Makino and Berz, 2003) and references herein, have recently
emerged as a nice and convenient way to reduce decorrelation in interval arithmetic (Moore,
1966; Neumaier, 1990; Jaulin et al., 2001). Taylor models are even more attractive when one
solves initial value problems ODEs as they provide a validated built-in integration operator.

Yet, it is now beyond doubt that programs and libraries contain bugs, no matter how precisely
they have been specified and how thoroughly they have been tested (Rushby and von Henke,
1991; Ross, 2005). As a consequence, the highest Common Criteria Evaluation Assurance Level,
EAL 71, has only been awarded so far to products that provide validation using a formal tool,
specifically an automatic proof checker in first or higher order logic.

‡ This material is based on work mostly supported by the Mathlogaps (Mathematical Logic and Applications)
project, an Early Stage Research Training grant of the European Union. The work presented here was also
partially supported by National Aeronautics and Space Administration, Langley Research Center under the
Research Cooperative Agreement No. NCC-1-02043 awarded to the National Institute of Aerospace.

§ This work has been partially supported by PICS 2533 from the French National Center for Scientific Research
(CNRS).

1 http://niap.nist.gov/cc-scheme/.

c© 2006 by authors. Printed in USA.

REC 2006 - Francisco Cháves and Marc Daumas

We present here our library of Taylor models in PVS (Owre et al., 1992). Working with an
automatic proof checker, we had to manage two tasks. The first task was to create a data type
and operations on this new type to allow users to define and evaluate expressions using Taylor
models. The second task was to provide proofs that each operator is correct and a strategy to
recursively analyze compound expressions. Both tasks rely on the recently published library on
interval arithmetic for PVS (Daumas et al., 2005). As many mathematical developments are
not yet available in PVS, we also had to develop an extended library on polynomials and prove
a few theorems of analysis and algebra.

Our library on Taylor models can be used to derive quickly more or less accurate bounds.
For example, users of formal tools have to provide proofs that radicals are non negative for
all expressions using square roots. Some proofs use intricate analysis but most of them are
very simple and interval arithmetic or low degree evaluations with Taylor models can produce
appropriate proofs. Our library can also be used to expertly derive computer validated proofs
of difficult results through an expert use of Taylor models.

The library will be available freely on the Internet as soon as it is stable. Side developments
are integrated as they are produced to NASA Langley PVS libraries2. Meanwhile, all files can
be retrieved from the author’s website.

http://perso.ens-lyon.fr/francisco.jose.chaves.alonso/pvs-files/

1.1. Working with an automatic proof checker

Software is used extensively for a wide array of tasks. Some pieces of software should never fail.
The ones used by transportation means (planes, buses, cars. . .), for medical care (controlling
pumps, monitors, prescriptions. . .) or in the army (parts of weapons, alarms. . .) belong to
the fast lengthening list of life or safety critical applications. A mindless modification of one
parameter reportedly caused human losses in the Instituto Oncologico Nacional on Panama
where eight people died and twenty others were hurt (Gage and McCormick, 2004). Many lethal
and costly failures (Information Management and Technology Division, 1992; Lions and others,
1996) show beyond reasonable doubts that traditional software verification is not sufficient to
guarantee correct behavior.

PVS3 (Prototype Verification System) by Owre et al. (1992; 2001a; 2001b) is one environment
for the development and analysis of formal specifications that allows the elaboration of theories
and proofs. The system deals with theories where users develop definitions, axioms and theorems.
To verify that theorems are correct, PVS uses a typed higher order logic language where new
types are defined from a list of basic types including booleans, natural numbers, integers. . . The
type system allows the definition of functions, registers, tuples and abstract data types.

PVS uses predicate subtypes, subtypes where all objects satisfy a given predicate. For example
{x : real|x 6= 0} is the set of non–zero reals. Subtype predicates are used for operations that
aren’t defined for all possible inputs. This restriction is therefore visible in the signature of the
operation. For example the division is an operation of real numbers such that the type of the
denominator is a real number different from zero. As a result, all functions of PVS are total in
the sense that the domain and the signature must exclude explicitly any input where a function
could not be defined.

As predicates used by the system to define types are arbitrary, type verification is undecidable
and it usually generates proofs obligations named type correctness conditions (TCCs). Users
have to provide proofs of generated TCCs with the help of PVS.

