
Interval Arithmetic Logic Unit for Signal Processing and Control

Applications

William Edmonson, Ruchir Gupte, Senanu Ocloo, Jaya Gianchandani, Winser Alexander
Department of Electrical and Computer Engineering

North Carolina State University
Raleigh, NC 27695

Abstract. There are many applications within digital signal processing (DSP) and controls that
require the user to know how various numerical errors affect the result, i.e. uncertainty. This
uncertainty is represented by replacing non-interval values with intervals. Since most DSPs operate
in real time environments, fast processors are needed. The goal is to develop a platform in which
interval arithmetic operations are performed at the same computational speed as present day signal
processors. We have proposed a design for an interval based arithmetic logic unit (I-ALU) whose
computational time for implementing interval arithmetic operations is equivalent to many digital
signal processors.

Many DSP and control applications require a small subset of arithmetic operations that must
be computed efficiently. This design has two independent modules operating in parallel to calculate
the lower bound and upper bound of the output interval. The functional unit of the ALU performs
the basic fixed-point interval arithmetic operations of addition, subtraction, multiplication and the
interval set operations of union and intersection. In addition, the ALU is optimized to perform dot
products through the multiply-accumulate instruction. Division traditionally is not implemented on
digital signal processors unless computed with a shift operation. In this design, division by shifting
is implemented. The ALU is designed to have maximum throughput while minimizing area.

Keywords: arithmetic logic unit, interval arithmetic, signal processing

1. Introduction

Interval based algorithms continue to find applications as the solution for signal processing and
controls problems. For instance, in signal processing, there is usually the need to determine the
optimal solution to a problem, i.e., to minimize a cost function. The ability of interval global
optimization approaches to guarantee convergence to global minimum point(s) (?) is one that
makes such approaches attractive in digital signal processing (DSP) and control applications. DSP
and control algorithms need to be designed in such a way that roundoff and truncation errors that
occur naturally due to the discrete nature of computing do not cause the algorithm to become
unstable. Interval analysis provides a means of managing such errors. It is therefore possible to
obtain numerically accurate and reliable results.

Interval based algorithms are however slower than non-interval counterparts when run on current
processor architectures. Such algorithms are usually implemented in software and so extra work

c© 2006 by authors. Printed in USA.

REC 2006 - William Edmonson



2 William Edmonson

needs to be done in software to change rounding modes, perform memory management and perform
error checks. These steps are time consuming and therefore make the algorithms run slowly.

If interval based algorithms are to become more practical, the throughput problem will have to
be solved. This can be achieved by using arithmetic logic units (ALU) that are specially designed
to manipulate interval numbers. Such an Interval ALU (I-ALU) can be used as the core of any
digital signal processor. The throughput of such an ALU will have to be comparable to that of non-
interval units. In contrast to general purpose microprocessors that are designed to handle general
computing tasks, digital signal processors are designed and optimized to operate on algorithms
that are characterized by repetitive multiply-and-add operations. They use a modified Harvard
architecture with separate data and program memory (?). In general, they feature fast multiply-
accumulate instructions, multiple-access memory, specialized program control for interrupt handling
and I/O, and fast and efficient access to peripherals.

Interval floating-point ALUs have been proposed by ?. In this paper, we propose a fixed-point
I-ALU. Fixed-point processors have the advantage of requiring less silicon, featuring faster clocks
and being cheaper (?). The ALU is designed to perform the basic arithmetic operations of addition,
subtraction and multiplication. Division by shifting is also implemented. Other operations that can
be performed include multiply-accumulate (MAC), and the set operations of union and intersection.

The paper is organized as follows: section ?? discusses various aspects of the hardware design
based on a modified Harvard architecture, section ?? shows the results, and finally, section ??
provides the conclusion.

2. Interval ALU

2.1. Overall ALU Design

Consider the intervals X = [xL, xU ] and Y = [yL, yU ]. The ALU is designed to perform operations
Z = X op Y = {x op y | x ∈ X, y ∈ Y} where op ∈ {+, −, x, /}. It is also designed to perform
the set operations of union, ∪ and intersection, ∩. As is typical with digital signal processors, only
division by powers of 2 is implemented. That is, given X / Y , Y is degenerate and a power of two.
This allows for the division operation to be achieved by simply shifting the bits of the numerator,
X. The ALU is also capable of calculating the dot product of two vectors by a multiply-accumulate
operation.

In general, the result of each operation is a single interval. However, there is one situation where
two intervals may result. This is the case when the union of two disjoint intervals is desired. Consider
the operation X ∪ Y where X and Y are disjoint intervals. The result will then be two intervals,
X and Y , and they will be placed on the output lines in two successive clock cycles.

The ALU is a fixed-point unit which represents numbers in two’s complement format. One
bit, the leftmost and most significant bit (MSB), is used as the sign bit. The remaining bits are
used to represent the number. Figure ?? shows the structure of an N -bit signed number in two’s
complement format as used in our implementation.