In PVS the λ operator defines anonymous functions. Expression λx.e is a function that has
parameter x and returns expression e. For example, the function that returns 0 for any value

2 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.
3 http://pvs.csl.sri.com/.

REC 2006 - Francisco Cháves and Marc Daumas

of its single parameter could be defined as λx.0 and identity function that returns the same
element that is given as parameter is λx.x. Function λ k : nat. if k = 0 then 1 else 0 is
the sequence that for input 0, returns 1, and returns 0 for any other input.

Nowadays, systems such as PVS are fully able to certify that programs are corrects (Ross,
2005) but programmers solely use them. Providing a formal proof of correct behavior is a
difficult task, it requires a specific training and user interfaces of proof assistants are of little
help for all the work that is not done automatically. Hope is that as more and more work is done
automatically, users will need only limited interactions with automatic proof checkers down to
the point where no interaction is required at all. This trend was recently coined as invisible
formal methods (Tiwari et al., 2003).

1.2. A few words about interval arithmetic

In interval arithmetic scalar variables x are replaced by pairs (a, b) with the semantic that x
lies in the interval [a, b]. Later on, we compute bounds rather than values. We use operators
commonly found in programming languages such as addition, subtraction, multiplication and
so on (Jaulin et al., 2001).

[a, b] + [a′, b′] = [a + a′, b + b′]
[a, b]− [a′, b′] = [a− b′, b− a′]

c · [a, b] = [c · a, c · b] c ≥ 0
[a, b] · [a′, b′] = [min{aa′, ab′, ba′, bb′},max{aa′, ab′, ba′, bb′}]

Working with automatic proof checkers, we convert operations into properties (Daumas et
al., 2005).

For all x ∈ [a, b], y ∈ [a′, b′] and c ∈ R

x + y ∈ [a, b] + [a′, b′]
x− y ∈ [a, b]− [a′, b′]
c · x ∈ c · [a, b]
x · y ∈ [a, b] · [a′, b′]

Decorrelation is a problem intrinsic to interval arithmetic. There is decorrelation on interval
evaluation of any expression where one or more variables appear more than once. For example,
the most simple scalar expression

x− x

where x ∈ [0, 1], is replaced in interval arithmetic by

[0, 1]− [0, 1] = [−1, 1].

Everyone agrees that x − x lies in the interval [0, 0] but interval arithmetic produces the
correct but very poor [−1, 1] interval. Decorrelation and other problems lead interval arithmetic
to overestimate the domain of results. Techniques are used intensively to produce constrained
results.

One of such techniques is based on Taylor’s theorem with Lagrange remainder where f is n
times continuously derivable between x0 and x, f is n + 1 times derivable strictly between x0

and x and 0 < θ < 1.

f(x) = f(x0) + (x− x0)f ′(x0) + (x−x0)2

2! f ′′(x0)

+ · · · + (x−x0)n

n! f (n)(x0)

+ (x−x0)n+1

(n+1)! f (n+1)(x0 + (x− x0)θ)

REC 2006 - Francisco Cháves and Marc Daumas

Adapting Taylor’s theorem to interval arithmetic, we obtain the formula below (Daumas et al.,
2005) for x and x0 in I.

f(x) ∈ f(x0) + (I − x0)f ′(x0) + (I−x0)2

2! f ′′(x0)

+ · · · + (I−x0)n

n! f (n)(x0)

+ (I−x0)n+1

(n+1)! f (n+1)(I)

Using Taylor’s theorem was appropriate in (Daumas et al., 2005) but it has many drawbacks:

− It is difficult to hide the use of Taylor’s theorem in order to provide invisible formal methods.
This is due to the large number of quantities involved in instantiating the theorem in its
generic form. Progress has been achieved by Muñoz after the publication of Daumas et al..

− To use Taylor’s theorem, one has to express the derivatives of function f .

− For large expressions, f alone might be too large to be expressed in PVS.

Taylor models presented in the rest of this text overcome all the previous drawbacks to the
price of a less accurate approximation. We have developed a set operations for PVS that includes
addition, negation, scalar multiplication, multiplication, reciprocal and exponential. We present
our developments in PVS, first quickly on polynomial functions and then on Taylor models. We
finish with concluding remarks and a few toy examples.

2. Implementing polynomials in PVS

For the implementation of polynomials we considered a finite list of monomial functions, a finite
sequence of coefficients and an infinite power series with finite support. Finite lists or sequences
usually imply the construction of a new inductive type à la Coq4 (Bertot and Casteran, 2004).
We implemented polynomials as power series with finite support. This scheme is appropriate
for a proof system like PVS and is compatible with NASA series libraries5.

Working with sequences of coefficients rather than monomial functions means that we need
the powerseries function to valuate polynomial P on input x. It also means that some theorems
can be established on finite support series rather than polynomial functions.

2.1. Finite support series

Our implementation of polynomials is outlined Figure 1. It mostly describes mathematical
objects (definition, function, theorems...) with common words except for the notions introduced
in Section 1.1

We define predicate finite support (a,N) just after the preamble. Addition of sequences
was already defined and is imported from previous work in the preamble. We had to define a
product operator and a composition operator. The first operator applies to generic series. The
second operator requires that the sequences is zero for indices above input d.

In the second half of Figure 1 we proved that negation, addition, multiplication by a scalar,
multiplication and composition return finite support series provided (both) input(s) are finite
support. We also proved that Cauchy’s product is meaningful for finite support series. The
meaning of composition can only be assessed in regard to polynomial functions.

REC 2006 - Francisco Cháves and Marc Daumas

finite support: theory
begin

importing series@series, reals@sqrt, series@power series

a, b, c: var sequence
[
real

]
N, M, L, n, m, l, i, j: var nat
x: var real

finite support(a: sequence
[
real

]
, N: nat): boolean =

∀ (n: nat): n > N ⇒ a(n) = 0

cauchy(a, b: sequence
[
real

]
)(n: nat): real =

Σ(0, n,
λ (k: nat):

if n ≥ k
then a(k)× b(n− k)

else 0
endif)

comp(a, b: sequence
[
real

]
, d: nat): recursive sequence

[
real

]
=

if d = 0
then (λ n: if n = 0 then a(0) else 0 endif)

else let c = (λ n: if n = d then 0 else a(n) endif) in
a(d)× pow(b, d) + comp(c, b, d− 1)

endif
measure d

neg fs: lemma
finite support(a, N) ⇒ finite support(−a, N)

add fs: lemma
finite support(a, N) ∧ finite support(b, M) ∧ L ≥ max(N, M) ⇒
finite support(a + b, L)

scal fs: lemma
finite support(a, N) ⇒ finite support(x× a, N)

finite support mult: lemma
finite support(a, N) ∧ finite support(b, M) ⇒
finite support(cauchy(a, b), N + M)

finite support cauchy: lemma
finite support(a, N) ∧ finite support(b, M) ⇒
series(a)(N)× series(b)(M) =
series(cauchy(a, b))(N + M)

finite support comp: lemma
finite support(a, N) ∧ finite support(b, M) ⇒
finite support(comp(a, b, N), N ×M)

end finite support

Figure 1. Abridged and reordered theory on finite support series (see file finite support.pvs)

REC 2006 - Francisco Cháves and Marc Daumas

polynomials ext: theory
begin

importing finite support, trig fnd@polynomial deriv

a, b, d: var sequence
[
real

]
n, N, M, L: var nat
c: var real
x, y: var real

fs powerseq: lemma
finite support(a, N) ⇒ finite support(powerseq(a, x), N)

fs condition: lemma
finite support(a, N) ⇒
(∀ (i: posnat): a(N + i) = 0)

scal polynomial1: lemma
x× polynomial(a, N) = polynomial(x× a, N)

powerseries polynomial: lemma
polynomial(a, n)(x) = powerseries(a)(x)(n)

polynomial zero: lemma
polynomial((λ (n: nat): 0), N)(x) = 0

mul polynomial: lemma
finite support(a, N) ∧ finite support(b, M) ⇒
polynomial(a, N)(x)× polynomial(b, M)(x) =
polynomial(cauchy(a, b), N + M)(x)

pow polynomial: lemma
finite support(a, N) ⇒
polynomial(a, N)(x) ˆ∧ n =
polynomial(pow(a, n), n×N)(x)

comp polynomial: lemma
finite support(a, N) ∧ finite support(b, M) ⇒
polynomial(a, N)(polynomial(b, M)(x)) =
polynomial(comp(a, b, N), N ×M)(x);

geom polynomial: lemma
(1− x)× Σ(0, N, λ (i : nat) : x ˆ∧ i) =
1− x ˆ∧ (N + 1)

end polynomials ext

Figure 2. Abridged extensions to the theory on polynomial (see file polynomials ext.pvs)