Table ?? lists the inputs to the ALU. Operands are specified as 16-bit numbers. The ALU has
input lines that allow selection of the multiply-accumulate mode and the number of bits for the

REC 2006 - William Edmonson



Interval ALU for Signal Processing and Control 3

0 1 N -1

si
gn fraction

Figure 1. Fixed-point twos complement number format

output, rctl. The ALU has two 24-bit output lines for specifying the lower and upper bounds of the
resulting interval. Table ?? shows the details of the output lines.

Table I. Description of ALU Inputs

Input Description Bit Width

xL Lower bound on left-hand operand 16 bits

xU Upper bound on left-hand operand 16 bits

yL Lower bound on right-hand operand 16 bits

yU Upper bound on right-hand operand 16 bits

cmd Mathematical operation to be performed 3 bits

acc select Perform multiply-accumulate when asserted 1 bit

rctl Width of output results (Choice of 16- or 24-bits) 2 bits

Table II. Details of ALU outputs

Output Description Bit Width

zL Lower bound on result 24 bits

zU Upper bound on result 24 bits

The hardware model is divided into three parts, namely, the flag generator, lower bound and
upper bound modules. Figure ?? shows a schematic of the ALU. The flag generator module is re-
sponsible for generating flags that are used during multiplication. The nature of the input operands
(xL, xU , yL, yU ) and their values relative to zero are used to determine the value of the flag. There
are nine possible cases that need to be identified. The 4-bit mul flag is used to distinguish between
these possible cases. Table ?? shows the nine cases of multiplication and the associated mul flag
values. The flag produced by the flag generator module is used by the lower and upper bound
modules to determine the appropriate output values when multiplication is the operation desired.
Note that there is one case where the result is the union of two intervals. This is the case where
both X and Y contain 0 (mul = 0000). We shall refer to this case as special case multiplication.

The lower and upper bound modules are independent but equivalent in operation. These units
are used for calculating the lower and upper bounds on the resulting interval(s). Both modules take
the same set of inputs, namely the operands, mul flag and the command, cmd. Figure ?? shows the

REC 2006 - William Edmonson



4 William Edmonson

Flag
Generator

Lower Bound
Module

Rounding
Unit

Upper Bound
Module

xL
xU
yL
yU
cmd

16

16

3

16

16

acc_select

rctl
2

24

24

zL

zU

4
mul

32

32

cL

cU

Figure 2. Schematic of Interval ALU

schematic for the lower and upper bound modules. Each module has an adder, a subtraction unit
and a multiplier for performing computations, together with units of set operations.

Table III. Various cases of multiplication and associated mul flag values

MUL Case X*Y

0001 xL ≥ 0; yL ≥ 0 [xLyL, xUyU ]

0010 yL ≥ 0; yL < 0 < yU [xUyL, xUyU ]

0011 yL ≥ 0; yU ≤ 0 [xUyL, yLyU ]

0100 yL < 0 < xU ; yL ≥ 0 [yLyU , xUyU ]

0101 yL < 0 < xU ; yU ≤ 0 [xUyL, yLyL]

0110 xU ≤ 0; yL ≥ 0 [yLyU , xUyL]

0111 xU ≤ 0; yL < 0 < yU [yLyU , yLyL]

1000 xU ≤ 0; yU ≤ 0 [xUyU , yLyU ]

0000 yL < 0 < xU ;yL < 0 < yU [min(xUyL, yLyU ), max(yLyL, xUyU )]

REC 2006 - William Edmonson



Interval ALU for Signal Processing and Control 5

Note that cout is equal to cL or cU for the lower bound and upper bound modules respectively. A
register is used to latch the output of each module.

Addition, 
Multiplication 

&
 Set Operations

M
UX Delay

compare

M
UX MAC

Special Case
 Multiplication

cmd

acc_select

mul

xL
xU
yL
yU

mult_res

sub_res

add_res

u_res

int_res

cout

16

16

3

16

16

4

32

c in
32

Figure 3. Block diagram of lower and upper bound modules

It is important to note that a delay unit is needed for special case multiplications. A comparator
is also needed to perform the min and max operations. The presence of the delay unit implies
that special case multiplications require an extra clock cycle to produce the final result. This is in
contrast to the other arithmetic and set operations, namely, addition, subtraction, division, union
and intersection, where the final result is obtained after one clock cycle.

2.2. Multiply Accumulate (MAC) Unit

A dedicated multiply-accumulate functional unit is present in each of the lower and upper bound
modules to execute the MAC instruction efficiently. An external input line acc select is provided
to determine when the accumulation needs to be performed. When this input line is held high, the
accumulator is in accumulate mode; otherwise it serves the purpose of a simple latch. Figure ??
shows the block diagram of the accumulator.

Delay compare

MUX

+ Delay

Delay

acc_select

c in 32 32
cout

0

Figure 4. Multiply Accumulate (MAC) Unit

REC 2006 - William Edmonson



6 William Edmonson

2.3. Rounding Unit

One of the requirements of the I-ALU is that it should provide accurate, reliable results. Roundoff
errors occur naturally in binary computations because floating-point and fixed-point number sys-
tems are unable to represent every possible number. In situations where the true result is not exactly
representable, it is typical to round the number to the nearest machine-representable number (?).
However, this introduces errors.

To avoid such errors, care must be taken to ensure that the resulting interval is guaranteed to
contain the true result. This is achieved by using outward rounding. Outward rounding on an interval
X = [xL, xU ] is achieved by rounding the lower bound, xL, to the largest machine representable
number smaller than xL, and the upper bound xU , to the smallest machine-representable number
larger than xU . This ensures that the true is result is contained in the resulting interval.

The I-ALU accepts 16-bit inputs and thus, the largest possible output (obtained through mul-
tiplication) requires 32-bits. However, if desired, the ALU can provide 16-bit or 24-bit results.
Obviously, simple truncation of the original 32-bit result will lead to errors. Rounding is therefore
required in such situations.

In twos complement number representation which is what is used for the ALU, the most sig-
nificant bit of the result determines the sign of the answer. Different rounding modes need to be
applied based on this sign of the output and also, based on whether the output value is to be
rounded up or down. The bits of lower significance in the output have to be rounded up or down
depending on the module under consideration.

2.3.1. Rounding Algorithm for Lower Bound Module
The output of the lower bound module will always be rounded toward negative infinity. The bits
of lower significance simply need to be discarded based on the total number of bits to be retained.
Figure ?? illustrates the rounding algorithm for the lower bound module.

16-bit 8-bit 8-bit

16-bit 8-bit

16-bit

LSBMSB

16/24

rctl

cL

zL

32

2

Figure 5. Rounding Unit for Lower Bound Module

REC 2006 - William Edmonson



Interval ALU for Signal Processing and Control 7

2.3.2. Rounding Algorithm for Upper Bound Module
Rounding for the output is slightly more complicated. If any of the bits that are to be discarded is a
1, a 1 is added to the part that is going to be retained after rounding. Otherwise, simple truncation
is performed. Figure ?? illustrates this rounding algorithm in brief.

16-bit 8-bit 8-bit

LSBMSB

16/24

rctl

cU

zU

32

2

+ 1

Figure 6. Rounding Unit for Upper Bound Module

3. Performance & Results

The I-ALU presented in this paper was designed in such a way that its performance would compare
with non-interval ALUs. The two performance metrics of interest are throughput and area. Through-
put was the more important performance metric so the design was first optimized for throughput
and then for area. In other words, throughput was maximized while area was minimized. The
design was implemented using Verilog HDL and synthesized using Synopsys. The 0.18µm technology
library was used.

In order to compare favorably with non-interval ALUs, an interval ALU should be able to
produce the results of computations in a single clock cycle. The design presented produces results
in one clock cycle, except for cases where the result is a union of two disjoint intervals. The fastest
clock obtained for the design was 45.8MHz.

Once the design was optimized for throughput, it was then optimized for area. The goal was to
minimize the area. The minimum area obtained for our design was 218,569 µm2.

REC 2006 - William Edmonson



8 William Edmonson

4. Conclusion

We have presented in this paper a design for an Interval based Arithmetic Logic Unit having
computational efficiency comparable to many present day digital signal processors. This ALU
operates on intervals represented by fixed point numbers in twos complement form. To make the
ALU specific to DSP and control applications, dedicated hardware with a reduced instruction set of
addition, subtraction, multiplication and for filtering operations, the multiply-accumulate operator
is implemented. To bind the errors that accrue due to rounding, the outward rounding has been
implemented. Throughput and area of the design has been optimized to obtain the best results.

References

Hansen, E., Global Optimization Using Interval Analysis. Marcel Dekker, Inc., 1992.
Kulisch, U., Advanced Arithmetic for the Digital Computer. New York: Springer-Verlag, 2002.
Schulte, M. and J. E. Swartzlander, A Family of Variable-Precision Interval Arithmetic Processors, IEEE Trans.

Comput., vol. 49, no. 5, pp. 387–397, May 2000.
Kuo. S. M. and W.-S. Gan, Digital Signal Processors: Architectures, Implementations and Applications. Prentice

Hall, 2004.
ANSI/IEEE, IEEE Standard for Binary Floating-Point Arithmetic. New York: ANSI/IEEE Std 754-1985, 1985.
Moore, R. E. Interval Analysis. Prentice-Hall, Inc., 1966.

REC 2006 - William Edmonson