REC 2006 - Francisco Cháves and Marc Daumas

2.2. Polynomial

As we have mentioned earlier, we use polynomial (a, n) function to create a power series
from finite support sequence a based on powerseries(a)(x)(N) function. Extended results on
polynomial functions are presented in Figure 2 based on NASA libraries.

polynomial(a, n)(x) =
n∑

k=0

ak · xk

We proved in this file that Cauchy’s multiplication applies to finite support series as well
as polynomial functions. We also proved that the series obtained from composing two finite
support series as defined in Section 2.1 defines the same polynomial function as the one that
would be obtained by composing the polynomial functions associated to the two initial series.

Technical results are also presented in this file to provide more insights to our development.

3. Taylor models

Taylor models (Makino and Berz, 2003) are pairs t = (P, I) where P are polynomial functions
of fixed degree N and I are intervals. N is a constant that cannot be changed during the
evaluation of an expressions. In PVS, pairs are defined using its components between (# and
#). Components can be addressed independently using quotes ’, that are t‘P and t‘I.

Taylor model t is a correct representation of function f if it satisfies the containment
predicate stated Figure 3,

∀x ∈ J f(x)− t′P (x) ∈ t′I

where J is usually [−1, 1].
Our first task was to define operations on Taylor models. Addition, negation and multiplica-

tion by a scalar are straight forward and can be read directly from Figure 3. Naive multiplication
of Taylor models creates polynomials of degree 2N . High order terms of the polynomial must
be truncated and are accounted for in the interval part.

The inv reciprocal operator uses the following equality where r ∈ I.

1
p(x) + r

=
1

p(0)
· p(x)
p(x) + r

· 1

1− p(0)−p(x)
p(0)

(1)

We define q(x) = 1 − p(x)
p(0) and we expand the last fraction of (1) using the geometrical series∑N

i=0 qi truncated to keep only a polynomial of degree N .
Decorrelation forbids to evaluate the penultimate fraction of (1) directly and we defined a

new operator based on the lower bound and the upper bound of I/p(J) that returns directly 1
1 + 1

lb′(I/p(J))

,
1

1 + 1
ub′(I/p(J))

 .

This operator cannot be replaced by a direct implementation of

1
1 + p(J)/I

or
1

1 + 1
I/p(J)

because I usually contains 0 preventing anyone to use it as a divisor.
4 See for example http://www.lfcia.org/staff/freire/phd-gilberto/gilberto phd html/.
5 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.

REC 2006 - Francisco Cháves and Marc Daumas

taylor model
[
N: nat, (importing interval@interval) domInterval: Interval

]
: theory

begin

tm: type =
[
#P: fs type, I: Interval#

]
tm equal: axiom

t = u ≡
polynomial(t‘P, N) = polynomial(u‘P, N) ∧ t‘I = u‘I;

t + u : tm: tm = (#P := t‘P + u‘P, I := t‘I + u‘I#);
−t: tm = (#P := −t‘P, I := −t‘I#);
c× t: tm = (#P := c× t‘P, I :=

[[
c
]]
× t‘I#)

t× u: tm = (#P := trunc(cauchy(t‘P, u‘P), N), I := ... #)
inv(t: {t: tm | same condition as below tm_inv_sharp }):

tm = (#P := ... , I := ... #)

containment(f:
[
domIntervalType → real

]
, t: tm): bool =

∀ xu: (f(xu)− polynomial(t‘P , N)(xu)) ## t‘I

tm add sharp: lemma
containment(f, t) ∧ containment(g, u) ⇒ containment(f + g, t + u)

tm scal sharp: lemma
containment(f, t) ⇒ containment(x× f, x× t)

tm neg sharp: lemma
containment(f, t) ⇒ containment(−f, −t)

tm mult sharp: lemma
containment(f, t) ∧ containment(g, u) ⇒ containment(f × g, t× u)

tm inv sharp: lemma
∀ (f:

[
domIntervalType → nzreal

]
,

t:
{t: tm |

t‘P (0) 6= 0 ∧
(t‘I/intervalFromRealSeq(t‘P , N))‘lb 6= 0 ∧
(t‘I/intervalFromRealSeq(t‘P , N))‘ub 6= 0 ∧
(t‘I/intervalFromRealSeq(t‘P , N)) > −1}):

(∀ xu:
polynomial(t‘P, N)(xu) 6= 0 ∧
(f(xu)− polynomial(t‘P , N)(xu))/polynomial(t‘P , N)(xu)
6= 1
∧
polynomial(λ (i: nat):

if i = 0 then 0 else −t‘P (i)/t‘P (0) endif,
N)

(xu)
6= 1)

∧ Zeroless?(
[[
t‘P (0)

]]
) ∧ Zeroless?(...)

∧ Zeroless?(intervalFromRealSeq(t‘P, N)) ∧ containment(f, t)
⇒ containment(1/f, inv(t))

end taylor model

Figure 3. Abridged and reordered theory on Taylor models (see file taylor model.pvs)

REC 2006 - Francisco Cháves and Marc Daumas

example: theory
begin

importing tm exp
[
5, 5, (#lb := −1, ub := 1#)

]
ch(x: tm): tm =

(1/2)× (exp(x) + exp(−x))

sh(x: tm): tm =
(1/2)× (exp(x) +−exp(−x))

seq px: fs type =
λ (n: nat): if n = 1 then 1/1000 else 0 endif

tm x: tm = (#P := seq px, I :=
[[
0
]]
#)

example1: tm = ch(2× tm x)× sh(3× tm x)

end example

Figure 4. Taylor model example (see file example.pvs)

We also implemented the exponential of Taylor models using the following equality where
r ∈ I and êx is a rational approximation of ex.

ep(x)+r = êp(0) · ep(x)−p(0) · ep(0)

êp(0)
· er

The polynomial part of the result is obtained by developing and truncating the exponential
series. The interval part is set accordingly to account for all discarded quantities.

The five sharp lemmas of the second part of Figure 3, shows that containment predicate
is preserved by our operators. It means that we can deduce properties from evaluations of
expressions using Taylor models.

In addition to prove mathematical theories, PVS provides a ground evaluator. It is an ex-
perimental feature of PVS that enables the animation of functional specifications. To evaluate
them, the ground evaluator extracts Common Lisp code and then evaluate the code generated
on PVS underlying Common Lisp machine.

Uninterpreted PVS functions can be written in Common Lisp. PVS only trusts Lisp codes
generated automatically from PVS functional specifications, then one can not introduce inconsis-
tencies to the prover. However, codes are not type-checked by PVS and can break inadvertently
the system.

PVSio6 is a PVS package developed by Muñoz that extends the ground evaluator with a
predefined library including imperative programming language features. PVSio loads in emacs
interface using M-x load-prelude-library PVSio and then executes with M-x pvsio.

4. Toy example, concluding remarks and future work

Figure 4 show how easily we can define expression on Taylor models in PVS. PVSio is used to
evaluate Taylor model expressions and Figure 5 show the polynomial and interval parts of the

6 http://research.nianet.org/ munoz/PVSio

REC 2006 - Francisco Cháves and Marc Daumas

<PVSio> example1‘P(0);
==>
0
<PVSio> example1‘P(1);
==>
3/1000
<PVSio> example1‘P(2);
==>
0
<PVSio> example1‘P(3);
==>
21/2000000000
<PVSio> example1‘P(4);
==>
0
<PVSio> example1‘P(5);
==>
521/40000000000000000
<PVSio> example1‘I;
==>
(# lb := -1996666003792920908077809559596469417049924988435
67542489125827927772468257695416279793105352103584647/38763
49604747870233132233643700469577302245603256513727240130672
32422339563866364336668581220000000000000000000000000000,
ub := 1996666003792920908077809559596469417049924988435
67542489125827927772468257695416279793105352103584647/38763
49604747870233132233643700469577302245603256513727240130672
32422339563866364336668581220000000000000000000000000000 #)

Figure 5. Trace of the Taylor model example

Taylor model of degree 5 of

ch

(
2 · x

1000

)
· sh

(
3 · x

1000

)
= 3 · x

1000
+

21
2
·
(

x

1000

)3

+
521
40

·
(

x

1000

)5

+ r

with
r ∈ 5150892483 · 10−28 · [−1, 1]

Coefficients are obtained from expressions example1‘P(0), P(1) down to P(5). The interval
part is example1‘I.

To conclude, the authors would like to say that they have three goals in presenting this
report. We hope that we will succeed.

− Present an accurate report of the work involved including the training of a
PhD student to PVS. Though this development is significant, PVS validated projects
can be achieved in a reasonable time-frame provided appropriate tutoring is available.

− Provide a simple tutorial to our library on Taylor models. Readers should be able
to start validating their own results as soon as they have finished reading this paper.

− Offer a first easy step to the usage of automatic proof checkers It is always
frustrating to spend time on questions than can easily be solved by more or less elaborate

REC 2006 - Francisco Cháves and Marc Daumas

techniques. As we now provide a PVS library for interval arithmetic and for Taylor models,
one should be able to answer quickly to most of the easy questions about round-off,
truncation and modeling errors. Concentrating only on intricate questions is rewarding
from academia and ensures financial support from the industry.

In the future, we will implement more operations on Taylor models like square root, sine,
cosine, and arctangent. We will also create PVS strategies to hide more and more details of the
Taylor models from users. Our main goal remains to help providing invisible formal methods.

Acknowledgements

The authors wish to express all their gratitude to Cesar Muñoz from the National Institute of
Aerospace in Hampton, Virginia, for his tutoring and help in the many manipulations around
PVS. The author would also like to thank NASA Langley Research Center for its free PVS
Class held on May 24-27, 2005.

References

Amir D. Aczel. Fermat’s last theorem: unlocking the secret of an ancient mathematical problem. Four Walls Eight
Windows, 1996.

Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development. Springer-Verlag, 2004.
Marc Daumas, Guillaume Melquiond, and César Muñoz. Guaranteed proofs using interval arithmetic. In Paolo

Montuschi and Eric Schwarz, editors, Proceedings of the 17th Symposium on Computer Arithmetic, Cape Cod,
Massachusetts, 2005.

Debbie Gage and John McCormick. We did nothing wrong. Baseline, 1(28):32–58, 2004.
Information Management and Technology Division. Patriot missile defense: software problem led to system failure

at Dhahran, Saudi Arabia. Report B-247094, United States General Accounting Office, 1992.
Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Applied interval analysis. Springer, 2001.
Jacques-Louis Lions et al. Ariane 5 flight 501 failure report by the inquiry board. Technical report, European

Space Agency, Paris, France, 1996.
Kyoko Makino and Martin Berz. Taylor models and other validated functional inclusion methods. International

Journal of Pure and Applied Mathematics, 4(4):379–456, 2003.
Ramon E. Moore. Interval analysis. Prentice Hall, 1966.
Arnold Neumaier. Interval methods for systems of equations. Cambridge University Press, 1990.
Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: a prototype verification system. In Deepak Kapur,

editor, 11th International Conference on Automated Deduction, pages 748–752, Saratoga, New-York, 1992.
Springer-Verlag.

Sam Owre, Natarajan Shankar, John M. Rushby, and David W. J. Stringer-Calvert. PVS Language Reference.
SRI International, 2001. Version 2.4.

Sam Owre, Natarajan Shankar, John M. Rushby, and David W. J. Stringer-Calvert. PVS System Guide. SRI
International, 2001. Version 2.4.

Philip E. Ross. The exterminators. IEEE Spectrum, 42(9):36–41, 2005.
John Rushby and Friedrich von Henke. Formal verification of algorithms for critical systems. In Proceedings of

the Conference on Software for Critical Systems, pages 1–15, New Orleans, Louisiana, 1991.
Ashish Tiwari, Natarajan Shankar, and John Rushby. Invisible formal methods for embedded control systems.

Proceedings of the IEEE, 91(1):29–39, 2003.

REC 2006 - Francisco Cháves and Marc Daumas

REC 2006 - Francisco Cháves and Marc Daumas

